Navigation system (300) for land, air, marine or submarine vehicle (302), comprising a remote control workstation (301) with Manual control mode (310), Mission Planning mode (330) and tactical control mode (360) initiating command-and-control options; a navigation module (100) retrofittably disposed on the vehicle (302); a plurality of perception sensors (318) disposed on the vehicle (302); the system (300) receives manual, electrical, radio and audio commands of human operator (305) in the manual control (310) and mission planning mode (330) and converts them to dataset for training a navigation model having a navigational algorithm. The perception sensors (318) generate dataset for self-learning in real time in manual control mode (310), mission control mode (330) and tactical control mode (360); the navigational system (300) autonomously navigates with presence of communication network (390) and in absence of communication network (390).
G05D 1/243 - Means capturing signals occurring naturally from the environment, e.g. ambient optical, acoustic, gravitational or magnetic signals (using passive navigation aids external to the vehicle G05D 1/244;using signals from positioning sensors located off-board the vehicle G05D 1/249)
Method and system to ascertain location of drone box (100) for stabilized landing and charging of drones (10), comprising a plurality of drones (10) and at least a drone box (100) having a passive sensing circuit (149) detecting a touchdown signal of all the ground interface (11) of the drone (10, 10-1, 10-2) at a plurality of sensor zones (111) for a minimum prescribed time, a detection of any missing touch down signal for the minimum prescribed time due to an inappropriate landing preventing next take off of the drone (10, 10-1, 10-2), the passive sensing circuit (149) prevents activation of any sensor zone (111) till all the ground interfaces (11) are detected as touched down, the sensor zones (111) differentiates between presence of the ground interface (11) and any other presence including human touch, animal touch, foreign matter and or contamination and a combination thereof.
Title: Self-Learning Command and Control Module for Navigation (GENISYS) and System thereof Navigation system (300) for land, air, marine or submarine vehicle (302), comprising a remote control workstation (301) with Manual control mode (310), Mission Planning mode (330) and tactical control mode (360) initiating command-and-control options; a navigation module (100) retrofittably disposed on the vehicle (302); a plurality of perception sensors (318) disposed on the vehicle (302); the system (300) receives manual, electrical, radio and audio commands of human operator (305) in the manual control (310) and mission planning mode (330) and converts them to dataset for training a navigation model having a navigational algorithm. The perception sensors (318) generate dataset for self-learning in real time in manual control mode (310), mission control mode (330) and tactical control mode (360); the navigational system (300) autonomously navigates with presence of communication network (390) and in absence of communication network (390).
Method and system to ascertain location of drone box for landing and charging drones comprising at least a drone box having a drone platform with a plurality of limiting boundaries, divided into number of sensor zones that are mechanically contiguous and electrically separated by an insulated separator of insulation width, each sensor zone having an identification coordinates, each drone having a plurality of ground interfaces, each having a unique address code, each ground interface has a charging terminal at a far end, each charging terminal having an interlocked switchable electricity polarity. The identification coordinates of the activated sensor zones are communicable to a second drone so that the second drone knows where NOT to land on the drone box, Such communication enables a third and subsequent drone to ascertain whether the identified drone box is suitable and available for landing.
Method and system to ascertain location of drone box (100) for stabilized landing and charging of drones (10), comprising a plurality of drones (10) and at least a drone box (100) having a passive sensing circuit (149) detecting a touchdown signal of all the ground interface (11) of the drone (10, 10-1, 10-2) at a plurality 5 of sensor zones (111) for a minimum prescribed time, a detection of any missing touch down signal for the minimum prescribed time due to an inappropriate landing preventing next take off of the drone (10, 10-1, 10-2), the passive sensing circuit (149) prevents activation of any sensor zone (111) till all the ground interfaces (11) are detected as touched down, the sensor zones (111) 10 differentiates between presence of the ground interface (11) and any other presence including human touch, animal touch, foreign matter and or contamination and a combination thereof.
Method and system to ascertain location of drone box (100) for stabilized landing and charging of drones (10), comprising a plurality of drones (10) and at least a drone box (100) having a passive sensing circuit (149) detecting a touchdown signal of all the ground interface (11) of the drone (10, 10-1, 10-2) at a plurality 5 of sensor zones (111) for a minimum prescribed time, a detection of any missing touch down signal for the minimum prescribed time due to an inappropriate landing preventing next take off of the drone (10, 10-1, 10-2), the passive sensing circuit (149) prevents activation of any sensor zone (111) till all the ground interfaces (11) are detected as touched down, the sensor zones (111) 10 differentiates between presence of the ground interface (11) and any other presence including human touch, animal touch, foreign matter and or contamination and a combination thereof.
Method and system to ascertain location of drone box for landing and charging drones comprising at least a drone box having a drone platform with a plurality of limiting boundaries, divided into number of sensor zones that are mechanically contiguous and electrically separated by an insulated separator of insulation width, each sensor zone having an identification coordinates, each drone having a plurality of ground interfaces, each having a unique address code, each ground interface has a charging terminal at a far end, each charging terminal having an interlocked switchable electricity polarity. The identification coordinates of the activated sensor zones are communicable to a second drone so that the second drone knows where NOT to land on the drone box, Such communication enables a third and subsequent drone to ascertain whether the identified drone box is suitable and available for landing.
Method and system to ascertain location of drone box for landing and charging drones comprising at least a drone box having a drone platform with a plurality of limiting boundaries, divided into number of sensor zones that are mechanically contiguous and electrically separated by an insulated separator of insulation width, each sensor zone having an identification coordinates, each drone having a plurality of ground interfaces, each having a unique address code, each ground interface has a charging terminal at a far end, each charging terminal having an interlocked switchable electricity polarity. The identification coordinates of the activated sensor zones are communicable to a second drone so that the second drone knows where NOT to land on the drone box, Such communication enables a third and subsequent drone to ascertain whether the identified drone box is suitable and available for landing.