Systems are provided for managing a small cell telecommunication system servicing multiple network operators. In one aspect, a small cell telecommunication system can include management sub-system including a controller, multiple baseband processing units in communication with the controller, a transport module, and multiple remote antenna units. The controller can communicate with multiple core networks. Each core network is operated by a separate network operator for providing telecommunication services to terminal devices. Each of the baseband processing units can process data plane data and control plane data from at least one respective core network. The transport module can communicate signals between the baseband processing units and the remote antenna units of the small cell network. The management sub-system can provide a respective amount of capacity via the small cell network for each core network based on a respective subset of the baseband processing units assigned to the core network.
In an embodiment, a communication circuit includes a frequency-shifting circuit coupled to a signal path, which is configured to carry, during a first period, an information signal having a first frequency. The frequency-shifting circuit is configured to receive a control signal, to shift the first frequency of the information signal by a second frequency in response to the control signal having a first control value, and to shift a third frequency of an interference signal on the signal path during a second period by a fourth frequency in response to the control signal having a second control value. For example, such a communication signal can be configured to shift the frequencies of an interference signal generated by the signal path out of the passband of an adjacent signal path to reduce the interference superimposed on a signal carried by the adjacent signal path.
H04B 1/525 - Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
3.
Methods and apparatuses for reflection measurements
Techniques are provided to more accurately determine reflected power, reflection coefficient, and/or voltage standing wave to permit prompt protection of components such as power amplifiers and notify communication system operators. This is accomplished by more accurately determining an amplitude and phase of an output reflected signal at an output port of a bidirectional coupler as a function of the following: an amplitude and a phase of a coupled forward signal coupled into a forward coupled port of the bidirectional coupler; an amplitude and a phase of a coupled reverse signal coupled into a reverse coupled port of the bidirectional coupler; an electrical transmission parameter from an input port of the bidirectional coupler to the forward coupled port; an electrical transmission parameter from the input port to the reverse coupled port; and an electrical transmission parameter from an output port of the bidirectional coupler to the reverse coupled port.
H03F 1/56 - Modifications of input or output impedances, not otherwise provided for
G01R 27/06 - Measuring reflection coefficientsMeasuring standing-wave ratio
G01R 27/28 - Measuring attenuation, gain, phase shift, or derived characteristics of electric four-pole networks, i.e. two-port networksMeasuring transient response
H01P 5/18 - Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
H02H 1/00 - Details of emergency protective circuit arrangements
H02H 9/00 - Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
H03F 3/21 - Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
The present disclosure describes devices, systems, and methods for synchronizing multiple-input/multiple-output (“MIMO”) signals or other signals in telecommunication systems. Some aspects may involve transmitting signals between a head-end unit and remote units of a telecommunication system. A first delay of a signal path between the head-end unit and a first remote unit of the remote units may be determined to be greater than each delay of signal paths between the head-end unit and other remote units. Based on the first delay, the telecommunication system may be configured to delay transmission of additional signals such that the additional signals are simultaneously transmitted to another unit by either the head-end unit or the remote units.
In an embodiment, a communication circuit includes a frequency-shifting circuit coupled to a signal path, which is configured to carry, during a first period, an information signal having a first frequency. The frequency-shifting circuit is configured to receive a control signal, to shift the first frequency of the information signal by a second frequency in response to the control signal having a first control value, and to shift a third frequency of an interference signal on the signal path during a second period by a fourth frequency in response to the control signal having a second control value. For example, such a communication signal can be configured to shift the frequencies of an interference signal generated by the signal path out of the passband of an adjacent signal path to reduce the interference superimposed on a signal carried by the adjacent signal path.
H04B 1/525 - Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
A sequenced transmit muting wideband power amplifier is provided that includes at least one pre-driver stage having at least a first pre-driver and a second pre-driver. A mute switch selectively establishes a communication path between the first and second pre-drivers or couples the second pre-driver to a termination resistor. A pre-driver switch selectively activates/deactivates the first and second pre-drivers. A driver stage is in communication with the pre-driver stage and includes a first driver. A final amplifier stage is in communication with the driver stage and includes at least one second driver. At least one S-NBS switch is configured to selectively activate/deactivate the first driver and second driver. A controller is configured to activate the at least one pre-driver switch, the mute switch, the at least one S-NBS switch to selectively place the amplifier in one of a transmit mode and a mute mode.
In an example, a configuration circuit includes a connector and a controller communicatively coupled to the connector via one or more signal lines. The configuration circuit further includes a microcontroller communicatively coupled to the controller via an interface. The configuration circuit further includes a connection detection circuit communicatively coupled to the microcontroller and the one or more signal lines. The connection detection circuit is configured to determine whether communication traffic between the connector and the controller on the one or more signal lines is detected, and output an interrupt signal to the microcontroller in response to detecting communication traffic between the connector and the controller on the one or more signal lines. The microcontroller is configured to instruct the controller to wake from a low-power sleep mode in response to receiving the interrupt signal from the connection detection circuit.
In one example, a system includes a central unit and a plurality of radiating points communicatively coupled to the central unit and located remotely from the central unit. Each respective radiating point includes a detector configured to evaluate uplink signals received from a coverage area of the respective radiating point. The detector is further configured to determine which services of a plurality of services supported by the system are needed and which services of the plurality of services supported by the system are not needed based on the evaluation of the uplink signals. The detector is further configured to send a request, to the central unit, to activate a service determined to be needed.
H04B 7/024 - Co-operative use of antennas at several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
In one example, a system includes a central unit and a plurality of radiating points communicatively coupled to the central unit and located remotely from the central unit. Each respective radiating point includes a detector configured to evaluate uplink signals received from a coverage area of the respective radiating point. The detector is further configured to determine which services of a plurality of services supported by the system are needed and which services of the plurality of services supported by the system are not needed based on the evaluation of the uplink signals. The detector is further configured to send a request, to the central unit, to activate a service determined to be needed.
H04B 7/06 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
Uplink leveling systems and methods for a distribution antenna are provided. An uplink leveling system includes at least one communication path between a base station point of interface and a remote antenna unit. A broadband measurement detector is communicatively coupled to measure signal power in the at least one communication path at the base station point of interface. A signal measurement receiver is communicatively coupled to measure signal power in the at least one communication path. A test signal generator is configured to generate a test signal in the at least one communication path in an uplink. At least one controller is configured to level the communication path in the uplink direction based at least in part on measurements by the broadband measurement detector and the signal measurement receiver in response to the generated test signal by the test signal generator.
H04B 7/06 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
In one embodiment a system comprises a master unit configured to receive a base station downlink radio frequency signal and transmit a base station uplink radio frequency signal; and a plurality of remote antenna units each communicatively coupled to the master unit using at least one cable, the remote antenna units each configured to radiate a remote downlink radio frequency signal from at least one antenna and to receive a remote uplink radio frequency signal from the at least one antenna. The master unit comprises a channel selective uplink muting circuit. The master unit receives and monitors uplink transport signals from the remote uplink radio frequency signal to identify one or more channels within the uplink transport signals that are not carrying uplink communications traffic; wherein the channel selective uplink muting circuit selectively mutes channels of the uplink transport signals that are not carrying uplink communications traffic.
In one embodiment a system comprises a master unit configured to receive a base station downlink radio frequency signal and transmit a base station uplink radio frequency signal; and a plurality of remote antenna units each communicatively coupled to the master unit using at least one cable, the remote antenna units each configured to radiate a remote downlink radio frequency signal from at least one antenna and to receive a remote uplink radio frequency signal from the at least one antenna. The master unit comprises a channel selective uplink muting circuit. The master unit receives and monitors uplink transport signals from the remote uplink radio frequency signal to identify one or more channels within the uplink transport signals that are not carrying uplink communications traffic; wherein the channel selective uplink muting circuit selectively mutes channels of the uplink transport signals that are not carrying uplink communications traffic.
A local roaming cell system for a mobile communication coverage area is disclosed. The system comprises: a RF head end that communicates with a plurality of base stations via a plurality of wireless RF communication links, wherein the plurality of base stations are outside of the coverage area; a conversion and link aggregation circuit that demodulates and processes downlink base station signals associated with at least two of the plurality of base stations by link aggregation to obtain a downlink signal comprising communications data extracted from the downlink base station signals; a roaming base station that modulates portions of the downlink signal to provide a local communication cell within in the coverage area to a plurality of user terminals. A first of the user terminals communicates via the roaming base station with a different one of the plurality of base stations than a second of user terminals.
In one embodiment, a distributed antenna system comprises at least one master unit; at least one remote antenna unit coupled to the master unit and comprising a power amplifier to radiate a remote downlink radio frequency signal, the remote antenna unit further configured to receive a remote uplink radio frequency signal from at least one antenna, the remote downlink radio frequency signal comprises first and second downlink frequency bands and wherein the remote uplink radio frequency signal comprises first and second uplink frequency bands; a band suppression module comprising: a controller; an uplink band suppression element configured to apply an attenuation to suppress the first uplink frequency band in response to a signal from the controller; and a downlink band suppression element configured to apply an attenuation to suppress the first downlink frequency band in response to the signal from the band suppression controller.
H04B 1/00 - Details of transmission systems, not covered by a single one of groups Details of transmission systems not characterised by the medium used for transmission
A technique to characterize moisture in a dielectric layer of a printed circuit board is provided. A method comprises applying a test signal to test circuitry comprising a test capacitor that is formed with the dielectric layer of the printed circuit board; measuring at least one characteristic of a least one of signal transmission and signal reflection from the test circuitry; and determining, from the at least one measured characteristic, at least one parameter value indicative of moisture content in the dielectric layer.
G01N 27/22 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
G01N 5/02 - Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
A technique to characterize moisture in a dielectric layer of a printed circuit board is provided. A method comprises applying a test signal to test circuitry comprising a test capacitor that is formed with the dielectric layer of the printed circuit board; measuring at least one characteristic of a least one of signal transmission and signal reflection from the test circuitry; and determining, from the at least one measured characteristic, at least one parameter value indicative of moisture content in the dielectric layer.
A method of tuning a production module using a reference module with virtual gain correction is provided. The method includes selecting a counterpart reference module created for a select application. The production module is commutatively coupled to the selected counterpart reference module to generate a production module pair. A production module gain curve for the production module pair is measured for each frequency band to be used by the production module. The production module is tuned based at least in part on offset gain values at select number of frequency observation points for each frequency band associated with the counterpart reference module and gain values at the select number of frequency observation points of the measured production module gain curve for each frequency band.
G01M 11/00 - Testing of optical apparatusTesting structures by optical methods not otherwise provided for
H04B 10/079 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
H04B 10/2575 - Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
H04B 10/43 - Transceivers using a single component as both light source and receiver, e.g. using a photoemitter as a photoreceiver
A modular filter system includes a front panel, a back panel, and a multiband combiner coupled to the front panel, the combiner including an antenna connector and filter connectors. The modular filter system further includes filter modules separate from the combiner, each filter module including first and second connectors to pass respective frequency bands, and a combiner connector to pass the frequency bands. Each filter module is configured to duplex, combine, or split first signals in the first frequency band and second signals in the second frequency band. The combiner connector of each filter module is coupled to a respective filter connector using a respective cable. The modular filter system further includes a fixing system comprising bars and plates, the bars coupled to the front and back panels using fasteners, wherein the bars and plates are configured to secure the filter modules between the combiner and the back panel.
A modular filter system includes a front panel, a back panel, and a multiband combiner coupled to the front panel, the combiner including an antenna connector and filter connectors. The modular filter system further includes filter modules separate from the combiner, each filter module including first and second connectors to pass respective frequency bands, and a combiner connector to pass the frequency bands. Each filter module is configured to duplex, combine, or split first signals in the first frequency band and second signals in the second frequency band. The combiner connector of each filter module is coupled to a respective filter connector using a respective cable. The modular filter system further includes a fixing system comprising bars and plates, the bars coupled to the front and back panels using fasteners, wherein the bars and plates are configured to secure the filter modules between the combiner and the back panel.
H04B 1/00 - Details of transmission systems, not covered by a single one of groups Details of transmission systems not characterised by the medium used for transmission
A method of tuning a production module using a reference module with virtual gain correction is provided. The method includes selecting a counterpart reference module created for a select application. The production module is commutatively coupled to the selected counterpart reference module to generate a production module pair. A production module gain curve for the production module pair is measured for each frequency band to be used by the production module. The production module is tuned based at least in part on offset gain values at select number of frequency observation points for each frequency band associated with the counterpart reference module and gain values at the select number of frequency observation points of the measured production module gain curve for each frequency band.
G01R 27/28 - Measuring attenuation, gain, phase shift, or derived characteristics of electric four-pole networks, i.e. two-port networksMeasuring transient response
G01R 17/04 - Arrangements in which the value to be measured is automatically compared with a reference value in which the reference value is continuously or periodically swept over the range of values to be measured
G01R 27/30 - Measuring attenuation, gain, phase shift, or derived characteristics of electric four-pole networks, i.e. two-port networksMeasuring transient response with provision for recording characteristics, e.g. by plotting Nyquist diagram
21.
Non-duplexer architectures for telecommunications system
A telecommunications system can include analog-to-digital converters in an uplink communication path or a downlink communication path. The analog-to-digital converters can have a high dynamic range and bandwidth to obviate a need for down-conversion of signals using an analog mixer. The uplink communication path and the downlink communication path can be coupled to an antenna using a non-duplexer coupling device. Uplink signals traversing the uplink communication path can be isolated from downlink signals independent of using a duplexer.
H04B 15/02 - Reducing interference from electric apparatus by means located at or near the interfering apparatus
H04B 1/525 - Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
H04B 1/48 - Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter
H04B 1/00 - Details of transmission systems, not covered by a single one of groups Details of transmission systems not characterised by the medium used for transmission
H04B 1/52 - Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
H04L 5/14 - Two-way operation using the same type of signal, i.e. duplex
A telecommunications system may include a distortion cancellation subsystem for use with a circulator device coupling an antenna to a transmit path and a receive path. The distortion cancellation subsystem may include a correction circuit and a cancellation circuit. In some aspects, the correction circuit may include a processing device or adaptive filter to correct imperfections in transmit signal samples generated by directional couplers. The correction circuit may also include a summing device to remove receive signal components from the transmit signal samples. The cancellation circuit may receive the output signal of the correction circuit via an adaptive filter. The output of the adaptive filter may be summed with a receive signal to minimize distortion of the receive signal.
H04B 1/48 - Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter
H04B 1/52 - Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
23.
Systems and methods for communication link redundancy for distributed antenna systems
In one embodiment, a distributed antenna system comprises: at least one master unit; at least one remote antenna unit communicatively coupled via a switch to the master unit by a primary cable and a secondary cable both coupled to the switch, the remote antenna unit comprising a compensating link check module that outputs a control signal to the switch, wherein the switch selects between the primary and secondary cable in response to the control signal; wherein the compensating link check module controls the switch to momentarily select the secondary cable to perform a link check during which the remote unit measures a quality metric of a downlink signal received via the secondary cable; and upon initiation of the link check, the compensating link check module adjusts an attenuation of the downlink signal received on the secondary cable by loading calibration settings for the secondary cable into a compensation attenuator.
H04B 10/25 - Arrangements specific to fibre transmission
H04B 10/079 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
H04B 10/2575 - Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
H04Q 11/00 - Selecting arrangements for multiplex systems
Techniques are provided to more accurately determine reflected power, reflection coefficient, and/or voltage standing wave to permit prompt protection of components such as power amplifiers and notify communication system operators. This is accomplished by more accurately determining an amplitude and phase of an output reflected signal at an output port of a bidirectional coupler as a function of the following: an amplitude and a phase of a coupled forward signal coupled into a forward coupled port of the bidirectional coupler; an amplitude and a phase of a coupled reverse signal coupled into a reverse coupled port of the bidirectional coupler; an electrical transmission parameter from an input port of the bidirectional coupler to the forward coupled port; an electrical transmission parameter from the input port to the reverse coupled port; and an electrical transmission parameter from an output port of the bidirectional coupler to the reverse coupled port.
Techniques are provided to more accurately determine reflected power, reflection coefficient, and/or voltage standing wave to permit prompt protection of components such as power amplifiers and notify communication system operators. This is accomplished by more accurately determining an amplitude and phase of an output reflected signal at an output port of a bidirectional coupler as a function of the following: an amplitude and a phase of a coupled forward signal coupled into a forward coupled port of the bidirectional coupler; an amplitude and a phase of a coupled reverse signal coupled into a reverse coupled port of the bidirectional coupler; an electrical transmission parameter from an input port of the bidirectional coupler to the forward coupled port; an electrical transmission parameter from the input port to the reverse coupled port; and an electrical transmission parameter from an output port of the bidirectional coupler to the reverse coupled port.
H03F 1/56 - Modifications of input or output impedances, not otherwise provided for
G01R 27/06 - Measuring reflection coefficientsMeasuring standing-wave ratio
G01R 27/28 - Measuring attenuation, gain, phase shift, or derived characteristics of electric four-pole networks, i.e. two-port networksMeasuring transient response
H01P 5/18 - Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
H02H 1/00 - Details of emergency protective circuit arrangements
H02H 9/00 - Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
H03F 3/21 - Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
A sequenced transmit muting wideband power amplifier is provided that includes at least one pre-driver stage having at least a first pre-driver and a second pre-driver. A mute switch selectively establishes a communication path between the first and second pre-drivers or couples the second pre-driver to a termination resistor. A pre-driver switch selectively activates/deactivates the first and second pre-drivers. A driver stage is in communication with the pre-driver stage and includes a first driver. A final amplifier stage is in communication with the driver stage and includes at least one second driver. At least one S-NBS switch is configured to selectively activate/deactivate the first driver and second driver. A controller is configured to activate the at least one pre-driver switch, the mute switch, the at least one S-NBS switch to selectively place the amplifier in one of a transmit mode and a mute mode.
A sequenced transmit muting wideband power amplifier is provided that includes at least one pre-driver stage having at least a first pre-driver and a second pre-driver. A mute switch selectively establishes a communication path between the first and second pre-drivers or couples the second pre-driver to a termination resistor. A pre-driver switch selectively activates/deactivates the first and second pre-drivers. A driver stage is in communication with the pre-driver stage and includes a first driver. A final amplifier stage is in communication with the driver stage and includes at least one second driver. At least one S-NBS switch is configured to selectively activate/deactivate the first driver and second driver. A controller is configured to activate the at least one pre-driver switch, the mute switch, the at least one S-NBS switch to selectively place the amplifier in one of a transmit mode and a mute mode.
In an example, a node of a telecommunications system includes a first section having one or more passive components; a second section including one or more power amplifier modules and a power supply, wherein the second section is coupled to the first section using fasteners; a distribution unit including a plate and a circuit board, wherein the second section is coupled to the distribution unit using fasteners; a cooling section; a first plurality of heat pipes extending from the one or more power amplifier modules to the cooling section; a second plurality of heat pipes extending from the first section into the second section; and a housing enclosing the first section and the second section.
H04B 1/03 - Constructional details, e.g. casings, housings
H05K 7/20 - Modifications to facilitate cooling, ventilating, or heating
F28D 15/02 - Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls in which the medium condenses and evaporates, e.g. heat-pipes
H03F 3/20 - Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
In an example, a node of a telecommunications system includes a first section having one or more passive components; a second section including one or more power amplifier modules and a power supply, wherein the second section is coupled to the first section using fasteners; a distribution unit including a plate and a circuit board, wherein the second section is coupled to the distribution unit using fasteners; a cooling section; a first plurality of heat pipes extending from the one or more power amplifier modules to the cooling section; a second plurality of heat pipes extending from the first section into the second section; and a housing enclosing the first section and the second section.
A method (600) comprises: measuring (660) reflected and forward power at a power amplifier output; determining (664) if the reflected power equals to or exceeds a first level; if the reflected power is equal to or exceeds the first level, then reduce (668) a power level of a power amplifier input signal; determining (670) if a standing wave ratio at the power amplifier output equals or exceeds a second level; if the standing wave ratio at the power amplifier output equals or exceeds the second level, then reducing (672) the power level and/ or sending an alarm; determining (674) if the power amplifier output power equals or exceeds a third level; and if the power output from the power amplifier equals or exceeds the third level, then reducing (676) the power level until such power level is less than or equal to the third level and/or sending an alarm.
A method comprises: measuring reflected and forward power at a power amplifier output; determining if the reflected power equals to or exceeds a first level; if the reflected power is equal to or exceeds the first level, then reduce power of a power amplifier input signal; determining if a standing wave ratio at the power amplifier output equals or exceeds a second level; if the standing wave ratio at the power amplifier output equals or exceeds the second level, then reducing the power amplifier input signal power level and/or sending an alarm; determining if the power amplifier output power equals or exceeds a third level; and if the power output from the power amplifier equals or exceeds the third level, then reducing the power amplifier input signal power level until such power level is less than or equal to the third level and/or sending an alarm.
Systems and methods for unified facility communications systems with device location are provided. One system embodiment comprises: a master unit and a plurality of remote antenna units defining a DAS. The master unit communicates with a base station to receive a base station downlink RF signal and to transmit a base station uplink RF signal. The remote antenna units radiate a remote downlink RF signal into a coverage area and receive a remote uplink RF signal from the coverage area. The master unit comprises uplink and downlink circuitry to transport user device communications, and a facility supervisory module to process facility device traffic associated with wireless facility assets in the coverage area. Facility device traffic is transported via the remote antenna units. Within the master unit, user device communications is routed via the uplink and downlink circuitry and facility device traffic is routed via the facility supervisory module.
H04B 7/06 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
H04W 64/00 - Locating users or terminals for network management purposes, e.g. mobility management
Systems and methods for unified facility communications systems with device location are provided. One system embodiment comprises: a master unit and a plurality of remote antenna units defining a DAS. The master unit communicates with a base station to receive a base station downlink RF signal and to transmit a base station uplink RF signal. The remote antenna units radiate a remote downlink RF signal into a coverage area and receive a remote uplink RF signal from the coverage area. The master unit comprises uplink and downlink circuitry to transport user device communications, and a facility supervisory module to process facility device traffic associated with wireless facility assets in the coverage area. Facility device traffic is transported via the remote antenna units. Within the master unit, user device communications is routed via the uplink and downlink circuitry and facility device traffic is routed via the facility supervisory module.
H04B 7/024 - Co-operative use of antennas at several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
G08B 7/06 - Signalling systems according to more than one of groups Personal calling systems according to more than one of groups using electric transmission
A62B 3/00 - Devices or single parts for facilitating escape from buildings or the like, e.g. protection shields, protection screensPortable devices for preventing smoke penetrating into distinct parts of buildings
G01C 21/20 - Instruments for performing navigational calculations
34.
USER EQUIPMENT ASSISTED LEVELING AND OPTIMIZATION OF DISTRIBUTED ANTENNA SYSTEMS
In one embodiment, a method for leveling and optimizing a distributed antenna system (DAS) includes determining a position of a test user equipment (UE); identifying one or more remote antenna units (RAUs) of a plurality of RAUs of the DAS in a vicinity of the test UE that contribute to downlink test signals received by the test UE at the position; transmitting downlink test signals from each RAU of the one or more RAUs to the test UE at the position; measuring a signal power of the downlink test signals transmitted from each RAU of the one or more RAUs received by the test UE at the position; and adjusting one or more components of the DAS until a target signal power of the downlink test signals from each RAU of the one or more RAUs for the position is received at the test UE.
One embodiment is directed to a multiple input, multiple output (“MIMO”) telecommunications system comprising a plurality of signal paths. The system further comprises mixers located in the plurality of signal paths, the mixers being coupled to oscillators for producing a plurality of signals occupying non-overlapping frequency bands and representative of wireless signals. The system further comprises a summer coupled to the plurality of signal paths for summing the plurality of signals to form summed signals. The system further comprises a shared analog-to-digital converter for converting the summed signals to digital signals.
H04B 7/04 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
H04B 1/00 - Details of transmission systems, not covered by a single one of groups Details of transmission systems not characterised by the medium used for transmission
H04B 1/26 - Circuits for superheterodyne receivers
H04B 7/06 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
One embodiment is directed to a radio access network (RAN) system comprising a baseband unit (BBU), a plurality of remote radio units, wherein each of the remote radio units is located remotely from the BBU, and an intermediary unit The BBU, the remote radio units, and the intermediary unit are communicatively coupled to each other via a switched Ethernet network. The BBU is configured to transmit downlink fronthaul data to the intermediary unit via the switched Ethernet network. The intermediary unit is configured to receive the downlink fronthaul data from the BBU and simulcast the downlink fronthaul data to the remote radio units via the switched Ethernet network. Each remote radio unit is configured to receive the downlink fronthaul data and generate therefrom at least one downlink radio frequency signal for wireless communication to user equipment (UE) via an associated at least one antenna.
H04B 7/04 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
H04L 29/08 - Transmission control procedure, e.g. data link level control procedure
H04W 4/06 - Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]Services to user groupsOne-way selective calling services
In one embodiment, a distributed antenna system comprises: a master unit configured to receive a base station downlink radio frequency signal and to transmit a base station uplink radio frequency signal; and at least one remote antenna unit that is communicatively coupled to the master unit using at least one cable, the remote antenna unit configured to radiate a remote downlink radio frequency signal and to receive a remote uplink radio frequency signal; wherein the master unit comprises: a controller; and a respective interface to couple the controller to a first operator control panel; wherein the at least one remote antenna unit comprises: a controller; and a respective interface to couple the controller to a second operator control panel; wherein the master unit controller and the remote unit controller synchronize at least some information between the first and second operator control panels over the at least one cable.
H01Q 3/00 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
H04B 7/024 - Co-operative use of antennas at several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
38.
Systems and methods for communication link redundancy for distributed antenna systems
In one embodiment, a distributed antenna system comprises: at least one master unit; at least one remote antenna unit communicatively coupled via a switch to the master unit by a primary cable and a secondary cable both coupled to the switch, the remote antenna unit comprising a compensating link check module that outputs a control signal to the switch, wherein the switch selects between the primary and secondary cable in response to the control signal; wherein the compensating link check module controls the switch to momentarily select the secondary cable to perform a link check during which the remote unit measures a quality metric of a downlink signal received via the secondary cable; and upon initiation of the link check, the compensating link check module adjusts an attenuation of the downlink signal received on the secondary cable by loading calibration settings for the secondary cable into a compensation attenuator.
H04B 10/079 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
H04B 10/2575 - Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
H04Q 11/00 - Selecting arrangements for multiplex systems
Certain aspects are directed to a mounting assembly for mounting an antenna unit or other device. The mounting assembly includes at least one bracket and at least one retaining assembly. The bracket can be movably positioned at multiple orientation angles with respect to a surface. The bracket includes a latching edge that defines multiple recesses. Each of the recesses corresponds to one of the orientation angles. The retaining assembly is positioned adjacent to the bracket. The retaining assembly includes at least one protrusion that can engage one of the recesses to form a latching connection between the bracket and the retaining assembly. The latching connection can retain the bracket at an orientation angle corresponding to the engaged recess.
A repeater with redundancy functions for a wireless communication system is provided. The repeater includes downlink repeater circuitry, uplink repeater circuitry, a detection function, at least one memory and a controller. The detection function is configured to detect conditions of communications between the base stations and the repeater. The at least one memory is used to store a primary configuration that sets out parameters for interfacing communications between the repeater and a primary base station of the base stations and at least one secondary configuration that sets out parameters for interfacing communications between the repeater and at least one secondary base station of the base stations and/or a secondary signal line of signal lines between the repeater and the primary base station. The controller is configured to implement the at least one secondary configuration to communicate with an associated secondary base station upon the detection function detecting abnormal communications between the repeater and the primary base station.
A repeater with redundancy functions for a wireless communication system is provided. The repeater includes downlink repeater circuitry, uplink repeater circuitry, a detection function, at least one memory and a controller. The detection function is configured to detect conditions of communications between the base stations and the repeater. The at least one memory is used to store a primary configuration that sets out parameters for interfacing communications between the repeater and a primary base station of the base stations and at least one secondary configuration that sets out parameters for interfacing communications between the repeater and at least one secondary base station of the base stations and/or a secondary signal line of signal lines between the repeater and the primary base station. The controller is configured to implement the at least one secondary configuration to communicate with an associated secondary base station upon the detection function detecting abnormal communications between the repeater and the primary base station.
Certain aspects are directed to a configuration sub-system for telecommunication systems. The configuration sub-system can include a test signal generator, a power measurement device, at least one additional power measurement device, and a controller. The test signal generator can be integrated into components of a telecommunication system. The test signal generator can provide a test signal to a signal path of the telecommunication system. The power measurement device and the additional power measurement device can respectively be integrated into different components of the telecommunication system. The power measurement device and the additional power measurement device can respectively measure the power of the test signal at different measurement points in the signal path. The controller can normalize signals transmitted via the telecommunication system by adjusting a path gain for the signal path based on measurements from the power measurement device and the additional power measurement device.
H04B 1/00 - Details of transmission systems, not covered by a single one of groups Details of transmission systems not characterised by the medium used for transmission
H04W 52/24 - TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
A master unit and a remote unit is provided for a multiband transmission system for distributing and combining signals of at least one wireless communication network and at least one digital network. A reference frequency generator is arranged in the master unit, the reference frequency generator being designed to clock a master modem for converting the signals of the at least one digital network. The reference frequency signal emitted by the reference frequency signal is restored via a reference frequency receiver and is used for closing a remote modem that is located there for demodulation.
H04L 7/06 - Speed or phase control by synchronisation signals the synchronisation signals differing from the information signals in amplitude, polarity, or frequency
A re-configurable distributed antenna system that includes a plurality of base transceiver stations and a plurality of remote antenna units is provided. The plurality of the remote antenna units are configured and arranged to provide communication services for a plurality of coverage zones. A signal router selectively routes signal communication paths between a plurality of base transceiver stations and the plurality of the remote antenna units. At least one memory is configured to store routing scenarios and distributed antenna system configurations associated with the stored routing scenarios. Moreover, at least one controller dynamically controls the signal router to selectively route the signal communication paths between the plurality of base transceiver stations and the plurality of remote antenna units based at least in part on a then current need of communication service capacity within the plurality of coverage zones and the stored coverage routing scenarios.
A re-configurable distributed antenna system that includes a plurality of base transceiver stations and a plurality of remote antenna units is provided. The plurality of the remote antenna units are configured and arranged to provide communication services for a plurality of coverage zones. A signal router selectively routes signal communication paths between a plurality of base transceiver stations and the plurality of the remote antenna units. At least one memory is configured to store routing scenarios and distributed antenna system configurations associated with the stored routing scenarios. Moreover, at least one controller dynamically controls the signal router to selectively route the signal communication paths between the plurality of base transceiver stations and the plurality of remote antenna units based at least in part on a then current need of communication service capacity within the plurality of coverage zones and the stored coverage routing scenarios.
H01Q 19/12 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
H01Q 1/52 - Means for reducing coupling between antennas Means for reducing coupling between an antenna and another structure
H01Q 1/28 - Adaptation for use in or on aircraft, missiles, satellites, or balloons
H01Q 3/02 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
H01Q 3/20 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device wherein the primary active element is fixed and the reflecting device is movable
In an embodiment, a signal repeater includes a master unit and a remote unit that are optically coupled to one another by, e.g., an optical fiber. The master unit includes master-unit circuitry configured to receive an input electrical signal from a satellite-signal receive antenna, and to convert the input electrical signal into an optical signal. And the remote unit includes remote-unit circuitry configured to convert the optical signal into an intermediate electrical signal, to amplify the intermediate electrical signal to generate an output electrical signal, and to couple the output electrical signal to a retransmission antenna. Because an optical channel, such as an optical fiber, typically attenuates an optical signal significantly less per unit of distance than a coaxial cable attenuates an electrical signal, such a signal repeater allows a satellite receive antenna to be located at a significant distance from a retransmit antenna.
COMMSCOPE CONNECTIVITY UK LIMITED (United Kingdom)
Inventor
Schmid, Peter
Eisenwinter, Stefan
Gunzner, Peter
Abstract
e.ge.g., an optical fiber. The master unit includes master-unit circuitry configured to receive an input electrical signal from a satellite-signal receive antenna, and to convert the input electrical signal into an optical signal. And the remote unit includes remote-unit circuitry configured to convert the optical signal into an intermediate electrical signal, to amplify the intermediate electrical signal to generate an output electrical signal, and to couple the output electrical signal to a retransmission antenna. Because an optical channel, such as an optical fiber, typically attenuates an optical signal significantly less per unit of distance than a coaxial cable attenuates an electrical signal, such a signal repeater allows a satellite receive antenna to be located at a significant distance from a retransmit antenna.
In one embodiment, a distributed antenna system comprises at least one master unit; at least one remote antenna unit coupled to the master unit and comprising a power amplifier to radiate a remote downlink radio frequency signal, the remote antenna unit further configured to receive a remote uplink radio frequency signal from at least one antenna, the remote downlink radio frequency signal comprises first and second downlink frequency bands and wherein the remote uplink radio frequency signal comprises first and second uplink frequency bands; a band suppression module comprising: a controller; an uplink band suppression element configured to apply an attenuation to suppress the first uplink frequency band in response to a signal from the controller; and a downlink band suppression element configured to apply an attenuation to suppress the first downlink frequency band in response to the signal from the band suppression controller.
H04B 1/00 - Details of transmission systems, not covered by a single one of groups Details of transmission systems not characterised by the medium used for transmission
In one embodiment, a distributed antenna system comprises: at least one master unit; at least one remote antenna unit communicatively coupled via a switch to the master unit by a primary cable and a secondary cable both coupled to the switch, the remote antenna unit comprising a compensating link check module that outputs a control signal to the switch, wherein the switch selects between the primary and secondary cable in response to the control signal; wherein the compensating link check module controls the switch to momentarily select the secondary cable to perform a link check during which the remote unit measures a quality metric of a downlink signal received via the secondary cable; and upon initiation of the link check, the compensating link check module adjusts an attenuation of the downlink signal received on the secondary cable by loading calibration settings for the secondary cable into a compensation attenuator.
H04B 17/309 - Measuring or estimating channel quality parameters
H04B 10/079 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
H04B 10/2575 - Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
H04Q 11/00 - Selecting arrangements for multiplex systems
G01M 11/00 - Testing of optical apparatusTesting structures by optical methods not otherwise provided for
G01R 31/02 - Testing of electric apparatus, lines, or components for short-circuits, discontinuities, leakage, or incorrect line connection
In one embodiment, a distributed antenna system comprises at least one master unit; at least one remote antenna unit coupled to the master unit and comprising a power amplifier to radiate a remote downlink radio frequency signal, the remote antenna unit further configured to receive a remote uplink radio frequency signal from at least one antenna, the remote downlink radio frequency signal comprises first and second downlink frequency bands and wherein the remote uplink radio frequency signal comprises first and second uplink frequency bands; a band suppression module comprising: a controller; an uplink band suppression element configured to apply an attenuation to suppress the first uplink frequency band in response to a signal from the controller; and a downlink band suppression element configured to apply an attenuation to suppress the first downlink frequency band in response to the signal from the band suppression controller.
H04B 1/00 - Details of transmission systems, not covered by a single one of groups Details of transmission systems not characterised by the medium used for transmission
51.
SYSTEMS AND METHODS FOR COMMUNICATION LINK REDUNDANCY FOR DISTRIBUTED ANTENNA SYSTEMS
In one embodiment, a distributed antenna system comprises: at least one master unit; at least one remote antenna unit communicatively coupled via a switch to the master unit by a primary cable and a secondary cable both coupled to the switch, the remote antenna unit comprising a compensating link check module that outputs a control signal to the switch, wherein the switch selects between the primary and secondary cable in response to the control signal; wherein the compensating link check module controls the switch to momentarily select the secondary cable to perform a link check during which the remote unit measures a quality metric of a downlink signal received via the secondary cable; and upon initiation of the link check, the compensating link check module adjusts an attenuation of the downlink signal received on the secondary cable by loading calibration settings for the secondary cable into a compensation attenuator.
G01M 11/00 - Testing of optical apparatusTesting structures by optical methods not otherwise provided for
G01R 31/02 - Testing of electric apparatus, lines, or components for short-circuits, discontinuities, leakage, or incorrect line connection
H04B 10/079 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
A method for determining threshold signal power for a switching control module of a TDD switching sub-system includes setting a threshold signal power to a first value, wherein the threshold signal power is compared to a measured signal power of a downlink path signal of a telecommunication system from a measurement receiver; determining a first downlink signal time using the first value; adjusting the threshold signal power to a second value; determining a second downlink signal time using the second value; determining a difference between the first and second downlink signal times; when difference between the first and second downlink signal times does not exceed a predetermined threshold, determining whether the second downlink signal time corresponds to a valid downlink signal time; when second downlink signal time corresponds to a valid downlink signal time, setting a fixed threshold signal power for use during online operation of the switching control module.
H04B 7/26 - Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
H04B 7/06 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
H04B 1/00 - Details of transmission systems, not covered by a single one of groups Details of transmission systems not characterised by the medium used for transmission
A self-locking front panel is provided that includes a base plate and first and second retaining members. The first retaining member extends from a back side of the base plate and terminates in a first retaining portion. The first retaining portion has a first rounded portion that bulges out in a direction of a first end edge of the base plate. The second retaining member also extends from the back side of the base plate a select distance from the first retaining member. The second retaining member terminates in a second retaining portion. The second retaining portion has a second rounded portion that bulges out in a direction of a second end edge of the base plate. The first and second retaining members are made of a resilient material that flexes under a load and returns to an original position when the load is removed. Other embodiments are disclosed.
A self-locking front panel is provided that includes a base plate and first and second retaining members. The first retaining member extends from a back side of the base plate and terminates in a first retaining portion. The first retaining portion has a first rounded portion that bulges out in a direction of a first end edge of the base plate. The second retaining member also extends from the back side of the base plate a select distance from the first retaining member. The second retaining member terminates in a second retaining portion. The second retaining portion has a second rounded portion that bulges out in a direction of a second end edge of the base plate. The first and second retaining members are made of a resilient material that flexes under a load and returns to an original position when the load is removed. Other embodiments are disclosed.
In one embodiment, a distributed antenna system comprises: a master unit configured to receive a base station downlink radio frequency signal and to transmit a base station uplink radio frequency signal; and at least one remote antenna unit that is communicatively coupled to the master unit using at least one cable, the remote antenna unit configured to radiate a remote downlink radio frequency signal and to receive a remote uplink radio frequency signal; wherein the master unit comprises: a controller; and a respective interface to couple the controller to a first operator control panel; wherein the at least one remote antenna unit comprises: a controller; and a respective interface to couple the controller to a second operator control panel; wherein the master unit controller and the remote unit controller synchronize at least some information between the first and second operator control panels over the at least one cable.
In one example, a repeater system includes a master unit on a movable object configured to couple to antennas for receiving a downlink RF signal from at least one base station external to the movable object and for transmitting an uplink RF signal towards the at least one base station; and a plurality of remote units each configured to couple to the master unit, each positioned on the movable object and associated with different coverage areas, the remote units each configured to couple to a respective antenna system for transmitting the downlink RF signal into respective coverage areas and for receiving the uplink RF signal from the coverage areas, a control unit, wherein, for at least a subgroup of the remote units, a gain for each remote unit is dynamically adjusted in a time-offset fashion by the control unit to trigger handovers between overlapping base-station cells in a time-offset manner.
In one embodiment, a distributed antenna system comprises: a master unit configured to receive a base station downlink radio frequency signal and to transmit a base station uplink radio frequency signal; and at least one remote antenna unit that is communicatively coupled to the master unit using at least one cable, the remote antenna unit configured to radiate a remote downlink radio frequency signal and to receive a remote uplink radio frequency signal; wherein the master unit comprises: a controller; and a respective interface to couple the controller to a first operator control panel; wherein the at least one remote antenna unit comprises: a controller; and a respective interface to couple the controller to a second operator control panel; wherein the master unit controller and the remote unit controller synchronize at least some information between the first and second operator control panels over the at least one cable.
H01Q 3/00 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
H04B 7/024 - Co-operative use of antennas at several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
58.
Multiple input multiple output distributed antenna system architectures
One embodiment is directed to a multiple input, multiple output (“MIMO”) telecommunications system comprising a plurality of signal paths. The system further comprises mixers located in the plurality of signal paths, the mixers being coupled to oscillators for producing a plurality of signals occupying non-overlapping frequency bands and representative of wireless signals. The system further comprises a summer coupled to the plurality of signal paths for summing the plurality of signals to form summed signals. The system further comprises a shared analog-to-digital converter for converting the summed signals to digital signals.
H04B 7/04 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
H04B 1/00 - Details of transmission systems, not covered by a single one of groups Details of transmission systems not characterised by the medium used for transmission
H04B 1/26 - Circuits for superheterodyne receivers
H04B 7/06 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
Repeater systems and methods are disclosed. In one embodiment, a repeater system located within a coverage area comprises: a host configured to combine multiple downlink signals from multiple communication sources located outside the coverage area into a first combined downlink signal; at least one remote coupled to the host and configured to transmit the first combined downlink signal as a second downlink RF communication signal to terminals within the coverage area. The at least one remote is configured to produce a combined uplink signal from multiple uplink signals received through multiple communication links from the terminals, and configured to forward the combined uplink signal to the host. The host produces multiple signals from the combined uplink signal for transmission to the multiple communication sources, wherein a first of the plurality of terminals communicates with a different one of the multiple communication sources than a second of the plurality of terminals.
Systems are provided for managing a small cell telecommunication system servicing multiple network operators. In one aspect, a small cell telecommunication system can include management sub-system including a controller, multiple baseband processing units in communication with the controller, a transport module, and multiple remote antenna units. The controller can communicate with multiple core networks. Each core network is operated by a separate network operator for providing telecommunication services to terminal devices. Each of the baseband processing units can process data plane data and control plane data from at least one respective core network. The transport module can communicate signals between the baseband processing units and the remote antenna units of the small cell network. The management sub-system can provide a respective amount of capacity via the small cell network for each core network based on a respective subset of the baseband processing units assigned to the core network.
Uplink leveling systems and methods for a distribution antenna are provided. An uplink leveling system includes at least one communication path between a base station point of interface and a remote antenna unit. A broadband measurement detector is communicatively coupled to measure signal power in the at least one communication path at the base station point of interface. A signal measurement receiver is communicatively coupled to measure signal power in the at least one communication path. A test signal generator is configured to generate a test signal in the at least one communication path in an uplink. At least one controller is configured to level the communication path in the uplink direction based at least in part on measurements by the broadband measurement detector and the signal measurement receiver in response to the generated test signal by the test signal generator.
Uplink leveling systems and methods for a distribution antenna are provided. An uplink leveling system includes at least one communication path between a base station point of interface and a remote antenna unit. A broadband measurement detector is communicatively coupled to measure signal power in the at least one communication path at the base station point of interface. A signal measurement receiver is communicatively coupled to measure signal power in the at least one communication path. A test signal generator is configured to generate a test signal in the at least one communication path in an uplink. At least one controller is configured to level the communication path in the uplink direction based at least in part on measurements by the broadband measurement detector and the signal measurement receiver in response to the generated test signal by the test signal generator.
H04B 7/06 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
Certain aspects are directed to a capacity optimization sub-system for a distributed antenna system. The capacity optimization sub-system includes a switch matrix and a controller. The switch matrix includes variable attenuators and switches. The switch matrix can receive sectors from base stations. The switch matrix can provide the sectors to coverage zones. The controller can communicate with the switch matrix. The controller can determine that a number of wireless devices in one or more of the coverage zones is outside a specified range of threshold traffic levels. In response to determining that the number of wireless devices is outside the specified range of threshold traffic levels, the controller can configure one or more of the variable attenuators and corresponding switches to redistribute capacity among the coverage zones by, for example, increasing and/or decreasing capacity in one or more of the coverage zones.
A switching control module can optimize time division duplexing operations of a distributed antenna system (“DAS”). The switching control module can include a measurement receiver and a processor. The measurement receiver can measure signal powers of downlink signals in a downlink path of the DAS. The processor can determine start times for downlink sub-frames transmitted via the downlink path based on downlink signal powers measured by the measurement receiver exceeding a threshold signal power. The processor can identify a clock setting that controls a timing of switching signals used for switching the DAS between an uplink mode and a downlink mode. The processor can statistically determine a switching time adjustment for the clock setting based on switching time differentials between the clock setting and the start times. The processor can update the clock setting based on the switching time adjustment.
H04B 7/024 - Co-operative use of antennas at several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
H04W 24/02 - Arrangements for optimising operational condition
Examples of distributed base station functionality in a telecommunication system (e.g., a distributed antenna system) are disclosed. In some aspects, the telecommunication system can include an interface with circuitry configured to communicate with one or more base-station entities, base-station components (such as baseband units or remote radio heads), or core-network entities. The telecommunication system can also include radio units that are positioned in an area for providing wireless coverage to terminal devices. The telecommunication system can also include a head-end unit that is communicatively coupled between the interface and the radio units. One or more devices in the telecommunication system can include a low-layer processing module. In some aspects, the low-layer processing module can perform functionality of a secondary eNodeB, such as (but not limited to) radio transport layer processing. In additional or alternative aspects, the low-layer processing module can perform physical layer processing that is split between uplink physical layer processing and downlink physical layer processing and/or split between secondary and primary physical layer processing.
One embodiment is directed to a system in which an end node and a boundary link optimizer node are communicatively coupled to an ETHERNET network. The end node is communicatively coupled to the ETHERNET network using a boundary link that is connected to an edge of the ETHERNET network. The boundary link optimizer node is configured to: receive ETHERNET packets that include data for the plurality of streams of digital samples; extract the data for the plurality of streams from the received ETHERNET packets; bundle the data for the streams of digital samples; and communicate, to the end node over the boundary link, the bundled data for the streams of digital samples in ETHERNET packets.
H04B 7/04 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
H04L 29/08 - Transmission control procedure, e.g. data link level control procedure
H04W 4/06 - Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]Services to user groupsOne-way selective calling services
Aspects and features are directed to an uplink integrity detection sub-system. In one aspect, a distributed antenna system is provided that includes at least one master unit; a plurality of remote antenna units each in communication with the at least one master unit; and a system controller configured to: determine a noise figure for an uplink path from at least one of the plurality of remote antenna units; and modify a gain of the uplink path when the noise figure exceeds a desired threshold, wherein the noise figure is determined as a function of a measured signal power of an undesirable signal component in the uplink path from the remote antenna unit.
H04B 7/024 - Co-operative use of antennas at several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
A distributed antenna system includes a plurality of remote antenna units with a passive element coupled to at least one of the remote antenna units at a connection juncture. An RFID system is associated with the first passive element and has RFID data identifying the first passive element. An interrogator unit is associated with the remote antenna unit and is configured for generating a least one signal for transmission to the passive element to be reflected at the connection juncture and received at the interrogator unit. The interrogator unit is also configured for generating at least one signal for transmission to the RFID system to obtain the RFID data identifying the passive element. Processing circuitry processes the reflected signal and measures a parameter of the first passive element. The processing circuitry correlates the measured parameter with the RFID data for the passive element.
G06K 7/10 - Methods or arrangements for sensing record carriers by electromagnetic radiation, e.g. optical sensingMethods or arrangements for sensing record carriers by corpuscular radiation
G06K 19/07 - Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards with integrated circuit chips
The present disclosure describes devices, systems, and methods for frame start optimizing in telecommunication systems. Some aspects may involve receiving, by an aggregation device in the telecommunication system, frames from transmitter devices. Some aspects may also involve determining that buffering may be required to sequence the frames for an aggregation operation performed by the aggregation device. The aggregation operation may include a process that combines frames from transmitter devices. In response to determining that the buffering is required, frame adjustment signals may be transmitted to the transmitter devices. The frame adjustment signals may instruct the transmitter devices to transmit subsequent frames such that the buffering is reduced for a subsequent aggregation operation performed by the aggregation device using the subsequent frames.
H04W 28/02 - Traffic management, e.g. flow control or congestion control
H04B 7/08 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
H04L 12/709 - Route fault prevention or recovery, e.g. rerouting, route redundancy, virtual router redundancy protocol [VRRP] or hot standby router protocol [HSRP] using path redundancy using M+N parallel active paths
H04L 12/835 - Bitrate adaptation in active flows using buffer capacity information at the endpoints or transit nodes
The present disclosure describes devices, systems, and methods for synchronizing multiple-input/multiple-output (“MIMO”) signals or other signals in telecommunication systems. Some aspects may involve transmitting signals between a head-end unit and remote units of a telecommunication system. A first delay of a signal path between the head-end unit and a first remote unit of the remote units may be determined to be greater than each delay of signal paths between the head-end unit and other remote units. Based on the first delay, the telecommunication system may be configured to delay transmission of additional signals such that the additional signals are simultaneously transmitted to another unit by either the head-end unit or the remote units.
Certain aspects involve an interface device for a distributed antenna system (“DAS”). In some aspects, the interface device can include an interface, a power detector, and a processor. The interface can include one or more ports for communicatively coupling the interface device to a base station and a switch that is switchable between first and second configurations. The first configuration connects a port to a downlink path of the DAS, and the second configuration connects the port to a signal reflection path. The processor can switch the switch between the first and second configurations based on a signal power measured by the power detector at the port. In other aspects, the interface device can include additional ports and termination loads. The processor can cause a signal path to be connected to a termination load instead of a port based on the port being disconnected from a unit of the DAS.
H04B 7/024 - Co-operative use of antennas at several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
H04B 7/06 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
An optimization system for use in a digital repeater system comprises at least one input port for receiving a carrier signal associated with a communication channel of a telecommunication network, at least one meter unit for obtaining an estimate of the error vector magnitude for the carrier signal, and at least one crest factor reduction unit for dynamically reducing, based on the estimate of the error vector magnitude, the crest factor of the carrier signal.
H04L 25/49 - Transmitting circuitsReceiving circuits using code conversion at the transmitterTransmitting circuitsReceiving circuits using predistortionTransmitting circuitsReceiving circuits using insertion of idle bits for obtaining a desired frequency spectrumTransmitting circuitsReceiving circuits using three or more amplitude levels
A repeater system includes a first master unit and a second master unit located on the movable object, such as a train. The master units are each connected to an antenna for receiving a downlink RF signal from at least one base station outside of the movable object and for transmitting an uplink RF signal towards the base station. Remote units are associated with different coverage areas within the movable object and are connected to the master units unit via a transport medium. The remote units are each connected to an antenna system for transmitting the downlink RF signal into the associated coverage area of the movable object and for receiving the uplink RF signal from the coverage area. A control unit can control first gain for the connection with the first master unit and a second gain for the connection with the second master unit.
One embodiment is directed to an uplink signal combiner that is configured to receive, via the data network, data packets from the remote antenna units. Each of the data packets includes respective control data and respective user data. The respective control data include data for managing a communication link between a baseband unit and a respective remote antenna unit. The respective user data represents a respective uplink signal received by each of the remote antenna units from one or more mobile stations. The uplink signal combiner is configured to generate additional user data representing a first combined uplink signal by combining the user data extracted from the data packets. The uplink signal combiner is configured to transmit an additional data packet to the baseband unit. The additional data packet includes the additional user data and additional control data derived from the control data from the received data packets.
Certain features relate to a telecommunications system with a modular frequency combiner combining multiple received signals at different frequency bands without using frequency-dependent multiplexers. The frequency combiner can include adjustable tuning elements for adjusting various signal-processing parameters of the frequency combiner while the frequency combiner is in the telecommunications system. For example, adjustable tuning elements can adjust the phases of phase shifters of each RF path so that the RF paths are matched for combining the received signals and outputting them through an output port. The adjustable tuning elements can also adjust the electrical length or physical length of the transmission lines that carry the received signals. The adjustable tuning elements can be adjusted manually or automatically while the frequency combiner is deployed in the field in the telecommunications system.
G10L 19/093 - Determination or coding of the excitation functionDetermination or coding of the long-term prediction parameters using sinusoidal excitation models
76.
TDD repeater for a wireless network and method for operating said repeater
In one embodiment, a TDD repeater system comprises: a master unit comprising separate uplink and downlink signal paths defined therein, and configured to couple in an uplink direction to a base station and in a downlink direction to at least one remote antenna unit, wherein the uplink path communicates uplink communication signals, wherein the downlink path communicates downlink communication signals; a switch configured to change direction of signal transmissions within the master unit between the uplink communication signals and the downlink communication signals; a synchronizing unit is configured to receive via the downlink signal path a clock signal from the downlink communication signals, wherein the synchronizing unit supplies a control signal to the switch corresponding to the clock signal; wherein the switch swaps the direction of signal transmissions within the master unit between the uplink communication signals and the downlink communication signals in response to the control signal.
A method and apparatus for determining placement of a plurality of simulated antennas of a simulated distributed antenna system (DAS) for handling simulated MIMO signals in a simulated environment includes: at a first simulated location, simulating communication of a first simulated MIMO signal by a first remote unit over a first simulated air interface; at a second simulated location, simulating communication of a second simulated MIMO signal by a second remote unit over a second simulated air interface; the first simulated location and the second simulated location arranged within the simulated environment to provide overlapping simulated signal coverage of both the first simulated MIMO signal and the second simulated MIMO signal at a third simulated location; and analyzing at least a first simulated received power of the first simulated MIMO signal and a second simulated received power of the second simulated MIMO signal at the third simulated location.
H04B 7/06 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
H04B 10/00 - Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
A telecommunications system is provided that is controllably operable as a sectorized antenna system and as an omnidirectional antenna system without requiring hardware reconfiguration. The telecommunications system includes a phase correlation measurement unit that can be between a sectorized antenna sub-system and a remotely located RF source site. The phase correlation measurement unit can be coupled to the RF source site over at least one feed line. The phase correlation measurement unit can output signals for controlling a phase shifter at the RF source site for phase shifting downlink signals and for causing operation of the sectorized antenna sub-system as an omnidirectional antenna sub-system. In a sectorized operation mode, the phase correlation measurement unit and the phase shifter can be inactivated.
H04B 7/0491 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more sectors, i.e. sector diversity
H01Q 1/24 - SupportsMounting means by structural association with other equipment or articles with receiving set
H01Q 3/00 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
H04W 24/02 - Arrangements for optimising operational condition
H04W 88/10 - Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
Scalable telecommunications systems and methods are provided. In one embodiment, a node unit for a scalable telecommunications system comprises: a plurality of universal digital RF transceivers each configured to communicatively couple the node unit to external equipment; one or more universal digital transport interfaces each configured to communicatively couple the node unit to a respective transport link; a universal backplane communicatively coupled to the universal digital RF transceivers and universal digital transport interfaces; and a system controller; wherein each of the universal digital RF transceivers is configured to couple to a respective modular power amplifier and a modular duplexer inserted within the node unit. The system controller is configured to detect capabilities of at least one of the universal digital RF transceivers, the universal digital transport interfaces, the universal backplane, the modular power amplifier and modular duplexer, and adjust parameters of the node unit in response to the detected capabilities.
H04B 1/38 - Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
H04L 5/14 - Two-way operation using the same type of signal, i.e. duplex
H04W 52/52 - Transmission power control [TPC] using AGC [Automatic Gain Control] circuits or amplifiers
H04B 1/00 - Details of transmission systems, not covered by a single one of groups Details of transmission systems not characterised by the medium used for transmission
H04B 1/403 - Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
Duplexing and combining networks are provided. In one embodiment, a duplexing network for combining two signals comprises: a first port; a second port; a third port; a first hybrid coupler coupled to the first port; a second hybrid coupler coupled to the second port; a third hybrid coupler coupled to the third port; wherein the first, second, and third hybrid couplers are each four-port quadrature hybrid couplers; wherein the first hybrid splits a first signal received at the first port between a first diplexer and a second diplexer; wherein the second hybrid splits a second signal received at the first port between the first diplexer and the second diplexer; the third hybrid receives a first composite signal from the first diplexer and a second composite signal from the second diplexer and constructively sums the first composite signal and the second composite signal to produce an output at the third port.
H04B 1/525 - Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
H03H 7/46 - Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
One embodiment is directed to a system in which an end node and a boundary link optimizer node are communicatively coupled to an ETHERNET network. The end node is communicatively coupled to the ETHERNET network using a boundary link that is connected to an edge of the ETHERNET network. A virtual local area network (VLAN) is established in the ETHERNET network that includes a first end point at the edge of the ETHERNET network and a second end point at the boundary link optimizer node. The boundary link optimizer node is configured to: receive ETHERNET packets that include data for the plurality of streams of digital samples; extract the data for the plurality of streams from the received ETHERNET packets; bundle the data for the streams of digital samples; and communicate, to the end node over the VLAN, the bundled data for the streams of digital samples in ETHERNET packets.
One embodiment is directed to a system in which an end node and a boundary link optimizer node are communicatively coupled to an ETHERNET network. The end node is communicatively coupled to the ETHERNET network using a boundary link that is connected to an edge of the ETHERNET network. A virtual local area network (VLAN) is established in the ETHERNET network that includes a first end point at the edge of the ETHERNET network and a second end point at the boundary link optimizer node. The boundary link optimizer node is configured to: receive ETHERNET packets that include data for the plurality of streams of digital samples; extract the data for the plurality of streams from the received ETHERNET packets; bundle the data for the streams of digital samples; and communicate, to the end node over the VLAN, the bundled data for the streams of digital samples in ETHERNET packets.
H04L 12/28 - Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
H04B 7/04 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
H04L 29/08 - Transmission control procedure, e.g. data link level control procedure
H04W 4/06 - Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]Services to user groupsOne-way selective calling services
In one embodiment, a signal-processing apparatus for generating an amplified output signal based on an input signal is provided. The apparatus comprises: an amplifier configured to generate the output signal, wherein the amplifier is configured to receive a supply voltage; and a limiter configured to inhibit increases in the input signal power level from being applied to the amplifier, wherein the limiter comprises: a variable attenuator configured to selectively attenuate the input signal before being applied to the amplifier; wherein the limiter integrates over a voltage difference between a current measure of attenuated input signal power level and a limiter threshold level to control a level of attenuation applied by the variable attenuator to the input signal.
A microwave filter comprises at least one resonant filter element resonating at a resonant frequency and having a housing, a resonant filter cavity arranged in the housing and a resonator element arranged in the housing. At least two tuning elements are arranged on the housing of the resonant filter element and each extend into the cavity with a shaft portion, wherein the two tuning elements are movable with respect to the housing to adjust the length of the shaft portion extending into the housing and wherein the at least two tuning elements are constituted and designed such that by adjusting the length of the shaft portion of each tuning element extending into the housing a temperature drift of the resonant frequency is adjustable.
A repeater system including bi-directional amplifier circuitry that is configured for repeating signals between at least one device and a first signal source. Receiver circuitry is coupled with the amplifier circuitry provides at least one signal associated with at least one of a device or the first signal source or a second signal source. Controller circuitry is configured for monitoring a parameter of a provided signal that is reflective of a property of a signal source or a device. The monitored parameter is used to make a determination of whether repeated signals associated with the first signal source will desensitize the operation of the second signal source. The controller circuitry is also operable for adjusting the power level of the signals that are repeated by the bi-directional amplifier circuitry based on the determination that repeated signals will desensitize the operation of the second signal source.
One aspect is directed to a node unit for a scalable telecommunications system. The node unit is configured to have inserted therein a respective power amplifier module and duplexing module for each of a plurality universal digital RF transceiver modules. The node unit is configured to communicatively couple an input of each power amplifier module to an output of the respective universal digital RF transceiver module. The node unit is configured to communicatively couple each universal digital RF transceiver module to respective external equipment via a duplexing module. At least one module comprises a module identifier. The system controller is configured to read the at least one module identifier and to configure the operation of at least one of universal digital RF transceiver modules, universal digital transport interface modules, and universal backplane module based on the at least one module identifier.
H04L 5/14 - Two-way operation using the same type of signal, i.e. duplex
H04B 1/00 - Details of transmission systems, not covered by a single one of groups Details of transmission systems not characterised by the medium used for transmission
H04B 1/38 - Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
H04W 52/52 - Transmission power control [TPC] using AGC [Automatic Gain Control] circuits or amplifiers
H04B 1/403 - Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
One embodiment is directed to a microwave cavity resonator comprises a cavity housing forming a cavity. A resonator element is arranged in the cavity and extends longitudinally along a longitudinal axis, wherein the resonator element comprises, when viewed along the longitudinal axis, a first end connected to a first housing wall and a second end opposite the first end, the second end being arranged at a distance from a second housing wall. The resonator element, at its second end, comprises at least one first capacitor element and the cavity housing comprises at least one second capacitor element reaching into the cavity and arranged at a distance, when viewed along a direction perpendicular to the longitudinal axis, from the at least one first capacitor element such that a gap between the at least one first capacitor element and the at least one second capacitor element is formed.
A distributed antenna system includes a plurality of remote antenna units with a passive element coupled to at least one of the remote antenna units at a connection juncture. An RFID system is associated with the first passive element and has RFID data identifying the first passive element. An interrogator unit is associated with the remote antenna unit and is configured for generating a least one signal for transmission to the passive element to be reflected at the connection juncture and received at the interrogator unit. The interrogator unit is also configured for generating at least one signal for transmission to the RFID system to obtain the RFID data identifying the passive element. Processing circuitry processes the reflected signal and measures a parameter of the first passive element. The processing circuitry correlates the measured parameter with the RFID data for the passive element.
G06K 19/07 - Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards with integrated circuit chips
H04B 17/17 - Detection of non-compliance or faulty performance, e.g. response deviations
A distributed antenna system includes a plurality of remote antenna units with a passive element coupled to at least one of the remote antenna units at a connection juncture. An RFID system is associated with the first passive element and has RFID data identifying the first passive element. An interrogator unit is associated with the remote antenna unit and is configured for generating a least one signal for transmission to the passive element to be reflected at the connection juncture and received at the interrogator unit. The interrogator unit is also configured for generating at least one signal for transmission to the RFID system to obtain the RFID data identifying the passive element. Processing circuitry processes the reflected signal and measures a parameter of the first passive element. The processing circuitry correlates the measured parameter with the RFID data for the passive element.
G06K 7/10 - Methods or arrangements for sensing record carriers by electromagnetic radiation, e.g. optical sensingMethods or arrangements for sensing record carriers by corpuscular radiation
G06K 19/07 - Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards with integrated circuit chips
SYSTEM FOR DETERMINING THE LAYOUT AND ABSOLUTE AND RELATIVE POSITIONS OF ELEMENTS IN A DISTRIBUTED ANTENNA SYSTEM AND FOR USE OF THE ELEMENTS FOR MEASUREMENT
A distributed antenna system including a plurality of remote antenna units, a passive element coupled to at least one of the remote antenna units and an RFID system located proximate the passive element. The RFID system includes processing circuitry and measurement circuitry and the processing circuitry is configured for receiving an interrogation signal and processing the interrogation signal and providing a response. The response includes data associated with a measurement made by the measurement circuitry.
Examples of distributed base station functionality in a telecommunication system (e.g., a distributed antenna system) are disclosed. In some aspects, the telecommunication system can include an interface with circuitry configured to communicate with one or more base-station entities, base-station components (such as baseband units or remote radio heads), or core-network entities. The telecommunication system can also include radio units that are positioned in an area for providing wireless coverage to terminal devices. The telecommunication system can also include a head-end unit that is communicatively coupled between the interface and the radio units. One or more devices in the telecommunication system can include a low-layer processing module. In some aspects, the low-layer processing module can perform functionality of a secondary e NodeB, such as (but not limited to) radio transport layer processing.In additional or alternative aspects, the low-layer processing module can perform physical layer processing that is split between uplink physical layer processing and downlink physical layer processing and/or split between secondary and primary physical layer processing.
One aspect is directed to a node unit for a scalable telecommunications system. The node unit is configured to have inserted therein a respective power amplifier module and duplexing module for each of a plurality of universal digital RF transceiver modules. The node unit is configured to communicatively couple an input of each power amplifier module to an output of the respective universal digital RF transceiver module. The node unit is configured to communicatively couple each universal digital RF transceiver module to respective external equipment via a duplexing module. At least one module comprises a module identifier. The system controller is configured to read the at least one module identifier and to configure the operation of at least one of universal digital RF transceiver modules, universal digital transport interface modules, and universal backplane module based on the at least one module identifier.
H04B 1/38 - Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
93.
Distributed antenna system for MIMO communications
A method and apparatus for determining placement of a plurality of antennas of a distributed antenna system for handling MIMO signals includes, at a first location, simulating the communication of a first MIMO signal by a first remote unit over an air interface in an environment and, at a second location, simulating the communication of a second MIMO signal by a second remote unit over an air interface in the environment. The first and second locations are arranged within the environment to provide overlapping signal coverage of both the first MIMO signal and the second MIMO signal at a third location in the environment. Analysis is made of at least an imbalance of received power between the first and second MIMO signals within the environment at a third location in order to determine whether a desired capacity for MIMO communications with the system has been achieved at the third location.
H04B 7/06 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
The present disclosure describes devices, systems, and methods for frame start optimizing in telecommunication systems. Some aspects may involve receiving, by an aggregation device in the telecommunication system, frames from transmitter devices. Some aspects may also involve determining that buffering may be required to sequence the frames for an aggregation operation performed by the aggregation device. The aggregation operation may include a process that combines frames from transmitter devices. In response to determining that the buffering is required, frame adjustment signals may be transmitted to the transmitter devices. The frame adjustment signals may instruct the transmitter devices to transmit subsequent frames such that the buffering is reduced for a subsequent aggregation operation performed by the aggregation device using the subsequent frames.
The present disclosure describes devices, systems, and methods for synchronizing multiple-input/multiple-output ("MIMO") signals or other signals in telecommunication systems. Some aspects may involve transmitting signals between a head-end unit and remote units of a telecommunication system. A first delay of a signal path between the head-end unit and a first remote unit of the remote units may be determined to be greater than each delay of signal paths between the head-end unit and other remote units. Based on the first delay, the telecommunication system may be configured to delay transmission of additional signals such that the additional signals are simultaneously transmitted to another unit by either the head-end unit or the remote units.
Certain aspects are directed to a configuration sub-system for telecommunication systems. The configuration sub-system can include a test signal generator, a power measurement device, at least one additional power measurement device, and a controller. The test signal generator can be integrated into components of a telecommunication system. The test signal generator can provide a test signal to a signal path of the telecommunication system. The power measurement device and the additional power measurement device can respectively be integrated into different components of the telecommunication system. The power measurement device and the additional power measurement device can respectively measure the power of the test signal at different measurement points in the signal path. The controller can normalize signals transmitted via the telecommunication system by adjusting a path gain for the signal path based on measurements from the power measurement device and the additional power measurement device.
H04B 1/00 - Details of transmission systems, not covered by a single one of groups Details of transmission systems not characterised by the medium used for transmission
An optimization system for use in a digital repeater system comprises at least one input port for receiving a carrier signal associated with a communication channel of a telecommunication network, at least one meter unit for obtaining an estimate of the error vector magnitude for the carrier signal, and at least one crest factor reduction unit for dynamically reducing, based on the estimate of the error vector magnitude, the crest factor of the carrier signal.
A telecommunications system may be configured to improve linearity and blocking. In some aspects, the telecommunications system may include a duplexer for coupling a common port to a receive path and a transmit path. A distributed low- noise amplifier having two or more separate active devices (e.g., amplifiers) may be positioned in the receive path. A filtering element (e.g., a band-pass filter) may be positioned between the two or more separate active devices. A signal may be routed by the duplexer through the distributed low-noise amplifier. The filtering element may attenuate transmit signals in the receive path.
A telecommunications system may be configured to improve linearity and blocking. In some aspects, the telecommunications system may include a duplexer for coupling a common port to a receive path and a transmit path. A distributed low-noise amplifier having two or more separate active devices (e.g., amplifiers) may be positioned in the receive path. A filtering element (e.g., a band-pass filter) may be positioned between the two or more separate active devices. A signal may be routed by the duplexer through the distributed low-noise amplifier. The filtering element may attenuate transmit signals in the receive path.
A telecommunications system can include analog-to-digital converters in an uplink communication path or a downlink communication path. The analog-to-digital converters can have a high dynamic range and bandwidth to obviate a need for down-conversion of signals using an analog mixer. The uplink communication path and the downlink communication path can be coupled to an antenna using a non- duplexer coupling device. Uplink signals traversing the uplink communication path can be isolated from downlink signals independent of using a duplexer.
H04B 1/48 - Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter
H04B 1/52 - Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa