An electromagnetic valve apparatus with nonlinear springs for variable valve timing in an internal combustion engine. The apparatus includes a valve, floating spring assembly, translational cam, and motor. The cam and spring serve to minimize lash and valve stem bending forces. During opening and closing of the valve, spring potential energy is converted into valve kinetic energy and then back into potential energy at the end of the motion. The potential energy is then available for the next opening/closing event. The motor initiates motion, replaces friction and vibration losses, and terminates motion. However, the motor supplies minimal energy as the valve opens and closes, and vice-versa, naturally due to combined effects of system inertia and the nonlinear spring. In addition to valve control, the apparatus may be applied to fuel injectors, or any reciprocating linear or rotary mechanism where electronic control is used.
F16K 31/04 - Operating meansReleasing devices electricOperating meansReleasing devices magnetic using a motor
F01L 1/04 - Valve drive by means of cams, camshafts, cam discs, eccentrics, or the like
F01L 9/04 - Valve-gear or valve arrangements actuated non-mechanically by electric means
F01L 1/46 - Component parts, details, or accessories, not provided for in preceding subgroups
F16K 31/56 - Mechanical actuating means without stable intermediate position, e.g. with snap action
F16K 1/12 - Lift valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with streamlined valve member around which the fluid flows when the valve is opened
2.
ELECTROMAGNETIC VALVE APPARATUS WITH NONLINEAR SPRING
An electromagnetic valve apparatus with nonlinear springs for variable valve timing in an internal combustion engine. The apparatus includes a valve, floating spring assembly, translational cam, and motor. The cam and spring serve to minimize lash and valve stem bending forces. During opening and closing of the valve, spring potential energy is converted into valve kinetic energy and then back into potential energy at the end of the motion. The potential energy is then available for the next opening/closing event. The motor initiates motion, replaces friction and vibration losses, and terminates motion. However, the motor supplies minimal energy as the valve opens and closes, and vice-versa, naturally due to combined effects of system inertia and the nonlinear spring. In addition to valve control, the apparatus may be applied to fuel injectors, or any reciprocating linear or rotary mechanism where electronic control is used.
F01L 9/04 - Valve-gear or valve arrangements actuated non-mechanically by electric means
F16K 31/10 - Operating meansReleasing devices electricOperating meansReleasing devices magnetic using a magnet with additional mechanism between armature and closure member
F01L 1/04 - Valve drive by means of cams, camshafts, cam discs, eccentrics, or the like
A system includes at least one body, a link for suspending the body for movement with gravity from a first elevation position to a second elevation position, and an electrical energy generator coupled with the body through the link to drive the generator to generate electricity upon movement of the body with gravity from the first to the second elevation position. The at least one body has a mass of at least approximately 100 tonnes; the first and the second elevation positions define a distance therebetween of at least approximately 200 meters; and/or the system further includes an operator configured to operate the link to controllably move the at least one body against gravity from the second to the first elevation position to increase a gravitational potential energy of the at least one body, and to maintain the gravitational potential energy of the at least one body.
A system includes at least one body, a link for suspending the body for movement with gravity from a first elevation position to a second elevation position, and an electrical energy generator coupled with the body through the link to drive the generator to generate electricity upon movement of the body with gravity from the first to the second elevation position. The at least one body has a mass of at least approximately 100 tonnes; the first and the second elevation positions define a distance therebetween of at least approximately 200 meters; and/or the system further includes an operator configured to operate the link to controllably move the at least one body against gravity from the second to the first elevation position to increase a gravitational potential energy of the at least one body, and to maintain the gravitational potential energy of the at least one body.
A lightweight and efficient electrical machine element including a method of manufacture providing a stator winding for an electric machine which has a large portion of its volume containing electrically conductive strands and a small portion of its volume containing of an encapsulant material. The stator winding includes winding of a first phase (90) by shaping a portion of a bundle of conductive strands into an overlapping, multi-layer arrangement. Winding of successive phases (91, 92) occurs with further bundles of conductor strands around the preceding phases constructed into similar overlapping, multi-layer arrangements. The multiple phases (90, 91, 92) are impregnated with the encapsulant material using dies (60, 80) to press the bundles into a desired form while expelling excess encapsulant prior to the curing of the encapsulant material. The encapsulated winding is removed from the dies after the encapsulant has cured. The encapsulant coating on the strands may be activated using either heat or solvent. The stator winding may be pressed into a form which has cooling channels which increase the surface area, thus enhancing convective cooling, heat dissipation, and the electrical machine's efficiency.
H02K 15/04 - Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings prior to their mounting into the machines
H02K 3/04 - Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
H02K 3/24 - Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
6.
TRANSLATORY MOTION STRENGTH TRAINING SYSTEM AND METHOD
A strength training apparatus adapted for conducting translatory motion against a counteracting resistance. The apparatus includes strength training devices wherein a carriage and corresponding guide means are provided for translating mass under the effect of gravity along a rectilinear or curvilinear path. Certain embodiments are configured for utilizing a selectable weight stack, loaded free weights or the user's body weight as a primary resistance that is independent of velocity. The apparatus enhances the results of strength training and exercise equipment for providing velocity-dependent resistance in addition to the primary "static" resistance provided by the apparatus by creating a paced resistance in addition to the primary "static" resistance provided by the apparatus at constant velocity. The apparatus includes both selectable velocity-independent resistance provided by a mass coupled to the carriage acting against gravitational forces and velocity-dependent resistance provided by eddy current resistance caused by the interaction of an electrically conductive structure encountering relative motion with a magnetic field. The electrically conductive structure is secured to a frame and magnetic field is provided by one or more permanent magnets secured to the carriage.
A magnetic coupling having two or more elements for providing a conduit. The coupling provides high retention of conduit elements with minimum size magnetic components, while also providing for intentional detachment of the magnetically coupled elements. The coupling is configured to facilitate detachment with applied loads that are substantially less than operational retention force (i.e., breakaway force) of the magnetically coupled elements. The magnetic coupling device includes a connecting male element and a female element and at least one internal conduit integral to at least one of the connecting male and female elements. Magnetic attraction is accomplished via a magnetic circuit where the magnetic circuit includes ferromagnetic material and at least one permanent magnet.
An amusement device concerned generally with a construction type educational toy. The amusement device provides unique functionality via board design and piece structure allowing relative motion between coupled playing pieces. The construction apparatus is of the type having rotary path-forming pieces that can be located in numerous positions on the base board. The pieces are removably interfitting and allow the construction of variable paths and patterns. The amusement device incorporates magnetism to perform relative rotary motion. A circular pattern of permanent magnets are included in construction pieces to allow numerous magnetically coupled rotary pieces to undergo relative rotation analogous to a gear train. In addition to toy or game amusement device, the present invention also embodies an education and demonstration device whereby the assembly of magnetically coupled rotary pieces provides the interactive demonstration of a gear train machine mechanism.
A system includes at least one body, a link for suspending the body for movement with gravity from a first elevation position to a sec-ond elevation position, and an electrical energy generator coupled with the body through the link to drive the generator to generate electricity upon movement of the body with gravity from the first to the second elevation position. The at least one body has a mass of at least approximately 100 tonnes; the first and the second elevation positions define a distance there-between of at least approximately 200 meters; and/or the system further in-cludes an operator configured to operate the link to controllably move the at least one body against gravity from the second to the first elevation posi-tion to increase a gravitational potential energy of the at least one body, and to maintain the gravitational potential energy of the at least one body.
A system includes at least one body, a link for suspending the body for movement with gravity from a first elevation position to a second elevation position, and an electrical energy generator coupled with the body through the link to drive the generator to generate electricity upon movement of the body with gravity from the first to the second elevation position. The at least one body has a mass of at least approximately 100 tonnes; the first and the second elevation positions define a distance therebetween of at least approximately 200 meters; and/or the system further includes an operator configured to operate the link to controllably move the at least one body against gravity from the second to the first elevation position to increase a gravitational potential energy of the at least one body, and to maintain the gravitational potential energy of the at least one body.
A system includes at least one body, a link for suspending the body for movement with gravity from a first elevation position to a second elevation position, and an electrical energy generator coupled with the body through the link to drive the generator to generate electricity upon movement of the body with gravity from the first to the second elevation position. The at least one body has a mass of at least approximately 100 tonnes; the first and the second elevation positions define a distance therebetween of at least approximately 200 meters; and/or the system further includes an operator configured to operate the link to controllably move the at least one body against gravity from the second to the first elevation position to increase a gravitational potential energy of the at least one body, and to maintain the gravitational potential energy of the at least one body.
A magnetically levitated transportation system employs permanent magnet rails along a guideway that interact with permanent magnets on a vehicle. The rails are optimized to reduce magnetic mass and cost of materials, while maximizing lift force. The vehicle is stabilized in the lateral and yaw directions with feedback controlled lateral control coils that interact with the permanent magnet rails on the guideway. A track switching structure employs permanent magnet rails that gradually widen along a segment of track and separate into two identical diverging rails. Feedback controlled lateral control coils in a moving vehicle stabilize that vehicle over one or the other pairs of diverging rails, as directed by a control computer, thereby causing the vehicle to continue along one path or the other, with no moving or active elements required in the track.
A telemetry method and apparatus using pressure sensing elements remotely located from associated pick-up, and processing units for the sensing and monitoring of pressure within an environment. This includes remote pressure sensing apparatus incorporating a magnetically-driven resonator being hermetically-sealed within an encapsulating shell or diaphragm and associated new method of sensing pressure. The resonant structure of the magnetically-driven resonator is suitable for measuring quantities convertible to changes in mechanical stress or mass. The resonant structure can be integrated into pressure sensors, adsorbed mass sensors, strain sensors, and the like. The apparatus and method provide information by utilizing, or listening for, the residence frequency of the oscillating resonator. The resonant structure listening frequencies of greatest interest are those at the mechanical structure's fundamental or harmonic resonant frequency. The apparatus is operable within a wide range of environments for remote one-time, random, periodic, or continuous/on-going monitoring of a particular fluid environment. Applications include biomedical applications such as measuring intraocular pressure, blood pressure, and intracranial pressure sensing.
A61B 3/16 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions for measuring intraocular pressure, e.g. tonometers
14.
Magnetic spring and actuators with multiple equilibrium positions
Arrays of magnets configured to create linear or rotary magnetic springs with multiple equilibrium points. Some of the equilibrium points are stable, while others are unstable. No mechanical contact is required between moving and stationary elements of the magnetic springs, resulting in a virtually unlimited lifetime. The magnetic springs can be utilized in conjunction with low force electromagnetic actuators to implement multi-step linear or rotary actuators with high force, very short movement time between unstable equilibrium points, and with near-zero holding power required to maintain actuator position at any unstable equilibrium point. Specific applications that embody the present invention may include, but are not limited to, optical filters, linear valves, or any mechanism that would benefit from an efficient magnetic spring.
H02K 35/02 - Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems