LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E. V. (Germany)
Inventor
Jacob, Stefan
Colditz, Melanie
Winkler, Andreas
Hartmann, Stefanie
Weissker, Uhland
Abstract
The invention relates to the field of microsystems technology and relates to a microfluidic component that can be used, for example, for actuator or sensor lab-on-a-chip systems. The object of the present invention is to provide a microfluidic component that equalises, suppresses and/or terminates interference in microfluidic systems and thus ensures that at least the main function of the microfluidic system is essentially interference-free. The object is achieved by a microfluidic component in a microfluidic system, at least containing a channel-shaped component connected to the microfluidic system by at least one opening, wherein the channel-shaped component is split into at least two sub-channels, and wherein at least two sub-channels are directly connected by at least one connecting channel, and wherein the connecting channel(s) may have inlets and/or outlets, and wherein a lower flow resistance is realised in the interior of the connecting channels than in the respective sub-channels, and wherein the sub-channels have inlets and/or outlets.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E. V. (Germany)
Inventor
Medina-Sánchez, Mariana
Abstract
The invention lies in the field of material sciences and relates to a method of the kind that can be used, for example, in in-vivo reproduction and in healthcare, and to a device for realizing the controlled movement. The object of the present invention is to make available a method and a device, where the device can be used much less invasively and where much higher implantation rates can be achieved by the method. The object is achieved by a method in which gametes and/or zygotes and/or embryos are releasably connected to one or more substrates, and the substrates, with or without gametes and/or zygotes and/or embryos, are moved in a targeted manner autonomously or by means of external influences. The object is further achieved by a device at least containing a substrate which has maximum dimensions in all spatial directions of 500 µm and which consists at least for the most part of biocompatible materials.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Windisch, Thomas
Schmidt, Hagen
Weser, Robert
Biscop, Uwe
Abstract
The invention relates to a device and a method for electrically characterizing properties of materials, assemblies, and/or components in an environment with a high temperature, for example in order to characterize electromechanical SAW components with respect to the function thereof under action of temperature. The aim of the invention is to develop a device which allows a fail-proof positioning of a measuring object, a quick and simple change of the measuring object, and a reliable characterization at high temperatures. This is achieved by a device containing a sample holder which has means for a galvanic or capacitive in-coupling and/or out-coupling of electric signals, at least one support element, at least one high-temperature waveguide, at least one low-temperature waveguide, wherein at least the high-temperature waveguide(s) is/are designed as a coaxial conductor with solid dielectricum elements made of electrically non-conductive ceramic, at least one coupling component, at least one heat shield, at least one temperature sensor which is arranged in the support element, and at least one flange part.
G01N 22/00 - Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
G01N 27/22 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Baumann, Danny
Horst, Alexander
Abstract
The present invention relates to the technical field of coupling technology and relates to a flexible shaft coupling. The problem addressed by the present invention is that of specifying a flexible shaft coupling by means of which a constant length and reduced axial forces are ensured under stress, and the service life of the shaft coupling is thereby improved. The problem is solved by a flexible shaft coupling which, in the unloaded state, has at least two axially aligned helix subcomponents connected in series, wherein the helix subcomponent combination is arranged between a shaft fastening part for the drive shaft and a shaft fastening part for the shaft to be driven and is connected thereto, wherein the ends of the helical helix subcomponents which point toward each other are connected to a connection element, wherein at least two helix subcomponents have a winding direction opposite each other, and wherein at least the two helix subcomponents have an identical spring stiffness. The flexible shaft coupling according to the invention can be used, for example, in technical systems, testing systems or medical instruments.
F16D 3/72 - Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members with axially-spaced attachments to the coupling parts
5.
ROLLING BEARINGS FOR USE IN TEMPERATURE-FLUCTUATING ENVIRONMENTS, AND USE THEREOF
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Baumann, Danny
Horst, Alexander
Abstract
The present invention relates to the technical field of machine construction and to rolling bearings, which are provided in particular for use in temperature-fluctuating environments. Known rolling bearings have the disadvantage of being designed only for a certain temperature range, as a result of which the play of the bearing changes as a function of temperature in fluctuating use temperatures. The problem addressed by the present invention is that of provided rolling bearings, which have a substantially constant play and improved service life under fluctuating use temperatures. The problem is solved by a rolling bearing in which the inner ring and the outer ring are made of different materials. Said rolling bearings can be used in technical systems, machines and devices.
F16C 19/02 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
F16C 19/22 - Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
Leibniz-Institut für Festkörper- und Werkstofffors (Germany)
Inventor
Borisenko, Sergey
Abstract
The invention relates to the field of physics and relates to an impulse-resolving photo-electron spectrometer, by means of which the physical properties can be determined. The aim of the invention is to provide an impulse-resolving photo-electron spectrometer enabling the device components to have a simple structure with a significantly reduced overall volume. The aim of the invention is achieved by means of an impulse-resolving photo-electron spectrometer comprising components arranged one behind the other in the direction of the optical axis at least in a vacuum and which are each at least one electron emission sample and a focusing system, wherein the focusing system consists of at least one electron lens and at least one detector, wherein the electron lens consists of three cylindrical elements, wherein the first cylindrical element has a potential=0 and the two subsequently arranged cylindrical elements have a potential of ≠0, and wherein the detector is one or more spatially resolved detectors which are arranged in the focal plane of the electron lens.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Pauly, Simon
Kosiba, Konrad
Kühn, Uta
Abstract
The invention concerns the fields of materials science, electrical engineering, medical technology and process technology, and relates to a method for producing single-piece components from shape memory material, as well as single-piece components made of shape memory material. The single-piece components can be used as hinges or actuators. The fact that hinges, actuators and damping systems consist of several parts, which must be joined together at high effort and cost is a disadvantage of the prior art. The problem addressed by the present invention consists in overcoming the disadvantages of the prior art. According to the invention, the problem is solved by a method in which, using an additive manufacturing process, a first layer of a shape memory material is formed and solidified, then a second layer of a shape memory material is applied on the first layer, and at least one local region of the shape memory material is thermally treated to below the liquidus temperature by means of a heat source.
B22F 3/105 - Sintering only by using electric current, laser radiation or plasma
C22C 9/01 - Alloys based on copper with aluminium as the next major constituent
C22C 9/04 - Alloys based on copper with zinc as the next major constituent
C22C 9/06 - Alloys based on copper with nickel or cobalt as the next major constituent
C22F 1/08 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V. (Germany)
Inventor
Schierning, Gabi
Thiel, Felix
Friedrich, Jochen
Reimann, Christian
Beier, Maximilian
Abstract
The invention relates to a thermoelectric material and to a method for producing the thermoelectric material and to the use of the thermoelectric material in a thermoelectric generator (TEG). According to the invention, the thermoelectric material contains silicon, dopants and non-silicon constituents, wherein the proportion of non-silicon constituents with respect to the total mass of the thermoelectric material is at least 5% by mass.
H01L 35/22 - Selection of the material for the legs of the junction using inorganic compositions comprising compounds containing boron, carbon, oxygen, or nitrogen
H01L 35/34 - Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Borisenko, Sergey
Abstract
The invention relates to the field of physics and relates to an impulse-resolving photo-electron spectrometer, by means of which the physical properties can be determined. The aim of the invention is to provide an impulse-resolving photo-electron spectrometer enabling the device components to have a simple structure with a significantly reduced overall volume. The aim of the invention is achieved by means of an impulse-resolving photo-electron spectrometer comprising components arranged one behind the other in the direction of the optical axis at least in a vacuum and which are each at least one electron emission sample and a focusing system, wherein the focusing system consists of at least one electron lens and at least one detector, wherein the electron lens consists of three cylindrical elements, wherein the first cylindrical element has a potential = 0 and the two subsequently arranged cylindrical elements have a potential of ≠ 0, and wherein the detector is one or more spatially resolved detectors which are arranged in the focal plane of the electron lens.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Beckmann, Michael
Sablowski, Jakob
Unz, Simon
Linnemann, Julia
Giebeler, Lars
Abstract
The invention relates to a process for coating components with an omniphobic surface coating containing at least one organometallic scaffold compound and an impregnating agent comprising the steps of - electrochemical deposition of the organometallic scaffold compound on the component by electrolysis from an electrolyte solution containing at least one metal ion, at least one linker compound and a solvent, - application of an impregnating agent onto the organometallic scaffold compound, wherein the metal ion is i) dissolved in the electrolyte solution as a metal ion salt and/or ii) by electrolytic oxidation or reduction of a metal ion precursor present in the component and/or electrode generated at the interface between the electrode and the electrolyte solution and/or provided in the electrolyte solution and wherein the component is a) simultaneously the electrode or b) introduced into an electrical field between at least two electrodes, wherein the linker compound is an organic, at least monodentate compound and wherein the impregnating agent has a low surface tension of < 30 mN/m.
C25D 9/02 - Electrolytic coating other than with metals with organic materials
B05D 5/08 - Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
C25D 9/06 - Electrolytic coating other than with metals with inorganic materials by anodic processes
C25D 9/08 - Electrolytic coating other than with metals with inorganic materials by cathodic processes
C25D 13/12 - Electrophoretic coating characterised by the process characterised by the article coated
F28F 13/04 - Arrangements for modifying heat transfer, e.g. increasing, decreasing by preventing the formation of continuous films of condensate on heat-exchange surfaces, e.g. by promoting droplet formation
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Schmidt, Oliver, G.
Medina Sanchez, Mariana
Weiz, Sonja, Maria
Abstract
The invention relates to the fields of microelectronics, material technology and medicine, and refers to a three-dimensional tomograph, in that same can be used for investigating and manipulating objects on a millimetre level or lower, for example, for investigating and manipulating biological cells, molecules or ions. The object of the invention is to provide a three-dimensional tomograph which creates reproducible and secured signals in millimetre measurements or lower measurements without significant overlays of signals. The object is achieved by a three-dimensional tomograph, at least consisting of a three-dimensional microcomponent formed by a coiled or unfolded layer stack made of at least one substrate layer and electrodes at least positioned thereon for the impedance measuring, wherein the electrodes for the impedance measuring are once or repeatedly arranged substantially on the inner or outer surface of the microcomponent, all around in at least one plane, and the measurement object is located inside the microcomponent and/or around the microcomponent.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Sellschopp, Kai
Fähler, Sebastian
Waske, Anja
Abstract
The invention concerns the field of electrical engineering and relates to an apparatus and a method for converting thermal energy into electrical energy. The apparatus and the method can be used, for example, in the automotive industry or geothermy. The object of the invention is to provide an apparatus and a method for converting thermal energy into electrical energy, which apparatus has an improved performance overall and has an increased maximum achievable power, and also is simple and cost-effective to produce and use. The object is achieved by an apparatus having one or more thermomagnetic generators, wherein a thermomagnetic generator contains at least one first and second thermomagnetic component, at least two components composed of hard-magnetic material, at least one coil and at least two connecting elements composed of magnetic flux-conducting material, wherein the magnetic north poles are connected to one of the two connecting elements composed of magnetic flux-conducting material, and the magnetic south poles thereof are connected to the other connecting element.
H01L 37/04 - Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using Nernst-Ettinghausen effect; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof using thermal change of magnetic permeability, e.g. working above and below the Curie point
13.
METHOD FOR PRODUCING AT LEAST ONE THREE-DIMENSIONAL COMPONENT FOR THE UNI-, BI-, TRI- OR MULTI-DIRECTIONAL MEASUREMENT AND/OR GENERATION OF VECTOR FIELDS AND THREE-DIMENSIONAL COMPONENT FOR THE UNI-, BI-, TRI- OR MULTI-DIRECTIONAL MEASUREMENT AND/OR GENERATION OF VECTOR FIELDS
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Karnaushenko, Daniil
Karnaushenko, Dimitriy
Schmidt, Oliver, G.
Abstract
The invention concerns the field of microelectronics and relates to a three-dimensional component, which measures the direction of a feature in a vector field, e.g. like a sensor. The object of the invention is to provide a three-dimensional component which can measure and/or generate vector fields in multiple directions and/or simultaneously with reduced space requirements. The object is achieved by a three-dimensional component for the uni-, bi-, tri- or multi-directional measurement and/or generation of vector fields, wherein at least one component formed from material systems is provided - on a three-dimensional carrier made of at least one carrier material - which measures and/or generates a vector field in at least one direction in the spatial position thereof on, against and/or in the carrier.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Winkler, Andreas
Harazim, Stefan
Abstract
The invention relates to the fields of microsystems engineering and microfluidics, and relates to a microfluidics device and how said device can be used, for example, for lab-on-a-chip systems with actuator or sensor functionality, impedance spectroscopy, surface plasmon resonance, or electromagnetic separation in biomedical engineering or in analytical chemistry and biochemistry. The aim of the present invention is to provide a microfluidics device which has a simple design and improved flexibility to adapt to varied applications. The microfluidics device according to the invention contains: at least one functional element comprising at least one active and passive part; a fluidic component that is gas- or liquid-tightly connected to the passive part of the functional element; and an electric component that is electrically conductively connected to the active part of the functional element. The elements of the device are provided as modules that are interchangeable by means of the gas- and/or liquid-tight and electrically conductive connection points.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Grimm, Daniel
Karnaushenko, Dmitriy
Bauer, Martin
Karnaushenko, Daniil
Makarov, Denys
Schmidt, Oliver G.
Abstract
The present invention relates to the fields of physics, material sciences and micro and nano electronics, and concerns a method for producing a rolled-up electrical or electronic component, as can be used for example as a capacitor, or in aerials. The object of the present invention is to provide a low-cost, environmentally friendly and time-saving method for producing a rolled-up electrical or electronic component with many windings. The object is achieved by a method for producing a rolled-up component in which at least two functional and insulating layers, alternately arranged fully or partially over one another, are applied to a substrate with a sacrificial layer, wherein at least the functional or insulating layer that is arranged directly on the sacrificial layer has a perforation, at least on the two sides that are arranged substantially parallel to the rolling direction.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Grimm, Daniel
Bauer, Martin
Schmidt, Oliver G.
Abstract
The present invention relates to the area of micro- and nanoelectronics and relates to ultra-compact micro capacitors, how they can be used, for example, in electrical and electronic devices. The object of the present invention consists in specifying an ultra-compact micro capacitor with the highest capacity. The problem is solved by an ultra-compact micro capacitor which is made from a rolled-up layer stack of alternatingly arranged layers of dielectric and/or electrically insulating and electrically conductive materials with rolled-up lengths of the layer stack of at least 1 mm, and an absolute electrical storage capacity of at least 10 nF. The problem is additionally solved by a method, in which a layer containing a water-soluble cellulose derivative is applied to a substrate and a layer stack to same, the layer containing the cellulose derivative is removed from the substrate using water, an organic solvent and/or an organic solvent mixture, and the layer stack is rolled up with a rolling speed of more than 0.1 mm/min.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Schmidt, Oliver G.
Abstract
The invention concerns the field of microelectronics and relates to a compact capacitor, which can be used, for example, in high-frequency oscillating circuits and in high-frequency filters. The problem addressed by the invention is that of specifying a compact micro- or nanocapacitor that has reliable and simple contacting of the functional layers. This problem is solved by means of a method for producing a compact micro- or nanocapacitor, in which method a layer stack consisting of at least two functional layers and two layers of a two-dimensional material and consisting of at least two layers of an electrically insulating material is arranged on a substrate, and the at least two functional layers and the layers of a two-dimensional material are arranged protruding beyond the width of the layer stack transversely to the rolling direction on one side each alternately, and then the layer stack is rolled up and the protruding are integrally bonded to each other.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Zeisig, Josephine
Hufenbach, Julia
Kühn, Uta
Eckert, Jürgen
Abstract
The invention pertains to the field of materials science and relates to shaped articles that can be used as shaped parts in the construction of vehicles, machines and plants, in the food industry or in plastics processing. The aim of the invention is to design shaped articles that are stronger and more resistant to corrosion. Said aim is achieved by high-strength, corrosion-resistant shaped articles which absorb mechanical energy and are made of iron alloys consisting of a composition of formula Fea Crb Cc E1d E2e E3f, where E1 is one or more elements from among the group consisting of V, W; E2 is one or more elements from among the group consisting of Mo, Ti, Nb, Ni; E3 is B and/or N; a = 100-(b+c+d+e+f), b = 13 to 20, c = 0.8 to 1.6, d = 0.5 to 5, e = 0 to 8, f = 0 to 0.5 (a, b, c, d, e, f being indicated in percent by weight).
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
KARLSRUHER INSTITUT FÜR TECHNOLOGIE (Germany)
Inventor
Herklotz, Markus
Weiss, Jonas
Giebeler, Lars
Knapp, Michael
Abstract
The subject matter of the present invention is an apparatus for in situ analysis of batteries by means of x-rays, synchrotron radiation or another type of radiation. The apparatus has a specimen carrier which is realized as a specimen wheel which is mounted such that it can rotate about the centre axis. A plurality of specimen holders are arranged on the specimen carrier, the centre points of said specimen holders being placed on a common circle around the centre point of the specimen carrier, wherein each specimen holder can be individually and repeatedly opened and closed by a lockable cover. Each specimen holder has, in its interior, a hollow space which accommodates the battery which is to be examined so as to ideally match the shape of the periphery of said battery, wherein the cover and the hollow space have an opening for radiation to pass through. A spring which acts in the edge region of the battery presses the battery against the cover, wherein the spring and the edge region of the cover are designed to be electrically conductive but insulated from one another. From each specimen holder, an electrically conductive connection from the edge region of the cover and an electrically conductive connection from the spring lead to that side of the specimen carrier which is averted from the cover and into the vicinity of the centre point of said specimen carrier. There, the lines of all of the specimen holders are combined to form a bundle of lines or a plug connection.
G01N 23/20 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by using diffraction of the radiation by the materials, e.g. for investigating crystal structureInvestigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materialsInvestigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by using reflection of the radiation by the materials
H01M 10/48 - Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Schmidt, Oliver G.
Abstract
The invention pertains to the area of biotechnology, biology, and medicine and relates to a method for mobilizing immobilized cells, such as those which can be used for in vivo or in vitro fertilization for example. The aim of the invention is to devise a method for mobilizing individual immobilized cells, wherein the activity and controlled mobility of previously immobilized cells is implemented using said method. This is achieved by a method for mobilizing immobilized cells, an immobilized cell being connected to a microstructure which consists at least partly of magnetic materials. A nonreciprocal movement of the microstructure together with the immobilized cell is carried out by means of a three-dimensional external magnetic field which changes with time.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Böttner, Stefan
Schmidt, Oliver G.
Abstract
The invention pertains to the field of electrical engineering/electronics and relates to a waveguide resonator component, which can be used, for example, in integrated circuits. The problem addressed by the invention is that of producing a waveguide resonator component simply and economically. The problem is solved by a waveguide resonator component in which a substrate (1) having two waveguides (3) is present and a microtube (2) is present as resonator, wherein the resonator has a respective recess (4) in the region of each waveguide in order to form an intermediate space between the waveguide and the resonator. The aim is additionally achieved by a method in which a sacrificial layer is applied to a substrate having two waveguides and at least a second layer is applied to the sacrificial layer, and thereafter the sacrificial layer is at least partially removed and the resonator is produced in the form of a microtube by rolling up the second layer and possible additional layers.
G02B 6/10 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
G02B 6/12 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
G02B 6/13 - Integrated optical circuits characterised by the manufacturing method
22.
MAGNETO-OPTICAL UNIT HAVING OPTICAL POLARISATION GRATINGS MADE OF STRUCTURED, NONMAGNETIC METALS
ERNST-ABBE-FACHHOCHSCHULE JENA HOCHSCHULE FÜR ANGEWANDTE WISSENSCHAFTEN (Germany)
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Schmidt, Heidemarie
Brunner, Robert
Kaspar, Tim
Schmidt, Oliver, G.
Abstract
The invention relates to the design of an assembly of a regularly structured nonmagnetic single- or multi-layer system (2) having an optical polarisation grating, which has several basic elements in the unit cell. For a specified wavelength of the incident electromagnetic wave, a certain polarisation of the reflected or transmitted wave depending on a magnetic field applied from outside is achieved with the layer system.
G02F 1/09 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour
23.
METHOD FOR THE CONTROLLED MOVEMENT OF MOTILE CELLS IN LIQUID OR GASEOUS MEDIA
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Magdanz, Veronika
Sanchez, Samuel
Schmidt, Oliver, G.
Abstract
The invention concerns the domains of materials science and medicine and relates to a method such as can be applied to in vivo or in vitro fertilization, for instance. The problem addressed by the present invention is that of specifying a method with which the activity and controlled mobility of motile cells is improved and the absorption of materials alien to the cell is prevented as far as possible. The problem is solved by a method in which one or more motile cells are introduced into or attached to one or a plurality of magnetic particles, and subsequently the magnetic particles with the motile cells introduced into them or attached to them are moved in a directional manner by the application of an external magnetic field. The problem is further solved by the use of the method for the controlled movement of motile cells in liquid or gaseous media in the body of a mammal or human being.
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e.V. (Germany)
Inventor
Fischer, Friedrich
Lindackers, Dirk
Abstract
A zone-melting device (100) comprises a receiving unit (110) for a first and a second rod that are aligned along a common vertical axis (200). A beam-directing unit (120) directs a laser beam emitted by a laser source onto a melting zone (250) between the first and second rods. A deflecting or positioning unit (125, 126) deflects the laser beam along the vertical axis (200). The laser beam is guided at least along the vertical axis (200) according to a user specification, and/or its power is controlled, in such a way that an energy input along the vertical axis (200) is dependent on the location on the vertical axis (200).
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
TECHNISCHE UNIVERSITÄT DRESDEN (Germany)
Inventor
Sakaushi, Ken
Eckert, Jürgen
Nickerl, Georg
Kaskel, Stefan
Abstract
The invention concerns the area of chemistry and energy technology, in particular energy storage technology, and relates to the use of a polymer network as a cathode material for rechargeable batteries consisting of a cathode, an anode, and an electrolyte. An amorphous bipolar triazine-based porous polymer network, as the network, is used as the cathode material. The specific energy of the batteries is substantially increased using such a cathode material.
H01M 4/485 - Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
H01M 4/587 - Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Karnaushenko, Daniil
Makarov, Denys
Baraban, Larysa
Schmidt, Oliver, G.
Abstract
The invention pertains to the field of electronics and relates to a resonance detector, which can be used for example to detect magnetic, metal, and/or ionic objects in liquids, gases, or solids or in a combination thereof, including in the field of biology. The aim of the invention is to specify a resonance detector that provides values with a high to very high quality factor and thus high to very high sensitivity, which values are used as evidence of amounts, types, or components of magnetic, metal, and/or ionic objects in liquids, gases, or solids or in combinations thereof. Said aim is achieved by a resonance detector that contains at least one inductor X2 and at least one electrical circuit, which in turn contains at least two impedances Xi and X3, an amplifier K, and a feedback impedance X4, wherein the inductor X2 is a coil and the two impedances X1 and X3 are each capacitors.
G01N 27/02 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
G01R 27/26 - Measuring inductance or capacitanceMeasuring quality factor, e.g. by using the resonance methodMeasuring loss factorMeasuring dielectric constants
OCAS ONDERZOEKSCENTRUM VOOR AANWENDING VAN STAAL N.V. (Belgium)
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN (Germany)
Inventor
Van Steenberge, Nele
Ruiz-Romera, Daniel
Stoica, Mihai
Kühn, Uta
Eckert, Jürgen
Abstract
The invention is related to an Fe based alloy material, suitable for producing a soft magnetic glassy alloy product, a product produced thereof and a method for producing such a product. The product can be a master alloy product obtained after a first melting step starting from suitably selected starting materials, or it can be a final soft magnetic glassy alloy product obtained after a further step of melting the master alloy. The alloy material of the invention comprises : ⋅ C between 1.4wt% and 2.2wt% ⋅ Si between 0.9wt% and 1.35wt% ⋅ B between 0.43wt% and 0.65wt% ⋅ P between 5wt% and 7.5wt% ⋅ Mo between 0.9wt% and 9.2wt% ⋅ Mn between 0.05wt% and 0.6wt%, ⋅ O up to 0.3wt%, ⋅Al up to 0.1wt%, ⋅ S up to 0.05wt%, ⋅ Ti up to 0.45wt%, ⋅ Cr up to 0.3wt%, ⋅ Cu up to 0,25wt% or Cu between 0.25wt% and 0.8wt%, the balance being Fe and incidental impurities. A Fe-based soft magnetic glassy product according to the invention can be produced starting from non-pure starting materials.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Menzel, Siegfried
Winkler, Andreas
Abstract
The invention is concerned with the field of electrical engineering/ acoustoelectronics and relates to a surface acoustic wave component such as can be used for example as a filter component in mobile telephones. The problem addressed by the present invention is that of specifying a surface acoustic wave component in which the degradation of the IDT is significantly reduced. The problem is solved by the invention specified in the claims. The dependent claims relate to advantageous configurations. The surface acoustic wave component according to the invention consists at least of a piezoelectric material, interdigital transducers, a non-piezoelectric material and electrical contact-connections, wherein the interdigital transducers are connected to the non-piezoelectric material at least in a force-locking and/or a positively locking manner and they can excite surface waves in the piezoelectric material, and, at least partly in the region of the aperture of interdigital transducers, the interdigital transducers are mechanically decoupled from the piezoelectric material.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
TECHNISCHE UNIVERSITÄT DRESDEN (Germany)
Inventor
Bahr, Falk
Barth, Henry
Hofmann, Wilfried
Makarov, Denys
Melzer, Michael
Mönch, Ingolf
Oppermann, Martin
Schmidt, Oliver G.
Zerna, Thomas
Abstract
The invention concerns the field of electrical, materials and mechanical engineering and relates to the use of flexible magnetic thin layer sensor elements, which can be used for measuring magnetic flux density in electromagnetic energy converters and magnetomechanical energy converters. The aim of the invention is to specify the use of flexible magnetic thin layer sensor elements in electric machines and magnetic bearings, which can be placed in air gaps without substantially limiting the air gap widths. Said aim is achieved by the use of at least one flexible magnetic thin layer sensor element, which is attached to non-planar surfaces in the air gap on at least one of the main elements of electromagnetic energy converters and magnetomechanical energy converters and at least partially covers the non-planar surface of at least one of the main elements in the air gap in order to measure the magnetic flux density in the air gap and/or to regulate and/or monitor electromagnetic energy converters and magnetomechanical energy converters.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Grinenko, Vadim
Fuchs, Günter
Nenkov, Konstantin
Holzapfel, Bernhard
Abstract
The invention relates to the field of physics and concerns superconducting YBCO pancake coils with reduced AC power loss, as can be used, for example, in superconducting motors, generators and transformers. The problem addressed by the present invention is that of devising YBCO pancake coils with reduced AC power loss. The problem is solved by YBCO double-pancake coils in which the two YBCO pancake coils are arranged beside each other in parallel and have a common coil axis. Each coil consists of several layers of YBCO strip conductors, electrically insulated from one another, which are supported on one end or are arranged on a coil core, wherein each layer consists of at least two YBCO strip conductors arranged one on top of the other, and the at least two YBCO strip conductors of one pancake coil are cross-connected conductively to the at least two YBCO strip conductors of the other pancake coil.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Makarov, Denys
Schmidt, Oliver G.
Abstract
The invention relates to the fields of physics and materials science, more particularly to a magneto-electronic component that can be used as a digital memory, for example. The aim of the invention is to design a magneto-electronic component which can be used as a racetrack memory. Said aim is achieved by a magneto-electronic component consisting of an insulating thin film, on which an elongate element made of a magnetic material and electrically conductive contacts are located, and another insulating thin film, said arrangement being jointly rolled up. Said aim is also achieved by a method in which at least one elongate element made of a magnetic material is applied to an insulating thin film, electrical contacts are also applied, and another insulating thin film is applied thereto, the stack of layers being arranged so as to have a strain gradient.
G11C 11/16 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
H01F 10/32 - Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
H01L 43/12 - Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
G11C 11/14 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using magnetic elements using thin-film elements
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
G11C 19/08 - Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
32.
SPOOLING AND SPINNER DEVICE OF A RING SPINNING FRAME OR A RING TWISTING FRAME, AND RING SPINNING AND RING TWISTING METHOD
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
EVICO GMBH DRESDEN (Germany)
Inventor
Cherif, Chokri
Abdkader, Anwar
Schultz, Ludwig
Berger, Dietmar
De Haas, Oliver
Kuehn, Lars
Abstract
The invention relates to a device for producing and winding up yarns in ring spinning and ring twisting frames, wherein the yarn is caused to rotate by a spinner device and is wound up on a cops on the basis of a developing difference in speed relative to the spindle and the cops. The aim of the invention is to drastically increase the yield of said device, to eliminate the friction between ring and rotor, to significantly increase the service life and to reduce the effective forces. Said aim is achieved in that the traditional ring-rotor system is replaced by a rotorless, supraconducting system of magnetic bearing, ring and spinner element.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Richter, Manuel
Kuzmin, Michael
Abstract
The invention relates to the use of a material free of rare earth metals as a magnetocalorically active material for products and devices for cooling or heating media and objects. The problem of the present invention consists of a low-cost magnetic material comprising a strong magnetocaloric effect per unit volume at a wide range of the natural ambient temperature, that is non-toxic, free of rare earth metals, and not comprising any other very rare elements. The essential object of the invention comprises a material free of rare earth metals having the composition (Fe1-aMa)Xb, where 0≤a<0.5; 0≤b≤0.6; and a+b>0, and where M = Ti, V, Cr, Mn, Co, Ni or a mixture of said elements, and where X = H, B, C, N, Si or a mixture of said elements is used as a magnetocaloric active material for products and devices for cooling or heating media and objects.
H01F 1/01 - Magnets or magnetic bodies characterised by the magnetic materials thereforSelection of materials for their magnetic properties of inorganic materials
34.
SURFACE-STRUCTURED METALLIC GLASSES AND PROCESS FOR THE PRODUCTION THEREOF
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN e.V. (Germany)
Inventor
Jerliu, Bujar
Eckert, Jürgen
Scudino, Sergio
Surreddi, Kumar-Babu
Pauly, Simon
Abstract
The invention relates to the field of materials science and provides surface-structured metallic glasses as can be used, for example, as housing materials for mobile telephones, laptops or USB memory sticks. It is an object of the present invention to provide surface-structured metallic glasses whose plasticity under compressive and tensile stress is increased. The object is achieved by surface-structured metallic glasses having one or more depressions having an aspect ratio of at least 1:>1 on at least one surface thereof. The object is also achieved by a process in which a body composed of a metallic glass is produced and at least one depression is subsequently introduced into at least one of the surfaces of the cooled body by means of a tool using uniaxial pressure.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN e.V. (Germany)
Inventor
Hufenbach, Julia Kristin
Eckert, Jürgen
Kühn, Uta
Kohlar, Stefanie
Abstract
The invention relates to the field of materials science and concerns a method for heat-treating high-strength iron alloys. Moulded bodies made of such iron alloys can be used as cutting, stamping and shaping tools. The aim of the invention is to specify a method for heat-treating high-strength iron alloys, with which the hardness as well as the strength under tensile and compressive stresses and the deformability of the iron alloys can be markedly increased. The aim is achieved by a method in which the alloy elements are mixed, melted and then cast in a mould at cooling rates of at least 10 K/s; subsequently the moulded body is annealed at least twice in immediate succession, wherein the annealing temperatures lie between 500 and 600°C, the dwell times during annealing lie between 30 seconds and 15 minutes and the heating and cooling rates are at least 15 K/min.
C22C 38/22 - Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
C22C 38/24 - Ferrous alloys, e.g. steel alloys containing chromium with vanadium
C22C 38/26 - Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
C22C 38/28 - Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
C22C 38/36 - Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
C21D 1/78 - Combined heat-treatments not provided for above
C21D 9/22 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for drillsHeat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for milling cuttersHeat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for machine cutting tools
36.
HIGH-STRENGTH SHAPED BODIES WHICH ARE COMPOSED OF IRON ALLOYS, ARE PLASTICALLY DEFORMABLE AT ROOM TEMPERATURE AND ABSORB MECHANICAL ENERGY
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN e.V. (Germany)
Inventor
Kühn, Uta
Eckert, Jürgen
Siegel, Uwe
Hufenbach, Julia
Lee, Min Ha
Abstract
The invention relates to the field of materials science and provides shaped bodies composed of iron alloys which can be used as cutting, stamping and splitting tools, in the aircraft industry, in spaceflight, in the vehicle industry and generally in machine construction and apparatus construction. The invention addresses the problem of providing shaped bodies composed of iron alloys which have plasticity and/or significant increases in strength combined with comparatively high ductility. This problem is solved by shaped bodies composed of iron alloys according to Claim 1. The problem is also solved by a process in which the elements of the alloy are mixed, melted and subsequently poured into a casting mould and cooled at a rate of > 20 K/s.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Richter, Manuel
Abstract
The invention relates to the field of information technology and data processing and relates to a magnetic storage material for the long-term storage of binary data. The storage material according to the invention allows a very high packing density and can be deposited as a thin layer on a substrate and thus be used to produce data carriers for hard disk storage units. The aim of the invention is to create a magnetic storage material for long-term storage of binary data, wherein said material maintains the directional magnetization in a long term stable manner in the range of several years, allows the production of ordered and chemically stable storage films having an extremely high packing density, and in principle allows time-saving storage and read-out of the data. The magnetic storage material according to the invention essentially consists of magnetic bistable or multistable storage particles in the form of individual paramagnetic atoms or individual superparamagnetic dimers or individual superparamagnetic atom clusters in the subnanometer range, which individually are enclosed in covalently bound cage-like structures, wherein the storage particles consist of one or more elements of groups 3 to 10 of the periodic table of the elements and/or lanthanides and/or actinides, and wherein the storage particles are bound on the insides of the cage-like structures or at least the orientation thereof relative to the surrounding cage-like structure is fixed. The bond of the storage particles on the insides of the cage-like structures is so strong that a magnetic field acting during read-in and read-out of the information units does not destroy the bond or the orientation.
G11B 5/706 - Record carriers characterised by the selection of the material comprising one or more layers of magnetisable particles homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
G11B 5/64 - Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
38.
METHOD AND ASSEMBLY FOR EXCITING SPIN WAVES IN MAGNETIC SOLID BODIES
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Schäfer, Rudolf
Abstract
The invention relates to a method and assembly for spin wave excitement in ferro- or ferrimagnetic solid bodies, such as in a magnetic conductor path or in a magnetic nanowire. The invention is in particular applicable for signal and information transport on the basis of propagating spin waves in electrical switch circuits and components and in the field of the implementation of logical circuits. The aim of the invention is to provide a method for spin wave excitation by means of which spin wave types of the same type can be reproducibly excited in simply structured solid bodies without using electrical currents, magnetic fields and heat effects. Included in said aim is the creation of an advantageously usable assembly for carrying out the novel method. The method according to the invention is characterized in that a domain wall, spatially fixed in a magnetic solid body, is illuminated by polarized, pulsed laser light using the inverse magneto-optical gradient effect, wherein the illumination of the domain wall takes place in vertical incidence in the case of magnetized domains in the plane of the solid body and in angled incidence in the case of magnetized domains perpendicular to the solid body plane, especially avoiding heat input into the solid body.
G11C 13/06 - Digital stores characterised by the use of storage elements not covered by groups , , or using optical elements using magneto-optical elements
G11C 19/08 - Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
G11B 11/105 - Recording on, or reproducing from, the same record carrier wherein for these two operations the methods or means are covered by different main groups of groups or by different subgroups of group Record carriers therefor using recording by magnetisation or demagnetisation using a beam of light or a magnetic field for recording and a beam of light for reproducing, e.g. light-induced thermomagnetic recording or Kerr effect reproducing
39.
METALLIC SHAPED WIRE WITH A RECRYSTALLIZATION CUBE TEXTURE AND PROCESS FOR THE PRODUCTION THEREOF
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN e.V. (Germany)
Inventor
Eickemeyer, Jörg
Güth, Albert
Seifert, Dirk
Freudenberger, Jens
Holzapfel, Bernhard
Abstract
The invention deals with the field of materials science and relates to a metallic shaped wire which is made of polycrystalline metals, has a recrystallization cube texture and can be used, for example, as a substrate for film superconductors in superconducting magnets. The invention is based on the object of specifying a metallic shaped wire, on the surface of which buffer layers and superconductor layers can grow in an oriented manner, and a relatively cost-effective process. The object is achieved by a shaped wire which has a recrystallization cube texture in the region of the surfaces oriented perpendicular to one another and/or over the cross section thereof, wherein the cube edges of the unit cells are oriented parallel to the longitudinal axis of the wire and perpendicular to the surfaces. The object is also achieved by a process in which a strip of polycrystalline face-centred cubic metal is processed by means of cold-drawing to form shaped wire, wherein the cold-drawing exclusively implements a reduction in the overall width of the starting strip used of εb,ges ≥ 80%, but the thickness of the strip product used is not substantially changed.
C22F 1/10 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
B21C 37/04 - Manufacture of metal sheets, rods, wire, tubes, profiles or like semi-manufactured products, not otherwise provided forManufacture of tubes of special shape of rods or wire
40.
METHOD AND ARRANGEMENT FOR MANIPULATING DOMAIN INFORMATION STORED IN A MAGNETIC MEDIUM
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Schäfer, Rudolf
Abstract
The invention is based on the object of designing a method and an arrangement for manipulating domain information stored in a magnetic medium, wherein spin-polarized electric current pulses are conducted through the medium and bring about domain wall displacements on the basis of the racetrack memory method, such that a reduction of the current density and of electromigration becomes possible. The method according to the invention is characterized in that, for the purpose of reducing the current density required for domain wall displacement, the medium is illuminated with polarized pulsed laser light using the effect of a reversal of the magneto-optical gradient effect for producing a torque at the spin system of the domain walls, wherein domains which are magnetized in the plane of the medium surface are illuminated with perpendicular incidence and domains having magnetization oriented perpendicularly to the medium surface are illuminated with oblique incidence. A further essential feature according to the invention consists in the fact that the wavelength, the pulse duration and the fluence of the pulsed laser light are chosen such that the laser light does not input heat into the magnetic medium in a manner that would lead to heating of the medium in excess of the heat generated by the electric current pulses. The arrangement according to the invention is characterized by a pulsed laser source for illuminating with a polarized laser beam a domain structure which is magnetized in planar or perpendicular fashion and is present in the medium. The method and arrangement according to the invention are applicable, in particular, in the field of magnetic data storage.
G11C 19/08 - Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
G11C 13/06 - Digital stores characterised by the use of storage elements not covered by groups , , or using optical elements using magneto-optical elements
41.
METHOD FOR DETERMINING ELECTRICAL AND MECHANICAL MATERIAL PROPERTIES USING AN SAW ONE-PORT RESONATOR
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Guhr, Glen
Brünig, Raimund
Jäger, Martin
Abstract
The invention concerns the field of measurement technology, and relates to a method for determining electrical and mechanical material properties, which may be used for liquids, such as oils, milk, blood, for example. The aim of the present invention is to provide a method by means of which the material properties may be detected at the same time and at the same place by way of an assembly. The aim is achieved by a method, in which by means of a SAW one-port resonator, which is substantially fully covered with a sample, the amount and the phase of the complex electrical resistance is measured in a broad frequency range, and subsequently the electrical and mechanical material properties of the sample are determined from the curve profile of the amount and the phase of the complex electrical resistance using known methods and models.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Lyubina, Julia
Gutfleisch, Oliver
Abstract
The invention relates to the field of materials science and materials physics and concerns a magnetic alloy material, which can be used, for example, as a magnetic cooling material (magnetocaloric material) for cooling purposes or for energy generation purposes, and a process for the production thereof. The aim of the present invention is to provide a magnetic alloy material which has comparable magnetic and/or magnetocaloric properties and improved mechanical properties compared to prior art materials. This aim is achieved by a magnetic alloy material which displays a magnetocaloric effect and has a foam-like structure with an open porosity of from 1% to 50% and/or a closed porosity of at least 1% or in which particles of the magnetic alloy material are embedded in a matrix material having a higher ductility than the magnetic alloy material.
H01F 1/01 - Magnets or magnetic bodies characterised by the magnetic materials thereforSelection of materials for their magnetic properties of inorganic materials
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Martin, Günter
Weihnacht, Manfred
Biryukov, Sergey
Darinski, Alexander
Wall, Bert
Abstract
The invention relates to a transducer having natural unidirectionality for surface acoustic waves, wherein an interdigital electrode structure is arranged on a piezoelectric crystal substrate and is constructed with interdigital transducers comprising collecting electrodes and fingers, wherein at least two of the fingers form a transducer cell, which comprises at least one excitation center for exciting an electrical potential wave and at least one reflection center for reflecting electrical potential waves. The invention is based on the problem of finding materials, material sections, and propagation directions for transducers having natural unidirectionality that result in a low insertion loss even in broadband transducers, and for which the frequency position is not affected or is affected only slightly by errors in the orientation of the electrode structure on the substrate despite the unidirectional characteristics of the transducers. According to an essential characteristic of the invention, the fingers are oriented perpendicularly to a direction R, wherein the direction R is directed parallel to a 1- or 3-fold rotational axis of the substrate crystal and the derivative dv/dθ=0 applies to R, wherein v is the phase velocity of the surface wave and θ is an angular deviation of the perpendicular to the finger direction from said direction R. According to a further characteristic of the invention, the electrode materials and the layer thicknesses thereof are selected in such a way that the phase shift Φs between the excitation center and a reflection center in each transducer cell, given by the equation sin2(Φs)= (ωo2– ωs2) (ωs2– ωo1)/(ωs2– ωs1) (ωo1+ ωo2– ωs1– ωs2), lies between 41.4º and 48.6º or between -48.6º and -41.4º or between 131.4º and 138.6º or between -138.6º and -131.4º. The transducer according to the invention can be used in particular for sensors, identification components (ID tag), resonators, filter, delay lines, and oscillators insofar as the mode of operation thereof is based on surface acoustic waves.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Seifert, Gotthart
Hermann, Helmut
Zagorodniy, Konstyantyn
Zschech, Ehrenfried
Abstract
The invention deals with the fields of microelectronics and the material sciences and relates to an insulation layer material for integrated circuits in microelectronics that can be used, for example, in integrated circuits as an insulation material in semiconductor components. The problem of the present invention is to specify an insulation material for integrated circuits that has dielectric constants of k ≤ 2 and at the same time has good mechanical properties. The problem is solved by means of an insulation material for integrated circuits that contains at least MOFs and/or COFs.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Lyubina, Julia
Buschbeck, Mikaela
Gutfleisch, Oliver
Abstract
The invention refers to the area of materials science and material physics and relates to a coated magnetic alloy material that can be used, for example, as a magnetic cooling material for cooling purposes. The object of the present invention is to provide a coated magnetic alloy material that exhibits improved mechanical and/or chemical properties. The object is accomplished by a magnetic alloy material having an Na Zn13-type crystalline structure and having a composition according to the formula Ra Fe100-a-x-y-z Tx My Lz, the surface of said alloy material being coated with a material comprising at least one element from the group of Al, Si, C, Sn, Ti, V, Cd, Cr, Mn, W, Co, Ni, Cu, Zn, Pd, Ag, Pt, Au or combinations thereof. The object is further achieved by a method in which the magnetic alloy material is coated by way of fluid phase processes.
H01F 1/01 - Magnets or magnetic bodies characterised by the magnetic materials thereforSelection of materials for their magnetic properties of inorganic materials
46.
DIAGNOSTIC AND/OR THERAPEUTIC AGENT, METHOD FOR THE MANUFACTURE THEREOF AND USE THEREOF
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Braun, Klaus
Bock, Michael
Pipkorn, Rüdiger
Waldeck, Waldemar
Wießler, Manfred
Didinger, Bernd
Debus, Jürgen
Ehemann, Volker
Dunsch, Lothar
Abstract
The invention relates to the areas of the materials sciences and to medicine, and relates to an agent that can be used as a contrast medium for the localization of cancer cells, for example. The object of the present invention is to provide an agent which sensitively and selectively recognizes the location and type of molecules or cells to be examined. The object is accomplished through an agent comprising at least bio-shuttle molecules to which endohedral fullerenes are coupled by way of peptide-based molecules, wherein the endohedral fullerenes are hydrophobic and correspond to the formula: A3-χMxZ@C2n, where x = 0 to 3, n ≥ 34, A is a rare earth and/or a transuranic element, M is a metal, Z is a non-metal and C is carbon. The object is further accomplished through a method in which hydrophobic, endohedral fullerenes are coupled to bio-shuttle molecules by way of an irreversible Diels-Alder reaction that has an inverse electron demand (DARιnv).
A61K 49/18 - Nuclear magnetic resonance [NMR] contrast preparationsMagnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN e.V. (Germany)
Inventor
Siegert, Lothar
Täschner, Christine
Abstract
The present invention relates to an apparatus for the condensation and/or adsorption of gases, particularly in a high vacuum, characterized in that nano-structured carbon particles obtained in particular by way of a CVD or plasma CVD method are connected in a heat-conducting manner to a refrigeration reservoir, which in particular has a temperature of ≤ 20 K.
F04B 37/02 - Pumps specially adapted for elastic fluids and having pertinent characteristics not provided for in, or of interest apart from, groups for evacuating by absorption or adsorption
F04B 37/08 - Pumps specially adapted for elastic fluids and having pertinent characteristics not provided for in, or of interest apart from, groups for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
F04B 37/04 - Selection of specific absorption or adsorption materials
B01D 53/02 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography
48.
THERMOELECTRIC COMPONENT AND METHOD FOR THE PRODUCTION THEREOF
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Dienel, Thomas
Schumann, Joachim
Rastelli, Armando
Schmidt, Oliver G.
Abstract
The invention relates to the field of physics and relates to a thermoelectric component that can be used for example as an energy converter or as a thermionic cooler. The aim of the claimed invention consists of designing a thermoelectric component in which energy is converted in an efficient manner. Said aim is achieved due to the fact that the claimed thermoelectric component comprises: a) for using the Peltier-Seebeck based operating principle, two or more separated or common thin layers that are rolled up by means of the roll-up technique, each layer consisting of a p- and an n-doped semi-conductor material and said layers being connected together in a meandering type manner via electric contacts; b) for using the thermionic operating principle, a multi-layer structure that consists of a thin layer structure, rolled up by means of the roll-up technique, and made of a p-doped semi-conductor material, an electric, non-conductive barrier layer that is applied thereto, and a thin layer made of an n-doped semi-conductor material and that is applied thereto. No direct material contact between the p- and n-doped semi-conductor material is established.
H01L 35/32 - SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR - Details thereof operating with Peltier or Seebeck effect only characterised by the structure or configuration of the cell or thermocouple forming the device
H01L 35/34 - Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
49.
ELECTRICALLY CONDUCTIVE HIGH-TEMPERATURE SUPERCONDUCTOR LAYERED STRUCTURE AND METHOD FOR THE PRODUCTION THEREOF
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Hühne, Ruben
Güth, Konrad
Kaltofen, Rainer
Abstract
The invention relates to the field of material sciences and to an electrically conductive high-temperature superconductor layered structure, used for example as a high-current bearing conductor. The aim of the invention is to provide an electrically conductive high-temperature superconductor layered structure, which in the event of an overload can be used to conduct current via the layered structure and the substrate. The aim is achieved by an electrically conductive high-temperature superconductor layered structure consisting of a substrate (1), at least one nucleic layer (2) situated on said substrate, a layer (3) which is applied to the nucleic layer by means of an IBAD process, a barrier layer (4) being in turn located on said layer and at least one high-temperature superconductor layer (5) being situated on said barrier layer. The aim is further achieved by a method for producing an electrically conductive high-temperature superconductor layered structure, according to which at least one nucleic layer is applied to the substrate, at least one layer is applied to said layer by means of an IBAD process, at least one barrier layer is applied thereto and at least one high-temperature superconductor layer is then applied to said barrier layer.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Fähler, Sebastian
Thomas, Michael
Heczko, Oleg
Buschbeck, Jörg
Mc Cord, Jeffrey
Abstract
The invention refers to the area of materials science and relates to a construction element which can be used for micro-components, microsensors and microactuators, for example. The object of the present invention is to provide a construction element in which a much larger relative length change occurs. The object is accomplished by a construction element made of a ferromagnetic shape memory material manufactured through a process in which at least one sacrificial layer is applied to a monocrystalline or biaxially textured substrate, an epitactic or textured layer made of a ferromagnetic shape memory material with a layer thickness of ≤ 50 μm being applied to said sacrificial layer, whereupon the sacrificial layer is at least partially removed, and at least the ferromagnetic shape memory material is structured during or after the layer application so that an aspect ratio is achieved in which at least one length is greater than the thickness of the layer or the shortest dimension of the component by a factor of at least 3.
H01L 41/20 - Selection of materials for magnetostrictive elements
F03G 7/06 - Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying, or the like
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Menzel, Siegfried
Abstract
The invention is concerned with the field of material sciences and relates to a layer system for electrodes which can be used for example in frequency filters, sensors or actuators. The object of the present invention is to specify a layer system for electrodes having improved power compatibility and lifetime. The object is achieved by means of a layer system for electrodes, comprising a piezoelectric substrate with strip structures that are composed of a composite material and are situated on or embedded in the substrate, said composite material comprising a metallic matrix material with at least one incorporation phase composed of carbon nanostructures. The object is furthermore achieved by means of a method in which catalyst material is applied on a seed layer, this is subjected to a temperature increase and carbon nanostructures are subsequently produced and the interspaces between the carbon nanostructures filled by a metallic matrix material, and/or in which particles are applied to a substrate, which particles lead to carbon nanostructures, and the interspaces between the carbon nanostructures are subsequently filled by a metallic matrix material.
H03H 9/145 - Driving means, e.g. electrodes, coils for networks using surface acoustic waves
H03H 3/08 - Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
52.
TUBULAR MULTIFUNCTION SENSOR IN FLUIDS METHOD FOR PRODUCTION AND USE THEREOF
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Bermudez, Esteban
Mei, Yongfeng
Schmidt, Oliver G.
Abstract
The invention relates to the field of micro- and nano-technology and a multifunction sensor, of application, for example, in medicine. The aim of the invention is the production of a novel type of ferromagnetic micro-/nano-objects, which can be used as sensors in fluid flow. Said aim is achieved by means of a method, comprising a. application of a sacrificial layer to a substrate, b. application of a thin layer made of at least one ferromagnetic material to the sacrificial layer, c. selective etching of the sacrificial layer such that the thin layer rolls up and forms a micro- and/or nano- tube and then the micro- and/or nano-tube is mechanically removed from the substrate and transferred into or onto a fluid medium in an individual and controlled manner. The aim is further achieved by means of the tubular multifunction sensor produced by the above method which is made of at least one micro- or nano-tube and at least one ferromagnetic material.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Büchner, Bernd
Horst, Alexander
Lindackers, Dirk
Abstract
The invention refers to the area of materials science and relates to a device as is applied in the manufacture of thin layers, for example. The object of the present invention is to provide a method and a device for the production of a magnetic field which can be freely oriented spatially and maintained. The object is met by a device comprising a superconducting permanent magnet, a cooling device, a magnetization device, a device for three-dimensional translation and three-dimensional rotation of the permanent magnet and a moveable probe. The object is also met by a method in which a superconducting permanent magnet is subjected to a magnetic field and is thereby cooled down to below the transition temperature thereof and held there, and then transported by way of the device for three-dimensional translation and three-dimensional rotation to a location from which the now permanent magnetic field affects the probe.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN e.V. (Germany)
Inventor
Stoica, Mihai
Eckert, Jürgen
Abstract
The invention refers to the field of material sciences and relates to amorphous layers such as can be used, for example, for components subjected to strong chemical stresses. The problem addressed by the invention is that of specifying an amorphous layer which exhibits a high degree of hardness, no pore formation and very good adhesive strength. The problem is solved by amorphous layers, consisting of at least one metallic glass having a pore-free and uniformly amorphous structure, on a substrate. The problem is also solved by a process for continuously producing amorphous layers on a substrate, in which process a layer consisting of one or more molten metals or metal alloys is continuously applied to a substrate having a thermal conductivity of at least 15 Wm-1 K-1 and a maximum substrate thickness of 2 mm given this thermal conductivity, and subsequently the layer material is cooled at a rate of at least 100°C/s.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Rodig, Christian
Hässler, Wolfgang
Herrmann, Marko
Abstract
The invention is concerned with the field of material sciences and relates to an MgB2 superconductor such as can be used for example for wires for transmitting power. The object of the invention is to specify an MgB2 superconductor which has an improved critical current density even at relatively high magnetic fields. The object is achieved by means of an MgB2 superconductor comprising a core material composed of MgB2 and an enveloping material composed of Cu, Cu alloys, Ni, Ni alloys, Fe, Nb, Ta and/or Ti, the core material having a continuously morphologically identical, finely crystalline microstructure, without shear bands and/or partial detachments. The object is furthermore achieved by means of a method in which at least mechanically alloyed Mg and B powder is filled as core material into a tube composed of Cu, Cu alloys, Ni, N alloys, Fe, Nb, Ta and/or Ti as enveloping material, and the filled tube is subjected to a reshaping by means of hammering with thermal treatments in between, the temperatures realizing a reaction of the starting powder to a maximum of 60% MgB2.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Martin, Günter
Weihnacht, Manfred
Biryukov, Sergey
Abstract
The invention relates to waveguide components based on acoustic surface waves, comprising at least one interdigital converter for exciting acoustic surface waves in a piezoelectric substrate or a piezoelectric layer. The object of the invention is to change known waveguide components, comprising at least one interdigital converter for exciting acoustic surface waves in a piezoelectric substrate or a piezoelectric layer, such that no reflectors are necessary with an otherwise equivalent function. The inventive waveguide components are characterized in that the interdigital converter(s) a) is or are disposed at a defined distance over the piezoelectric substrate or the piezoelectric layer for exciting wave fields, or b) is or are in contact with the piezoelectric substrate or the piezoelectric layer, wherein in version a) the piezoelectric substrate is designed as a ring and the piezoelectric layer is designed as a circular region. In case of version b), the interdigital converter and/or the piezoelectric layer form circular regions. The components can be used for example as resonators, filters, oscillators and sensors.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
TECHNISCHE UNIVERSITÄT DRESDEN (Germany)
Inventor
Hermann, Helmut
Seifert, Gotthart
Täschner, Christine
Zschech, Ehrenfried
Abstract
The invention deals with the fields of microelectronics and material technology and relates to an insulation layer material for microelectronics which can be used, for example, in integrated circuits as a dielectric between copper conductor tracks. The invention addresses the problem of providing an insulation layer material for microelectronics which has a dielectricity constant of k < 2 whilst also having good mechanical properties. The problem is solved with an insulation layer material for microelectronics which consists of a plurality of fluorinated carbon nanotubes which are connected to a network, at least at certain points, by means of physical and/or chemical connections, using a bonding agent.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Behr, Günter
Voigtländer, Ralf
Horst, Alexander
Morgner, Rolf
Fischer, Friedrich
Abstract
The invention relates to the field of metrology and relates to a method for pyrometrically measuring the temperature of the melt material in monocrystal cultivation systems. The object of the invention is to specify a method which can be used to determine the temperature of the melt material without being influenced by other heat radiators. The object is achieved by means of a method in which the melting region is heated using radiation sources which contain at least one IR radiation component, and the effect of the radiation sources on the melting region is interrupted for temperature measurements, and the temperature measurements are solely carried out during the interruption period, wherein the interruption is effected at least until the t90 time of the pyrometer. The object is also achieved by means of an apparatus comprising at least one radiation source having at least one IR radiation component, at least one pyrometer and at least one device for interrupting the effects of the radiation source on the melting region.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Hoffmann, Volker
Abstract
The invention relates to the field of metrology and relates to a method which can be used to determine height differences caused by sputtering at the same time as the composition is being determined. The object of the invention is to specify a method which can be used to determine the composition of a solid specimen on the basis of the depth in the sputter region with a relatively high level of accuracy. The object is achieved by means of a method in which the composition and the height differences are simultaneously determined spectrometrically from the emitted light during sputtering of a solid specimen using an apparatus for utilizing the confocal imaging principle. The object is also achieved by means of an apparatus comprising imaging optics (9), an apparatus for injecting and outputting a light beam (2), an entrance slit (3) to the spectrometer (4), and, alongside them, an apparatus for utilizing the confocal imaging principle (6, 7) and then a spectrometer (8) and a light source (5).
G01N 21/67 - Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Menzel, Siegfried
Vinzelberg, Hartmut
Gemming, Thomas
Abstract
The invention relates to the field of physics and concerns a temperature sensor such as is used to measure temperature fields. The invention is based on the object of specifying a temperature sensor and a method, which realizes higher spatial resolution of the measurement. The object is achieved by means of a temperature sensor comprising a nanowire made of an electrically conductive material and/or a filled or unfilled nanotube which is/are fastened to a carrier in an electrically insulating manner in such a way that its/their length is oriented in the direction of the measurement location, wherein one electrical contact-connection is coupled to a greater thermal capacitance than the other contact-connection. The object is also achieved by means of a method in which a nanowire and/or a filled or unfilled nanotube is/are fastened to or on a carrier in an insulating manner in such a way that the longitudinal direction of the nanowire and/or of the nanotube is arranged in the direction of the measurement location and the thermal voltage is measured.
G01K 7/02 - Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat using thermoelectric elements, e.g. thermocouples
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Dörr, Kathrin
Schultz, Ludwig
Thiele, Christian
Abstract
The invention relates to ceramics and to a piezoelectric component having a magnetic layer, which can be used, for example, as a resistor component, as a switch element or control or memory elements or as a sensor. The aim of the invention is to provide a piezoelectric component having a magnetic layer which can modify the electric and magnetic properties of the thin layer(s), which are arranged thereon, by means of mechanical extension. Said aim is achieved by virtue of the fact that said piezoelectric component having a magnetic layer, which comprises the piezoelectric compound (1-x)Pb(Mg-1/3Nb2/3)O3- (X)PbTiO3 wherein x = 0,2 - 0,5 or the piezoelectric compound (1- y)Pb(Zn1/3Nb2/3)O3-(y)PbTiO3 wherein y = 0 - 0,2 as a substrate, with at least one thin magnetic layer arranged thereon, is epitaxially grown.
H01F 10/28 - Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers characterised by the composition of the substrate
62.
PROCESS FOR PRODUCING METAL-CONTAINING CASTINGS, AND ASSOCIATED APPARATUS
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Roth, Stefan
Schultz, Ludwig
Abstract
The invention deals with the field of materials sciences and relates to a process as can be used for example for the production of shaped articles from metallic glasses. The object of the present invention is to provide a process and an apparatus in which in addition to high cooling rates good mould filling during casting is also achieved. The object is achieved by a process in which a metal-containing melt is introduced into an electrically conductive casting mould, wherein during the introduction into a casting mould the metal-containing melt and the mould are electrically conductively connected to the outputs of the same voltage source, so that a preset flow passes through the boundary layer between melt and mould. The object is also achieved by an apparatus in which there is an electrically conductive connection to a voltage source between a metal-containing melt and an electrically conductive casting mould for the melt.
LEIBNIZ-INSTITUT FÜR FESTKÖRPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. (Germany)
Inventor
Fähler, Sebastian
Leistner, Karin
Neu, Volker
Abstract
The invention concerns the field of physics and relates to a method of producing a layer-substrate composite, such as can be used for example for high-power magnets in magnetic, microstructured components. The object of the present invention is to provide a low-cost method and a layer-substrate composite of a texturing that is largely independent of the substrate. The object is achieved by a method in which a layer to be textured, which contains components for forming a layer with hard-magnetic properties, is applied to a substrate and compressive or tensile stresses are introduced into the layer during the application of the layer or thereafter. The object is further achieved by a layer-substrate composite comprising a substrate and at least one layer to be textured, which contains components for forming a layer with hard-magnetic properties, the layer having a state of stress comprising compressive or tensile stresses.
H01F 41/14 - Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformersApparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
H01F 41/30 - Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformersApparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
H01F 10/13 - Amorphous metallic alloys, e.g. glassy metals
C30B 1/12 - Single-crystal growth directly from the solid state by pressure treatment during the growth