A system and method for improved, non-intrusive material identification includes a vessel holding or transporting at least one quantity of a fluid. At least one acoustic transducer is positioned on an exterior surface of a sidewall of the vessel. At least one coupling layer is positioned between the at least one acoustic transducer and the exterior surface of the sidewall of the vessel, wherein the at least one coupling layer is formed, at least in part, from nanotubes, wherein the nanotubes improve a reflection of an acoustic signal emitted from the at least one acoustic transducer. A computerized device is in communication with the at least one acoustic signal. The computerized device has a processor and a memory, and determines a material identification of the quantity of fluid based on, at least in part, the reflection of the ultrasonic signal.
G01N 29/28 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object - Details providing acoustic coupling
2.
Acoustic signal material identification with nanotube couplant
A system and method for improved, non-intrusive material identification includes a vessel holding or transporting at least one quantity of a fluid. At least one acoustic transducer is positioned on an exterior surface of a sidewall of the vessel. At least one coupling layer is positioned between the at least one acoustic transducer and the exterior surface of the sidewall of the vessel, wherein the at least one coupling layer is formed, at least in part, from nanotubes, wherein the nanotubes improve a reflection of an acoustic signal emitted from the at least one acoustic transducer. A computerized device is in communication with the at least one acoustic signal. The computerized device has a processor and a memory, and determines a material identification of the quantity of fluid based on, at least in part, the reflection of the ultrasonic signal.
G01N 29/28 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object - Details providing acoustic coupling
A system for measuring a number of layers in a layered environment includes an ultrasound transducer positioned at an exterior surface of a first layer at a first location. At least one receiving sensor is positioned perpendicular to the exterior surface of the first layer at a second location. The ultrasound transducer and the at least one receiving sensor are in communication with a computer processor, power source, and computer-readable memory. The ultrasound transducer is configured to emit a first ultrasound signal into the first layer at the first location. The at least one receiving sensor is configured to receive a plurality of propagated ultrasound signals. The processor is configured to determine a total number of layers in the layered environment based on at least one from the set of: a number of signals received and a number of propagation direction changes only of the first ultrasound signal.
An apparatus, system, and method for measuring a temperature gradient in a layered environment includes a container having a sidewall. An acoustic transducer is positioned on or proximate to an exterior surface of the sidewall of the container. A signal is transmitted from the acoustic transducer into the sidewall of the container. A reflected signal is received by the acoustic transducer, or another acoustic transducer positioned on or proximate to the exterior surface of the sidewall. A computerized device has a processor and a computer-readable memory. The processor is configured to measure a temperature gradient of the reflected signal using an angle of incidence and refraction of the reflected signal. The temperature gradient indicates a temperature of a material within the container.
G01K 11/24 - Measuring temperature based on physical or chemical changes not covered by group , , , or using measurement of acoustic effects of the velocity of propagation of sound
G01B 17/00 - Measuring arrangements characterised by the use of infrasonic, sonic, or ultrasonic vibrations
G01K 11/26 - Measuring temperature based on physical or chemical changes not covered by group , , , or using measurement of acoustic effects of resonant frequencies
G01F 1/66 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
G01F 15/02 - Compensating or correcting for variations in pressure, density, or temperature
5.
Acoustic signal detection of material composition in static and dynamic conditions
Systems and methods for material composition detection includes a vessel containing a quantity of a fluid composition therein which has at least a first and second fluids. At least one acoustic transducer is positioned on an exterior sidewall of the vessel. A computerized device has a processor and is in communication with the acoustic transducer. A metric of a property of the first fluid is determined based on a first signal of the acoustic transducer. A metric of a property of the second fluid is determined based on a second signal of the acoustic transducer. A metric of a property of the fluid composition at a point in time is determined based on the metrics of the first and second fluids, and at least a determinable volume of at least a portion of the vessel. A material identity of the fluid composition is determined at the point in time.
G01F 1/66 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
Systems and methods for material composition detection includes a vessel containing a quantity of a fluid composition therein which has at least a first and second fluids. At least one acoustic transducer is positioned on an exterior sidewall of the vessel. A computerized device has a processor and is in communication with the acoustic transducer. A metric of a property of the first fluid is determined based on a first signal of the acoustic transducer. A metric of a property of the second fluid is determined based on a second signal of the acoustic transducer. A metric of a property of the fluid composition at a point in time is determined based on the metrics of the first and second fluids, and at least a determinable volume of at least a portion of the vessel. A material identity of the fluid composition is determined at the point in time.
An apparatus, system, and method for measuring a temperature gradient in a layered environment includes a container having a sidewall. An acoustic transducer is positioned on or proximate to an exterior surface of the sidewall of the container. A signal is transmitted from the acoustic transducer into the sidewall of the container. A reflected signal is received by the acoustic transducer, or another acoustic transducer positioned on or proximate to the exterior surface of the sidewall. A computerized device has a processor and a computer-readable memory. The processor is configured to measure a temperature gradient of the reflected signal using an angle of incidence and refraction of the reflected signal. The temperature gradient indicates a temperature of a material within the container.
G01K 13/12 - Thermometers specially adapted for specific purposes combined with sampling devices for measuring temperatures of samples of material
G01K 11/24 - Measuring temperature based on physical or chemical changes not covered by group , , , or using measurement of acoustic effects of the velocity of propagation of sound
8.
Determining layer characteristics in multi-layered environments
A system for measuring a number of layers in a layered environment includes an ultrasound transducer positioned at an exterior surface of a first layer at a first location. At least one receiving sensor is positioned perpendicular to the exterior surface of the first layer at a second location. The ultrasound transducer and the at least one receiving sensor are in communication with a computer processor, power source, and computer-readable memory. The ultrasound transducer is configured to emit a first ultrasound signal into the first layer at the first location. The at least one receiving sensor is configured to receive a plurality of propagated ultrasound signals. The processor is configured to determine a total number of layers in the layered environment based on at least one from the set of: a number of signals received and a number of propagation direction changes only of the first ultrasound signal.
G01K 1/00 - MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR - Details of thermometers not specially adapted for particular types of thermometer
G01V 1/00 - Seismology; Seismic or acoustic prospecting or detecting
G01K 11/24 - Measuring temperature based on physical or chemical changes not covered by group , , , or using measurement of acoustic effects of the velocity of propagation of sound
G01K 13/10 - Thermometers specially adapted for specific purposes for measuring temperature within piled or stacked materials
G01B 17/02 - Measuring arrangements characterised by the use of infrasonic, sonic, or ultrasonic vibrations for measuring thickness
Systems, apparatuses, and methods for evaluation of fluid quality are provided. The system includes a vessel containing a quantity of fluid. At least one sensor is positioned to emit at least one signal into the quantity of fluid. A temperature sensor is configured to sense a temperature of the quantity of fluid. A computerized device is in communication with the at least one sensor and the temperature sensor. The processor of the computerized device calculates at least a fluid identity of the quantity of fluid and determines a quality of the quantity of fluid based on the at least one signal from the at least one sensor and the sensed temperature of the quantity of fluid. The system may have a particular benefit in evaluating dielectric fluid degradation used in liquid cooled centers and other settings.
Systems, apparatuses, and methods for evaluation of fluid quality are provided. The system includes a vessel containing a quantity of fluid. At least one sensor is positioned to emit at least one signal into the quantity of fluid. A temperature sensor is configured to sense a temperature of the quantity of fluid. A computerized device is in communication with the at least one sensor and the temperature sensor. The processor of the computerized device calculates at least a fluid identity of the quantity of fluid and determines a quality of the quantity of fluid based on the at least one signal from the at least one sensor and the sensed temperature of the quantity of fluid. The system may have a particular benefit in evaluating dielectric fluid degradation used in liquid cooled centers and other settings.
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object - Details
Systems, apparatuses, and methods for evaluation of fluid quality are provided. The system includes a vessel containing a quantity of fluid. At least one sensor is positioned to emit at least one signal into the quantity of fluid. A temperature sensor is configured to sense a temperature of the quantity of fluid. A computerized device is in communication with the at least one sensor and the temperature sensor. The processor of the computerized device calculates at least a fluid identity of the quantity of fluid and determines a quality of the quantity of fluid based on the at least one signal from the at least one sensor and the sensed temperature of the quantity of fluid. The system may have a particular benefit in evaluating dielectric fluid degradation used in liquid cooled centers and other settings.
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object - Details
12.
APPARATUS, SYSTEM, AND METHOD FOR THE DETECTION OF OBJECTS AND ACTIVITY WITHIN A CONTAINER
An apparatus, system, and method for the detection of contents within a container includes a plurality of transducers mounted on an exterior surface of the container. A plurality of acoustic signals is transmitted into the container, and an echo is generated when the signals contact an object. The echo is received at a transducer and a processor analyzes the echo to detect the object. Similarly, two acoustic transducers can be used to angularly transmit the signal into a container. The signal reflects off a sediment surface and is received at another acoustic transducer. The reflection signal can be used to analyze a sediment surface within the container.
G01F 1/66 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
G01F 15/02 - Compensating or correcting for variations in pressure, density, or temperature
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object - Details
An apparatus and method for multi-bounce acoustic signal material detection is provided. The apparatus includes a container containing a quantity of material therein, wherein the quantity of material has at least two segmented layers. First and second acoustic sensors are positioned on a sidewall of the container, wherein the first acoustic sensor is positioned at a different height along the sidewall than the second acoustic sensor. An acoustic signal is transmitted into the sidewall of the container from the first acoustic sensor. The acoustic signal reflects between an interior surface of the sidewall and an exterior surface of the sidewall until it is received at the second acoustic sensor. A border between the at least two segmented layers of the quantity of material is detectable based on the acoustic signal.
Floating roof storage tank systems and related methods are disclosed. The disclosed systems include a storage tank, a floating roof, and a plurality of acoustic sensors. The storage tank has one or more walls defining an interior space and the floating roof is configured to move vertically within the interior space. The acoustic sensors are levelly mounted along a horizontal plane on the one or more walls of the storage tank. One or more signals received by at least a portion of the plurality of acoustic sensors are used to determine a tilt angle of the floating roof.
G01C 9/00 - Measuring inclination, e.g. by clinometers, by levels
G01F 23/70 - Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type using electrically actuated indicating means for sensing changes in level only at discrete points
An apparatus and method for multi-bounce acoustic signal material detection is provided. The apparatus includes a container containing a quantity of material therein, wherein the quantity of material has at least two segmented layers. First and second acoustic sensors are positioned on a sidewall of the container, wherein the first acoustic sensor is positioned at a different height along the sidewall than the second acoustic sensor. An acoustic signal is transmitted into the sidewall of the container from the first acoustic sensor. The acoustic signal reflects between an interior surface of the sidewall and an exterior surface of the sidewall until it is received at the second acoustic sensor. A border between the at least two segmented layers of the quantity of material is detectable based on the acoustic signal.
G01N 29/024 - Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
G01N 29/028 - Analysing fluids by measuring mechanical or acoustic impedance
G01N 29/032 - Analysing fluids by measuring attenuation of acoustic waves
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object - Details
16.
Apparatus, system, and method for the detection of objects and activity within a container
An apparatus, system, and method for the detection of contents within a container includes a plurality of transducers mounted on an exterior surface of the container. A plurality of acoustic signals is transmitted into the container, and an echo is generated when the signals contact an object. The echo is received at a transducer and a processor analyzes the echo to detect the object. Similarly, two acoustic transducers can be used to angularly transmit the signal into a container. The signal reflects off a sediment surface and is received at another acoustic transducer. The reflection signal can be used to analyze a sediment surface within the container.
G01N 29/032 - Analysing fluids by measuring attenuation of acoustic waves
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object - Details
17.
In-wall multi-bounce material property detection and acoustic signal amplification
An apparatus, system, and related methods for multi-bounce material property detection and signal amplification are provided. The apparatus has a first acoustic transducer positioned on an exterior sidewall of a pipe or container carrying or holding a quantity of fluid therein. An acoustic signal is transmitted by the first acoustic transducer into the sidewall of the pipe from an exterior surface thereof. With material detection, at least a portion of the acoustic signal reflects off an interior surface of the sidewall of the pipe. The reflected acoustic signal is received at the second acoustic transducer on the exterior sidewall of the pipe. The reflected acoustic signal provides an indication of a material property of the pipe or a material within the pipe. With signal amplification, the second acoustic transducer transmits a phase synchronized second acoustic signal to the first acoustic signal, where the second acoustic signal amplifies the first acoustic signal.
A multi-path acoustic signal apparatus, system, and apparatus for use in material detection are provided. The apparatus has a plurality of acoustic sensors positioned along a first portion of a fluid container. At least one acoustic signal is transmitted into the fluid container by each of the plurality of acoustic sensors. At least one additional acoustic sensor is positioned along a second portion of the fluid container, wherein the second portion is substantially opposite the first portion. The at least one additional acoustic sensor receives at least a portion of the acoustic signals from the plurality of acoustic sensors. A reflected acoustic signal is generated from an impedance barrier between the fluid container and a fluid therein. A characteristic of a material of the fluid container and/or the fluid therein are determined.
Floating roof storage tank systems and related methods are disclosed. The disclosed systems include a storage tank, a floating roof, and a plurality of acoustic sensors. The storage tank has one or more walls defining an interior space and the floating roof is configured to move vertically within the interior space. The acoustic sensors are levelly mounted along a horizontal plane on the one or more walls of the storage tank. One or more signals received by at least a portion of the plurality of acoustic sensors are used to determine a tilt angle of the floating roof.
Systems, methods, and related devices are disclosed for determining a valve state and/or determining the presence of a material within a vessel. A vessel is holding or transporting a quantity of material. At least one valve is positioned within the vessel, the at least one valve controlling at least a portion of a flow of the quantity of material. At least one acoustic sensor is positioned on an exterior of the vessel. At least one computing device is in communication with the at least one acoustic sensor. A processor of the at least one computing device determines a flow rate of the quantity of material based on at least one acoustic signal transmitted from the at least one acoustic sensor. The processor determines a state of the at least one valve based, at least in part, on the determined flow rate of the quantity of material.
G01F 1/66 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
G01F 23/28 - Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
A multi-path acoustic signal apparatus, system, and apparatus for use in material detection are provided. The apparatus has a plurality of acoustic sensors positioned along a first portion of a fluid container. At least one acoustic signal is transmitted into the fluid container by each of the plurality of acoustic sensors. At least one additional acoustic sensor is positioned along a second portion of the fluid container, wherein the second portion is substantially opposite the first portion. The at least one additional acoustic sensor receives at least a portion of the acoustic signals from the plurality of acoustic sensors. A reflected acoustic signal is generated from an impedance barrier between the fluid container and a fluid therein. A characteristic of a material of the fluid container and/or the fluid therein are determined.
G01N 29/024 - Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
G01N 29/028 - Analysing fluids by measuring mechanical or acoustic impedance
G01N 29/032 - Analysing fluids by measuring attenuation of acoustic waves
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
G01N 29/14 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
22.
ACOUSTIC TEMPERATURE MEASUREMENT IN LAYERED ENVIRONMENTS
An apparatus for measuring temperature in a layered environment includes an ultrasound transducer positioned perpendicular to an exterior surface of a first layer. The ultrasound transducer is in communication with a computer processor, power source, and computer-readable memory. The processor is configured to: measure a thickness of the first layer; measure an exterior surface temperature of the first layer; calculate an impedance of the first layer based on the thickness and the exterior surface temperature; and calculate an interior surface temperature of the first layer based on the impedance and the exterior surface temperature of the first layer.
A multi-path acoustic signal apparatus, system, and apparatus for use in material detection are provided. The apparatus has a plurality of acoustic sensors positioned along a first portion of a fluid container. At least one acoustic signal is transmitted into the fluid container by each of the plurality of acoustic sensors. At least one additional acoustic sensor is positioned along a second portion of the fluid container, wherein the second portion is substantially opposite the first portion. The at least one additional acoustic sensor receives at least a portion of the acoustic signals from the plurality of acoustic sensors. A reflected acoustic signal is generated from an impedance barrier between the fluid container and a fluid therein. A characteristic of a material of the fluid container and/or the fluid therein are determined.
G01N 29/024 - Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
G01N 29/028 - Analysing fluids by measuring mechanical or acoustic impedance
G01N 29/032 - Analysing fluids by measuring attenuation of acoustic waves
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
G01N 29/14 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
24.
Acoustic temperature measurement in layered environments
An apparatus for measuring temperature in a layered environment includes an ultrasound transducer positioned perpendicular to an exterior surface of a first layer. The ultrasound transducer is in communication with a computer processor, power source, and computer-readable memory. The processor is configured to: measure a thickness of the first layer; measure an exterior surface temperature of the first layer; calculate an impedance of the first layer based on the thickness and the exterior surface temperature; and calculate an interior surface temperature of the first layer based on the impedance and the exterior surface temperature of the first layer.
An apparatus and method for multi-bounce acoustic signal material detection is provided. The apparatus includes a container containing a quantity of material therein, wherein the quantity of material has at least two segmented layers. First and second acoustic sensors are positioned on a sidewall of the container, wherein the first acoustic sensor is positioned at a different height along the sidewall than the second acoustic sensor. An acoustic signal is transmitted into the sidewall of the container from the first acoustic sensor. The acoustic signal reflects between an interior surface of the sidewall and an exterior surface of the sidewall until it is received at the second acoustic sensor. A border between the at least two segmented layers of the quantity of material is detectable based on the acoustic signal.
An apparatus, system, and method for the detection of contents within a container includes a plurality of transducers mounted on an exterior surface of the container. A plurality of acoustic signals is transmitted into the container, and an echo is generated when the signals contact an object. The echo is received at a transducer and a processor analyzes the echo to detect the object. Similarly, two acoustic transducers can be used to angularly transmit the signal into a container. The signal reflects off a sediment surface and is received at another acoustic transducer. The reflection signal can be used to analyze a sediment surface within the container.
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object - Details
G01F 1/66 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
G01F 15/02 - Compensating or correcting for variations in pressure, density, or temperature
27.
IN-WALL MULTI-BOUNCE MATERIAL PROPERTY DETECTION AND ACOUSTIC SIGNAL AMPLIFICATION
An apparatus, system, and related methods for multi-bounce material property detection and signal amplification are provided. The apparatus has a first acoustic transducer positioned on an exterior sidewall of a pipe or container carrying or holding a quantity of fluid therein. An acoustic signal is transmitted by the first acoustic transducer into the sidewall of the pipe from an exterior surface thereof. With material detection, at least a portion of the acoustic signal reflects off an interior surface of the sidewall of the pipe. The reflected acoustic signal is received at the second acoustic transducer on the exterior sidewall of the pipe. The reflected acoustic signal provides an indication of a material property of the pipe or a material within the pipe. With signal amplification, the second acoustic transducer transmits a phase synchronized second acoustic signal to the first acoustic signal to amplify the first acoustic signal.
An apparatus for measuring temperature in a layered environment includes an ultrasound transducer positioned perpendicular to an exterior surface of a first layer. The ultrasound transducer is in communication with a computer processor, power source, and computer-readable memory. The processor is configured to: measure a thickness of the first layer; measure an exterior surface temperature of the first layer; calculate an impedance of the first layer based on the thickness and the exterior surface temperature; and calculate an interior surface temperature of the first layer based on the impedance and the exterior surface temperature of the first layer.
G01K 11/22 - Measuring temperature based on physical or chemical changes not covered by group , , , or using measurement of acoustic effects
G01K 11/00 - Measuring temperature based on physical or chemical changes not covered by group , , , or
G01N 29/00 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
A variable angle transducer interface block apparatus and related systems and methods are disclosed. The variable angle transducer interface block apparatus has an interface block having a mounting receiver. The interface block is positioned proximate to a material wall. A curved mounting structure is movably connected to the mounting receiver. A transducer is mounted on the curved mounting structure, wherein an angle of an acoustic signal transmitted by the transducer into the material wall is adjustable by movement of the curved mounting structure relative to the mounting receiver.
Systems and methods for determining a fill level of a fluid within a fluid vessel, an identity of the fluid, and/or a condition of the vessel wall are disclosed. To determine a fluid fill level, at least one acoustic sensor is positionable substantially on an exterior sidewall of a vessel containing fluid. A computerized device is in communication with the at least one acoustic sensor. A processor of the computerized device receives a detection signal from the at least one acoustic sensor and communicates an alert of the detection signal, which can be used to identify a fill level of the fluid. The detection signal, along with other measured information, can be used to identify the material type of the fluid. A condition of the vessel wall may be determined based on an attenuation signal when two acoustic sensors are used, one being positioned angular to the vessel wall.
Systems and methods for determining a fill level of a fluid within a fluid vessel, an identity of the fluid, and/or a condition of the vessel wall are disclosed. To determine a fluid fill level, at least one acoustic sensor is positionable substantially on an exterior sidewall of a vessel containing fluid. A computerized device is in communication with the at least one acoustic sensor. A processor of the computerized device receives a detection signal from the at least one acoustic sensor and communicates an alert of the detection signal, which can be used to identify a fill level of the fluid. The detection signal, along with other measured information, can be used to identify the material type of the fluid. A condition of the vessel wall may be determined based on an attenuation signal when two acoustic sensors are used, one being positioned angular to the vessel wall.
Systems and methods for determining a weight of a quantity of fluid, or a flow rate of the fluid by weight. An acoustic sensor positioned on an exterior wall of a vessel containing the fluid determines a fill level of the fluid. A computerized device calculates a weight of the quantity of fluid using a size of the vessel, the determined fill level, a temperature of the fluid, and the fluid identity and/or a fluid density. Flow rate of the fluid through a pipe is determined using two or more acoustic sensors positioned at different locations on a pipe, and a temperature sensor. A computer calculates a differential time of flight of the fluid based on readings of the acoustic sensor, a distance there between, the temperature sensor, the pipe volume, and the fluid identity and/or a fluid density. A flow by weight of the quantity of fluid is determined.
G01G 17/04 - Apparatus for, or methods of, weighing material of special form or property for weighing fluids, e.g. gases, pastes
G01F 23/20 - Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of weight, e.g. to determine the level of stored liquefied gas
33.
Non-linear ultrasound method and apparatus for quantitative detection of materials
Systems and methods for determining a fill level of a fluid within a fluid vessel, an identity of the fluid, and/or a condition of the vessel wall are disclosed. To determine a fluid fill level, at least one acoustic sensor is positionable substantially on an exterior sidewall of a vessel containing fluid. A computerized device is in communication with the at least one acoustic sensor. A processor of the computerized device receives a detection signal from the at least one acoustic sensor and communicates an alert of the detection signal, which can be used to identify a fill level of the fluid. The detection signal, along with other measured information, can be used to identify the material type of the fluid. A condition of the vessel wall may be determined based on an attenuation signal when two acoustic sensors are used, one being positioned angular to the vessel wall.
Systems and methods for determining a weight of a quantity of fluid, or a flow rate of the fluid by weight. An acoustic sensor positioned on an exterior wall of a vessel containing the fluid determines a fill level of the fluid. A computerized device calculates a weight of the quantity of fluid using a size of the vessel, the determined fill level, a temperature of the fluid, and the fluid identity and/or a fluid density. Flow rate of the fluid through a pipe is determined using two or more acoustic sensors positioned at different locations on a pipe, and a temperature sensor. A computer calculates a differential time of flight of the fluid based on readings of the acoustic sensor, a distance therebetween, the temperature sensor, the pipe volume, and the fluid identity and/or a fluid density. A flow by weight of the quantity of fluid is determined.
G01F 1/66 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
G01F 1/688 - Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
G01F 25/00 - Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume