A powder admixture useful for making a sintered engine part such as a valve seat insert includes a first iron-base powder and second iron-base powder wherein the first iron-base powder has a higher hardness than the second iron-base powder, the first iron-base powder including, in weight percent, 1-2% C, 10-25% Cr, 5-20% Mo, 15-25% Co, and 30-60% Fe, and the second iron-base powder including a vanadium-free tool steel powder such as a vanadium-free tool steel comprising, in weight %, 1-1.5% C, 3-15% Cr, 5-7% Mo, 3-6% W, and 60-85% Fe, the second iron-base powder further comprising vanadium carbide particles in an amount sufficient to reduce adhesive wear. The powder admixture can be sintered to form a sintered engine part optionally infiltrated with copper.
A pre-alloyed powder includes, in weight percent, carbon from about 0.75 to about 2 percent; manganese from about 0.1 to about 1 percent; silicon from about 0.1 to about 1 percent; chromium from about 3 to about 6 percent; nickel up to about 4 percent; vanadium from about 1 to about 3 percent; molybdenum from about 4 to about 7 percent; tungsten from about 4 to about 7 percent; cobalt from about 4 to about 7 percent; boron up to about 0.1 percent; nitrogen from about 0.001 to about 0.15 percent, aluminum from about 0.001 to about 0.6 percent, copper from about 0.1 to about 1 percent, sulfur up to about 0.3 percent, phosphorus up to about 0.3 percent, up to about 5 percent total of tantalum, titanium, hafnium and zirconium; iron from about 65 to about 80 percent; and incidental impurities.
A low-carbon iron-chromium-molybdenum alloy comprises, in weight percent: carbon from about 0.1 to about 0.8 percent; manganese from about 0.1 to about 4 percent; silicon from about 0.1 to about 0.5 percent; chromium from 14 to about 16 percent; nickel up to about 8 percent; vanadium up to about 0.1 percent; molybdenum from 14 to about 16 percent; tungsten up to about 6 percent; niobium from about 0.1 to about 0.8 percent; cobalt up to about 0.2 percent; boron up to 0.1 percent; nitrogen up to about 0.1 percent; copper up to about 1.5 percent; sulfur up to about 0.05 percent; phosphorus up to about 0.05 percent; balance iron from about 50 to about 65 percent; and incidental impurities wherein the alloy contains a ratio of Cr/Mo of about 0.9 to about 1.1. The alloy can be used as a valve seat insert for combustion engines.
7. The microstructure can be a lamellar microstructure and/or the microstructure can have less than 5 volume percent Ni—Fe and Ni—Co rich intermetallic phases.
A powder admixture useful for making a sintered valve seat insert includes a first iron-base powder and second iron-base powder wherein the first iron-base powder has a higher hardness than the second iron-base powder, the first iron-base powder including, in weight percent, 1-2 % C, 10-25 % Cr, 5-20 % Mo, 15-25 % Co, and 30-60 wt. % Fe, and the second iron-base powder including, in weight %, 1-1.5 % C, 3-15 % Cr, 5-7 % Mo, 3-6 % W, 1-1.7 % V, and 60-85 % Fe. The powder admixture can be sintered to form a sintered valve seat insert optionally infiltrated with copper.
An iron-based alloy includes, in weight percent, carbon from about 0.75 to about 2 percent; manganese from about 0.1 to about 1 percent; silicon from about 0.1 to about 1 percent; chromium from about 3 to about 6 percent; nickel up to about 4 percent; vanadium from about 1 to about 3 percent; molybdenum from about 4 to about 7 percent; tungsten from about 4 to about 7 percent; cobalt from about 4 to about 7 percent; boron up to about 0.1 percent; nitrogen from about 0.001 to about 0.15 percent, aluminum from about 0.001 to about 0.6 percent, copper from about 0.1 to about 1 percent, sulfur up to about 0.3 percent, phosphorus up to about 0.3 percent, up to about 5 percent total of tantalum, titanium, hafnium and zirconium; iron from about 65 to about 80 percent; and incidental impurities.
A cobalt-rich wear resistant and corrosion resistant alloy useful for parts of a combustion engine such as valve seat inserts includes, in weight % about 0.1 to about 0.8% C, about 0.1 to about 1.5% Mn, about 3 to about 5% Si, about 10 to about 20% Cr, about 5 to about 32% Fe, about 0.5 to about 4% W, about 10 to about 30% Mo, up to about 20% Ni, about 20 to about 40% Co, up to about 6% V, up to about 3% Nb, total V plus Nb of about 0.5 to about 8.5% and balance unavoidable impurities including up to 0.035% P, up to 0.015% S and up to 0.250% N.
An iron-based alloy includes, in weight percent, carbon from about 1 to about 2 percent; manganese from about 0.1 to about 1 percent; silicon from about 0.1 to about 2.5 percent; chromium from about 11 to about 19 percent; nickel up to about 8 percent; vanadium from about 0.8 to about 5 percent; molybdenum from about 11 to about 19 percent; tungsten up to about 0.5 percent; niobium from about 1 to about 4 percent; cobalt up to about 5.5 percent; boron up to about 0.5 percent; nitrogen up to about 0.5 percent, copper up to about 1.5 percent, sulfur up to about 0.3 percent, phosphorus up to about 0.3 percent, up to about 5 percent total of tantalum, titanium, hafnium and zirconium; iron from about 50 to about 70 percent; and incidental impurities. The alloy is suitable for use in elevated temperature applications such as in valve seat inserts for combustion engines.
A method of casting valve seat inserts comprises pouring molten metal into a gating system of a mold plate stack wherein mold plates are located between top and bottom molds wherein the gating system includes a casting header, down-sprue, horizontal sprue, up-sprues, runners, and gates in fluid communication with mold cavities configured to form the valve seat inserts. The method includes filling the mold cavities with the molten metal, and controlling solidification of the molten metal in the mold cavities by means of an outer thermal barrier which retards heat transfer in mold plate material between the mold cavities and an outer periphery of the mold plate stack. An inner thermal barrier can be used to further control solidification of the molten metal. Valve seat inserts produced using the thermal jacket molds can exhibit an improved microhardness distribution which provides improved machining and higher yield.
An iron-based alloy includes, in weight percent, carbon from about 2 to about 3 percent; manganese from about 0.1 to about 0.4 percent; silicon from about 0.3 to about 0.8 percent; chromium from about 11.5 to about 14.5 percent; nickel from about 0.05 to about 0.6 percent; vanadium from about 0.8 to about 2.2 percent; molybdenum from about 4 to about 7 percent; tungsten from about 3 to about 5 percent; niobium from about 1 to about 3 percent; cobalt from about 3 to about 5 percent; boron from zero to about 0.2 percent; and the balance containing iron and incidental impurities. The alloy is suitable for use in elevated temperature applications such as in valve seat inserts for combustion engines.
B23P 19/00 - Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformationTools or devices therefor so far as not provided for in other classes
C21D 1/18 - HardeningQuenching with or without subsequent tempering
An iron-based alloy includes (in weight percent) carbon from about 1 to about 2 percent; manganese up to about 1 percent; silicon up to about 1 percent; nickel up to about 4 percent; chromium from about 10 to about 25 percent; molybdenum from about 5 to about 20 percent; tungsten up to about 4 percent; cobalt from about 17 to about 23 percent; vanadium up to about 1.5 percent; boron up to about 0.2 percent; sulfur up to about 0.03 percent; nitrogen up to about 0.4 percent; phosphorus up to about 0.06 percent; niobium up to about 4 percent; iron from about 35 to about 55 percent; and incidental impurities. The chromium/molybdenum ratio of the iron-based alloy is from about 1 to about 2.5. The alloy is suitable for use in elevated temperature applications, such as valve seat inserts for combustion engines.
A nickel-based alloy includes, in weight percent, carbon from about 0.7 to about 2%; manganese up to about 1.5%; silicon up to about 1.5%; chromium from about 25 to about 36%; molybdenum from about 5 to about 12%; tungsten from about 12 to about 20%; cobalt up to about 1.5%; iron from about 3.5 to about 10%; nickel from about 20 to about 55%; and incidental impurities. The alloy is suitable for use in elevated temperature applications such as in valve seta inserts for internal combustion engines.
An iron-based alloy includes (in weight percent) carbon from about 1 to about 2 percent; manganese up to about 1 percent; silicon up to about 1 percent; nickel up to about 4 percent; chromium from about 10 to about 25 percent; molybdenum from about 5 to about 20 percent; tungsten up to about 4 percent; cobalt from about 17 to about 23 percent; vanadium up to about 1.5 percent; boron up to about 0.2 percent; sulfur up to about 0.03 percent; nitrogen up to about 0.4 percent; phosphorus up to about 0.06 percent; niobium up to about 4 percent; iron from about 35 to about 55 percent; and incidental impurities. The chromium/molybdenum ratio of the iron-based alloy is from about 1 to about 2.5. The alloy is suitable for use in elevated temperature applications, such as valve seat inserts for combustion engines.
An iron-based alloy includes, in weight percent, carbon from about 2 to about 3 percent; manganese from about 0.1 to about 0.4 percent; silicon from about 0.3 to about 0.8 percent; chromium from about 11.5 to about 14.5 percent; nickel from about 0.05 to about 0.6 percent; vanadium from about 0.8 to about 2.2 percent; molybdenum from about 4 to about 7 percent; tungsten from about 3 to about 5 percent; niobium from about 1 to about 3 percent; cobalt from about 3 to about 5 percent; boron from zero to about 0.2 percent; and the balance containing iron and incidental impurities. The alloy is suitable for use in elevated temperature applications such as in valve seat inserts for combustion engines.
F01L 3/02 - Selecting particular materials for valve members or valve seatsValve members or valve seats composed of two or more materials
B23P 19/00 - Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformationTools or devices therefor so far as not provided for in other classes
C21D 1/18 - HardeningQuenching with or without subsequent tempering
A superaustenitic stainless steel comprises in weight %, 0.15 to 0.9% C, 0.2 to 1.3% Si, 0 to 0.45% Mn, 32.5 to 37.5% Cr, 13.5 to 17.5% Ni, 3.2 to 5.5% Mo, 0 to 2% Nb, 0 to 0.5% B, 0 to 2% Zr and 30 to 51% Fe. In a preferred embodiment, the superaustenitic stainless steel consists essentially of, in weight %, 0.5 to 0.9% C, 0.2 to 0.5% Si, 0.2 to 0.4% Mn, 33.0 to 35.0% Cr, 15.5 to 17.5% Ni, 4.0 to 4.5% Mo, 0.7 to 0.9% Nb, 0.07 to 0.13% B, 0 to 0.05% Zr and 40 to 46% Fe. The superaustenitic stainless steel is useful for valve seat inserts for internal combustion engines such as diesel or natural gas engines.