One variation of a method includes, during execution of a tracer test: triggering release of a tracer load into air in an aerosol zone by a dispenser transiently arranged in the aerosol zone, the tracer load including a concentration of aerosol tracers; and recording a timeseries of aerosol data via a sensor unit transiently arranged in the aerosol zone, the timeseries of aerosol data representing concentrations of aerosol particles present in air. The method further includes: based on the timeseries of aerosol data and the concentration, deriving a tracer concentration curve representing change in concentration of aerosol tracer particles; based on characteristics of the tracer concentration curve, deriving an airflow value representing removal of aerosol particles from the aerosol zone during the tracer test; and interpreting an outcome for the tracer test based on a difference between the airflow value and a target airflow value defined for the aerosol zone.
G01N 1/22 - Devices for withdrawing samples in the gaseous state
G01N 33/00 - Investigating or analysing materials by specific methods not covered by groups
G01N 33/48 - Biological material, e.g. blood, urineHaemocytometers
G16H 50/80 - ICT specially adapted for medical diagnosis, medical simulation or medical data miningICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for detecting, monitoring or modelling epidemics or pandemics, e.g. flu
2.
Tracer detection system and method for characterizing effectiveness of air removal in an aerosol zone
One variation of a method includes, during execution of a tracer test: triggering release of a tracer load into air in an aerosol zone by a dispenser transiently arranged in the aerosol zone, the tracer load including a concentration of aerosol tracers; and recording a timeseries of aerosol data via a sensor unit transiently arranged in the aerosol zone, the timeseries of aerosol data representing concentrations of aerosol particles present in air. The method further includes: based on the timeseries of aerosol data and the concentration, deriving a tracer concentration curve representing change in concentration of aerosol tracer particles; based on characteristics of the tracer concentration curve, deriving an airflow value representing removal of aerosol particles from the aerosol zone during the tracer test; and interpreting an outcome for the tracer test based on a difference between the airflow value and a target airflow value defined for the aerosol zone.
One variation of a method includes, during a calibration period: triggering collection of an initial bioaerosol sample by an air sampler located in an environment; and triggering dispensation of a tracer test load by a dispenser located in the environment; accessing a detected barcode level of a barcode detected in the initial bioaerosol sample; accessing a true barcode level of the barcode contained in the tracer test load; and deriving a calibration factor for the environment based on a difference between the detected barcode level and the true barcode level. The method further includes, during a live period succeeding the calibration period: triggering collection of a first bioaerosol sample by the air sampler; accessing a detected pathogen level of a pathogen detected in the first bioaerosol sample; and interpreting a predicted pathogen level of the pathogen in the environment based on the detected pathogen level and the calibration factor.
One variation of a method includes, during a test period: triggering release of a tracer test load into air in an environment, according to a set of release parameters, by a dispenser arranged within the environment, the first tracer test load comprising a first concentration of tracers of a first type in solution; and triggering an air sampler, located in the environment, to record a timeseries of aerosol data representing amounts of aerosol particles detected at the air sampler during the test period. The method further includes: deriving a tracer signal, representing changes in amounts of tracers in air detected at the air sampler during the test period, based on the timeseries of aerosol data and the set of release parameters; based on characteristics of the tracer signal, characterizing a set of aerosol flow metrics representing behavior of aerosols in the environment during the test period.
One variation of a pathogen detection system includes an air sampler and a cartridge. The air sampler includes: a housing defining an inlet and an outlet; a tunnel arranged within the housing and extending between the inlet and the outlet; a charge electrode arranged within the tunnel proximal the inlet; a cartridge receptacle arranged proximal the outlet and comprising a cartridge terminal; and a power supply configured to drive a voltage between the charge electrode and the cartridge terminal. The cartridge includes: a substrate; a collector plate arranged on the substrate and configured to collect charged bioaerosols moving through the tunnel; and a connector configured to transiently engage the cartridge receptacle to locate the substrate and the collector plate within the tunnel and electrically couple the collector plate to the cartridge terminal.
One variation of a method includes, during a calibration period: triggering collection of an initial bioaerosol sample by an air sampler located in an environment; and triggering dispensation of a tracer test load by a dispenser located in the environment; accessing a detected barcode level of a barcode detected in the initial bioaerosol sample; accessing a true barcode level of the barcode contained in the tracer test load; and deriving a calibration factor for the environment based on a difference between the detected barcode level and the true barcode level. The method further includes, during a live period succeeding the calibration period: triggering collection of a first bioaerosol sample by the air sampler; accessing a detected pathogen level of a pathogen detected in the first bioaerosol sample; and interpreting a predicted pathogen level of the pathogen in the environment based on the detected pathogen level and the calibration factor.
One variation of a pathogen detection system includes an air sampler and a cartridge. The air sampler includes: a housing defining an inlet and an outlet; a tunnel arranged within the housing and extending between the inlet and the outlet; a charge electrode arranged within the tunnel proximal the inlet; a cartridge receptacle arranged proximal the outlet and comprising a cartridge terminal; and a power supply configured to drive a voltage between the charge electrode and the cartridge terminal. The cartridge includes: a substrate; a collector plate arranged on the substrate and configured to collect charged bioaerosols moving through the tunnel; and a connector configured to transiently engage the cartridge receptacle to locate the substrate and the collector plate within the tunnel and electrically couple the collector plate to the cartridge terminal.
G01N 1/22 - Devices for withdrawing samples in the gaseous state
G01N 21/77 - Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
8.
SYSTEM FOR DETECTING PATHOGENS IN AN ENVIRONMENT VIA AN ELECTROSTATIC AIR SAMPLER
One variation of a pathogen detection system includes an air sampler and a cartridge. The air sampler includes: a housing defining an inlet and an outlet; a tunnel arranged within the housing and extending between the inlet and the outlet; a charge electrode arranged within the tunnel proximal the inlet; a cartridge receptacle arranged proximal the outlet and comprising a cartridge terminal; and a power supply configured to drive a voltage between the charge electrode and the cartridge terminal. The cartridge includes: a substrate; a collector plate arranged on the substrate and configured to collect charged bioaerosols moving through the tunnel; and a connector configured to transiently engage the cartridge receptacle to locate the substrate and the collector plate within the tunnel and electrically couple the collector plate to the cartridge terminal.
One variation of a method for detecting pathogens includes: accessing a timeseries of pathogen data for a pathogen, in a set of pathogens, derived from a series of pathogen samples collected in an environment during a time period; characterizing a pathogen profile, representative of changes in pathogen level of the first pathogen in the environment during the time period, based on the timeseries of pathogen data; accessing a baseline pathogen profile representative of changes in pathogen levels of the set of pathogens in the environment during an initial time period preceding the time period; characterizing a difference between the pathogen profile and the baseline pathogen profile; and, in response to the difference exceeding a threshold difference, selecting a mitigation action configured to reduce pathogen levels of the first pathogen and transmitting a prompt to execute the mitigation action to a user associated with the indoor environment.
One variation of a method includes, during a calibration period: triggering collection of an initial bioaerosol sample by an air sampler located in an environment; and triggering dispensation of a tracer test load by a dispenser located in the environment; accessing a detected barcode level of a barcode detected in the initial bioaerosol sample; accessing a true barcode level of the barcode contained in the tracer test load; and deriving a calibration factor for the environment based on a difference between the detected barcode level and the true barcode level. The method further includes, during a live period succeeding the calibration period: triggering collection of a first bioaerosol sample by the air sampler; accessing a detected pathogen level of a pathogen detected in the first bioaerosol sample; and interpreting a predicted pathogen level of the pathogen in the environment based on the detected pathogen level and the calibration factor.
One variation of a method includes, during a calibration period: triggering collection of an initial bioaerosol sample by an air sampler located in an environment; and triggering dispensation of a tracer test load by a dispenser located in the environment; accessing a detected barcode level of a barcode detected in the initial bioaerosol sample; accessing a true barcode level of the barcode contained in the tracer test load; and deriving a calibration factor for the environment based on a difference between the detected barcode level and the true barcode level. The method further includes, during a live period succeeding the calibration period: triggering collection of a first bioaerosol sample by the air sampler; accessing a detected pathogen level of a pathogen detected in the first bioaerosol sample; and interpreting a predicted pathogen level of the pathogen in the environment based on the detected pathogen level and the calibration factor.
One variation of a method includes, during a calibration period: triggering collection of an initial bioaerosol sample by an air sampler located in an environment; and triggering dispensation of a tracer test load by a dispenser located in the environment; accessing a detected barcode level of a barcode detected in the initial bioaerosol sample; accessing a true barcode level of the barcode contained in the tracer test load; and deriving a calibration factor for the environment based on a difference between the detected barcode level and the true barcode level. The method further includes, during a live period succeeding the calibration period: triggering collection of a first bioaerosol sample by the air sampler; accessing a detected pathogen level of a pathogen detected in the first bioaerosol sample; and interpreting a predicted pathogen level of the pathogen in the environment based on the detected pathogen level and the calibration factor.
C12Q 1/68 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions involving nucleic acids
G01N 33/50 - Chemical analysis of biological material, e.g. blood, urineTesting involving biospecific ligand binding methodsImmunological testing
C40B 30/04 - Methods of screening libraries by measuring the ability to specifically bind a target molecule, e.g. antibody-antigen binding, receptor-ligand binding
One variation of a method for detecting pathogens in an environment includes, during a first sampling period: triggering collection of a pathogen sample from ambient air in the environment by an air sampler; and tracking a first organic load of the first pathogen sample via a detection subsystem integrated within the air sampler, the first organic load representative of a first amount of organic matter present in the first pathogen sample. In response to the first organic load exceeding a threshold organic load defined for the environment, the method further includes: interpreting presence of a set of pathogens in the environment via genetic analysis of the first pathogen sample; and, in response to detecting presence of a first pathogen, in the set of pathogens, in the first pathogen sample, transmitting a notification indicating presence of the first pathogen in the environment to a user associated with the environment.
One variation of a method for detecting pathogens in an environment includes, during a first sampling period: triggering collection of a pathogen sample from ambient air in the environment by an air sampler; and tracking a first organic load of the first pathogen sample via a detection subsystem integrated within the air sampler, the first organic load representative of a first amount of organic matter present in the first pathogen sample. In response to the first organic load exceeding a threshold organic load defined for the environment, the method further includes: interpreting presence of a set of pathogens in the environment via genetic analysis of the first pathogen sample; and, in response to detecting presence of a first pathogen, in the set of pathogens, in the first pathogen sample, transmitting a notification indicating presence of the first pathogen in the environment to a user associated with the environment.
C12Q 1/68 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions involving nucleic acids
G01N 33/497 - Physical analysis of biological material of gaseous biological material, e.g. breath
C12Q 1/689 - Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
C12Q 1/6895 - Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae