A valve assembly includes a valve body defining a fluid inlet in fluid communication with a fluid outlet. The valve body has an inner body surface defining an interior chamber extending between the fluid inlet and the fluid outlet. A valve element is disposed within the interior chamber and rotatable through a range of positions relative to the outlet providing a high level of precision control of a fluid flow rate through the valve assembly. A valve seat with a seal is positioned around a valve element. The valve seat is configured to self-adjust its inner radial diameter to correspond to the outer radial diameter of the valve element to maintain a portion of an inner seat surface in contact with an outer valve surface of the valve element through the range of positions.
F16K 1/14 - Lift valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with ball-shaped valve members
09 - Scientific and electric apparatus and instruments
Goods & Services
Electronic valves for controlling gas; Control valves for regulating the flow of gases; Apparatus for controlling the temperature of a space heated by a gas furnace, such apparatus including a temperature sensing device, an electronic amplifier and a gas control valve; Downloadable software for connecting, operating, and managing networked electronic valves for controlling gas and control valves for regulating the flow of gases in the internet of things (IoT)
6.
Valve seat with seal for use with valve element in valve assembly
A valve assembly includes a valve body defining a fluid inlet in fluid communication with a fluid outlet. The valve body has an inner body surface defining an interior chamber extending between the fluid inlet and the fluid outlet. A valve element is disposed within the interior chamber and rotatable through a range of positions relative to the outlet providing a high level of precision control of a fluid flow rate through the valve assembly. A valve seat with a seal is positioned around a valve element. The valve seat is configured to self-adjust its inner radial diameter to correspond to the outer radial diameter of the valve element to maintain a portion of an inner seat surface in contact with an outer valve surface of the valve element through the range of positions.
F16K 27/02 - Construction of housingsUse of materials therefor of lift valves
F16K 1/14 - Lift valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with ball-shaped valve members
F16K 1/54 - Arrangements for modifying the way in which the rate of flow varies during the actuation of the valve
7.
VALVE SEAT WITH SEAL FOR USE WITH VALVE ELEMENT IN VALVE ASSEMBLY
A valve assembly includes a valve body defining a fluid inlet in fluid communication with a fluid outlet. The valve body has an inner body surface defining an interior chamber extending between the fluid inlet and the fluid outlet. A valve element is disposed within the interior chamber and rotatable through a range of positions relative to the outlet providing a high level of precision control of a fluid flow rate through the valve assembly. A valve seat with a seal is positioned around a valve element. The valve seat is configured to self-adjust its inner radial diameter to correspond to the outer radial diameter of the valve element to maintain a portion of an inner seat surface in contact with an outer valve surface of the valve element through the range of positions.
F16K 5/20 - Special arrangements for separating the sealing faces or for pressing them together for plugs with spherical surfaces
F16K 5/06 - Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having spherical surfacesPackings therefor
42 - Scientific, technological and industrial services, research and design
Goods & Services
Providing technology information in the field of smart technology; Computer services namely remote management of information technology (IT) systems of others comprised of smart technology; Computer services, namely, on-site management of information technology (IT) systems of others comprised of smart technology.
42 - Scientific, technological and industrial services, research and design
Goods & Services
(1) Providing technology information in the field of smart technology; Computer services, namely, remote management of information technology (IT) systems of others comprised of smart technology; Computer services, namely, on-site management of information technology (IT) systems of others comprised of smart technology.
A multifunction valve includes a valve body defining an inlet, and outlet and an interior chamber. A flow control gate may be disposed within the interior chamber and comprises one or more protrusions configured to provide a high level of precision control of a fluid flow rate through the multifunction valve as the flow control gate is rotated through an arcuate range of positions. The protrusions may comprise a cut-out portion, wherein the size and/or shape of the cut-out may be configured to modify the fluid flow rate through the multifunction valve. A method of modulating a fluid flow rate includes directing fluid flow through a multifunction valve from an inlet to an outlet, the multifunction valve including a flow control gate, adjusting the flow rate through the multifunction valve by rotating a control shaft to position the flow control gate to variably occlude the outlet of the multifunction valve.
F16K 1/22 - Lift valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
F16K 31/04 - Operating meansReleasing devices electricOperating meansReleasing devices magnetic using a motor
A system and controller where the pressure of the air is continuously monitored or read at a designated exhaust point and adjustments made to the flow of the air and gas to keep the efficiency of the appliance at a maximum to control the appliance (or the burner for an appliance) within specifications as dictated by the customer or consumer rather than training the user.
Techniques for controlling a solid fuel combustion appliance, e.g., a wood burning stove, are disclosed. A control system measures an exhaust gas temperature of airflow through an outlet of the solid fuel combustion appliance. The control system determines a derivative of the exhaust gas temperature with respect to time. The derivative of the exhaust gas temperature with respect to time is compared to a predetermined threshold. The control system modulates the inlet damper in response to determining that the derivative of the exhaust gas temperature with respect to time reaches the predetermined threshold.
Means for controlling gas flow, namely, valves, caps seals
(terms considered too vague by the International Bureau – Rule 13 (2) (b) of the Common Regulations).
A multifunction valve includes a valve body defining an inlet, and outlet and an interior chamber. A flow control gate is disposed within the interior chamber and is rotatable through an arcuate range of positions relative to the outlet providing a high level of precision control of a fluid flow rate through the multifunction valve. A method of modulating a fluid flow rate includes directing fluid flow through a multifunction valve from an inlet to an outlet, the multifunction valve including a flow control gate, adjusting the flow rate through the multifunction valve by rotating a control shaft to position the flow control gate to variably occlude the outlet of the fluid control valve.
F16K 5/04 - Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having cylindrical surfacesPackings therefor
F16K 5/10 - Means for additional adjustment of the rate of flow
15.
Control system and method for a solid fuel combustion appliance
Techniques for controlling a solid fuel combustion appliance, e.g., a wood burning stove, are disclosed. A control system measures an exhaust gas temperature of airflow through an outlet of the solid fuel combustion appliance. The control system determines a derivative of the exhaust gas temperature with respect to time. The derivative of the exhaust gas temperature with respect to time is compared to a predetermined threshold. The control system modulates the inlet damper in response to determining that the derivative of the exhaust gas temperature with respect to time reaches the predetermined threshold.
F23B 30/00 - Combustion apparatus with driven means for agitating the burning fuelCombustion apparatus with driven means for advancing the burning fuel through the combustion chamber
09 - Scientific and electric apparatus and instruments
20 - Furniture and decorative products
Goods & Services
Means for controlling gas flow, namely, valves for controlling the flow of gases; valves for regulating the flow of gases Non-metal sealing caps for use in controlling gas flow
A filter assembly includes a housing defining a cavity with an inlet and an outlet in communication with the cavity and establishing a flow path from the inlet to the outlet. A filter is disposed in the cavity between the inlet and the outlet. The filter includes a vertex extending transversely to the flow path for diffusing the flow of fluid and increasing the surface area of the filter. The filter includes a pair of legs spaced from each other and each extending across the flow path from the vertex to the housing. The legs extend transversely to each other at the vertex with one of the legs extending along a first arcuate path from the vertex to the housing and the other of the legs extending along a second arcuate path different than the first arcuate path from the vertex to the housing.
B01D 29/01 - Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups Filtering elements therefor with flat filtering elements
B01D 29/07 - Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups Filtering elements therefor with flat filtering elements supported with corrugated, folded or wound filtering sheets
A control system for a solid fuel combustion appliance, e.g., a wood burning stove, includes a temperature sensor for sensing an output temperature of the appliance. A controller receives the output temperature and controls a damper associated with air flow through the stove to maintain a predetermined temperature. The system also includes a detector that senses certain conditions of the solid fuel, e.g., wood, that is burned by the stove. When additional fuel is added to the appliance, the system temporarily encourages initial combustion of the new fuel, before returning to maintaining the predetermined temperature.
A modulator valve assembly including a housing defining fluid inlet and outlet passages, and a valve member which moves along an axis within the housing, the valve member having first and second positions separated along the axis, and operably disposed between the fluid inlet and outlet passages. The variable size of an opening through which the fluid inlet and outlet passages are in fluid communication within the housing is at least partially defined by the valve member, the opening respectively having first and second sizes when the valve member is in its first and second positions. The axis of rotation of the output of a reversible motor is substantially aligned with the axis along which the valve member moves. The motor output and valve member are operably engaged through relatively rotatable threaded male and female portions of a joint, the threads of the joint male and female portions interengaged.
A signal conditioner for use with a controller and a burner receives an input signal from the controller. A conversion circuit generates a primary output signal corresponding to the input signal to control the burner. The signal conditioner also includes a delay circuit. The delay circuit overrides the primary output signal generated by the conversion circuit and substitutes a delay signal to the burner at a predetermined level for a predetermined time. The signal conditioner may also include a temperature override circuit, which receives a temperature of air from the burner. If the temperature is above or below established limits, the temperature override circuit substitutes a temperature override signal to the burner.
09 - Scientific and electric apparatus and instruments
Goods & Services
Apparatus for Controlling the Temperature of a Space Heated by a Gas Furnace, Such Apparatus Including a Temperature Sensing Device, an Electronic Amplifier and a Gas Control Valve