A robotic system that can have a body and four flippers is described. Any or all of the flippers can be rotated. The flippers can have self-cleaning tracks. The tracks can be driven or passive. The robotic system can be controlled by, and send audio and/or video to and/or from, a remote operator control module. The methods of using and making the robotic system are also described.
A robotic logistics system is disclosed. The system includes multiple robots each having an image capture unit and a server communicatively coupled to the multiple robots. The server is configured to transmit a location of a first item to a first robot and the location of a second item to a second robot; track the positions of the first robot and the second robot; transmit a first image of the first item captured by the first robot to an operator device; receive a first verification signal from the operator device in response to the first image; transmit a second image of the second item captured by the second robot to the operator device; and receive a second verification signal from the operator device in response to the second image.
A robotic system that can have a body and four flippers is described. Any or all of the flippers can be rotated. The flippers can have self-cleaning tracks. The tracks can be driven or passive. The robotic system can be controlled by, and send audio and/or video to and/or from, a remote operator control module. The methods of using and making the robotic system are also described.
B62D 55/065 - Multi-track vehicles, i.e. more than two tracks
B60K 11/06 - Arrangement in connection with cooling of propulsion units with air cooling
B25J 5/00 - Manipulators mounted on wheels or on carriages
B25J 19/00 - Accessories fitted to manipulators, e.g. for monitoring, for viewingSafety devices combined with or specially adapted for use in connection with manipulators
B62D 65/02 - Joining sub-units or components to, or positioning sub-units or components with respect to, body shell or other sub-units or components
B62D 55/075 - Tracked vehicles for ascending or descending stairs
A robotic system that can have a body and four flippers is described. Any or all of the flippers can be rotated. The flippers can have self-cleaning tracks. The tracks can be driven or passive. The robotic system can be controlled by and send audio and/or video to and/or from, a remote operator control module. The methods of using and making the robotic system are also described.
A method of using a robotic vehicle system is described. The method can include delivering a force through a robotic vehicle system powertrain in the robotic vehicle system. The force delivery can include generating a force with a force generation component in the robotic vehicle system. The force delivery can also include delivering the force through a first shaft to a first receiver and delivering the force from the first receiver to a second receiver. The first shaft can interface with the first receiver.
A robotic vehicle system is disclosed. The system can have a body and a track drive system configured to move the body. The track drive system can have a pulley and a track. The pulley can have an outer pulley surface. The track can have an inner track surface. The pulley can be configured to form at least one pocket between the inner track surface and the outer pulley surface when a foreign object is introduced between the pulley and the track. The foreign object can have a long axis (e. g. maximum width) greater than about 0.2 cm.
A robotic system that can have a chassis and a track drive system is described. The track drive system can be configured to move the chassis. The track drive system can have a pulley, a pulley cap having a larger diameter than the pulley, and a track. The pulley cap can be rotationally fixed to the pulley. The track can be engagable and disengagable with the pulley cap. The methods of using and making the robotic system are also described.
A robotic system that can have a body and four flippers is described. Any or all of the flippers can be rotated. The flippers can have self-cleaning tracks. The tracks can be driven or passive. The robotic system can be controlled by, and send audio and/or video to and/or from, a remote operator control module. The methods of using and making the robotic system are also described.
A robotic system that can have a body and four flippers is described. Any or all of the flippers can be rotated. The flippers can have self-cleaning tracks. The tracks can be driven or passive. The robotic system can be controlled by, and send audio and/or video to and/or from, a remote operator control module. The methods of using and making the robotic system are also described.