A bipolar high voltage bipolar pulsing power supply is disclosed that can produce high voltage bipolar pulses with a positive high voltage pulse greater than about 2 kV followed by a negative high voltage pulse less than about −2 kV with a positive to negative dwell period between the positive high voltage pulse and the negative high voltage pulse. A high voltage bipolar pulsing power supply, for example, can reproduce high voltage pulses with a pulse repetition rate greater than about 10 kHz.
H02M 3/158 - Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
Embodiments of the invention provide IGBT circuit modules with increased efficiencies. These efficiencies can be realized in a number of ways. In some embodiments, the gate resistance and/or voltage can be minimized. In some embodiments, the IGBT circuit module can be switched using an isolated receiver such as a fiber optic receiver. In some embodiments, a single driver can drive a single IGBT. And in some embodiments, a current bypass circuit can be included. Various other embodiments of the invention are disclosed.
Bipolar high voltage bipolar pulsing treatment systems, devices, and methods are disclosed that include electrodes for ablation or electroporation and power supplies for supplying bipolar high voltage pulses to the electrode. The power supply includes a DC Source, an energy storage capacitor coupled with the DC source, a first high voltage switch electrically coupled with the DC source and the energy storage capacitor, and a first diode arranged across arranged across the first high voltage switch. In some cases, the power supply can produce high voltage bipolar pulses with a positive high voltage pulse greater than about 200 V followed by a negative high voltage pulse less than about −200 V with a positive to negative dwell period between the positive high voltage pulse and the negative high voltage pulse.
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
H02M 3/07 - Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode
A pulsing power supply is disclosed. The pulsing power supply includes a pulser having an output that outputs pulses greater than 5 kV with a pulse repetition frequency greater than 10 kHz; a powered crowbar circuit electrically coupled across the output, the powered crowbar circuit including a DC source, wherein a polarity of the DC power supply is arranged opposite a polarity of the pulser; a transformer having a primary side and a secondary side, the primary side of the transformer is electrically coupled across the output of the pulser and across the powered crowbar circuit; and a plurality of electrodes electrically coupled with the secondary-side of the transformer.
A pulsing power supply is disclosed. The pulsing power supply includes a pulser having an output that outputs pulses greater than 5 kV with a pulse repetition frequency greater than 10 kHz; a powered crowbar circuit electrically coupled across the output, the powered crowbar circuit including a DC source, wherein a polarity of the DC power supply is arranged opposite a polarity of the pulser; a transformer having a primary side and a secondary side, the primary side of the transformer is electrically coupled across the output of the pulser and across the powered crowbar circuit; and a plurality of electrodes electrically coupled with the secondary-side of the transformer
H03K 3/53 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
A bipolar high voltage bipolar pulsing power supply is disclosed that can produce high voltage bipolar pulses with a positive high voltage pulse greater than about 2 kV followed by a negative high voltage pulse less than about −2 kV with a positive to negative dwell period between the positive high voltage pulse and the negative high voltage pulse. A high voltage bipolar pulsing power supply, for example, can reproduce high voltage pulses with a pulse repetition rate greater than about 10 kHz.
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
H02M 3/07 - Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode
7.
EFFICIENT HIGH POWER MICROWAVE GENERATION USING RECIRCULATING PULSES
A high frequency electromagnetic radiation generation device is disclosed that includes a high voltage input, a nonlinear transmission line, an antenna, and a pulse recirculating circuit. In some embodiments, the high voltage input may be configured to receive electrical pulses having a first peak voltage that is greater than 5 kV, and/or may be electrically coupled with the nonlinear transmission line. The antenna may be electrically coupled with the nonlinear transmission line and/or may radiate electromagnetic radiation at a frequency greater than 100 MHz about a voltage greater than 5 kV. The pulse recirculating may be electrically coupled with the high voltage input and the antenna. The pulse recirculating circuit may include a diode; a low pass filter; and a delay line. In some embodiments, unradiated energy from the antenna is directed through the pulse recirculating circuit to the nonlinear transmission line with a delay of less than 100 ns.
H03B 9/14 - Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices and elements comprising distributed inductance and capacitance
A bipolar high voltage bipolar pulsing power supply is disclosed that can produce high voltage bipolar pulses with a positive high voltage pulse greater than about 2 kV followed by a negative high voltage pulse less than about -2 kV with a positive to negative dwell period between the positive high voltage pulse and the negative high voltage pulse. A high voltage bipolar pulsing power supply, for example, can reproduce high voltage pulses with a pulse repetition rate greater than about 10 kHz.
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
A high voltage power system is disclosed. In some embodiments, the high voltage power system includes a high voltage pulsing power supply; a transformer electrically coupled with the high voltage pulsing power supply; an output electrically coupled with the transformer and configured to output high voltage pulses with an amplitude greater than 1 kV and a frequency greater than 1 kHz; and a bias compensation circuit arranged in parallel with the output. In some embodiments, the bias compensation circuit can include a blocking diode; and a DC power supply arranged in series with the blocking diode.
H02M 3/335 - Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
H02M 1/08 - Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
H02M 7/5387 - Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
H05G 1/20 - Power supply arrangements for feeding the X-ray tube with high-frequency ACPower supply arrangements for feeding the X-ray tube with pulse trains
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
Some embodiments of the invention include a thruster system comprising a thruster and a pulsing power supply. The thruster may include a gas inlet port; a plasma jet outlet; and a first electrode. In some embodiments, the pulsing power supply may provide an electrical potential to the first electrode with a pulse repetition frequency greater than 10 kHz, a voltage greater than 5 kilovolts. In some embodiments, the pressure downstream from the thruster can be less than 10 Torr. In some embodiments, when a plasma is produced within the thruster by energizing a gas flowing into the thruster through the gas inlet port, the plasma is expelled from the thruster through the plasma jet outlet.
Some embodiments may include a nanosecond pulser comprising a plurality of solid state switches; a transformer having a stray inductance, Ls, a stray capacitance, Cs, and a turn ratio n; and a resistor with a resistance, R, in series between the transformer and the switches. In some embodiments, the resonant circuit produces a Q factor according to
Some embodiments may include a nanosecond pulser comprising a plurality of solid state switches; a transformer having a stray inductance, Ls, a stray capacitance, Cs, and a turn ratio n; and a resistor with a resistance, R, in series between the transformer and the switches. In some embodiments, the resonant circuit produces a Q factor according to
Q
=
1
R
L
s
C
s
,
Some embodiments may include a nanosecond pulser comprising a plurality of solid state switches; a transformer having a stray inductance, Ls, a stray capacitance, Cs, and a turn ratio n; and a resistor with a resistance, R, in series between the transformer and the switches. In some embodiments, the resonant circuit produces a Q factor according to
Q
=
1
R
L
s
C
s
,
and the nanosecond pulser produces an output voltage Vout from an input voltage Vin, according to Vout=QnVin.
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
H03K 17/56 - Electronic switching or gating, i.e. not by contact-making and -breaking characterised by the use of specified components by the use, as active elements, of semiconductor devices
H03K 17/00 - Electronic switching or gating, i.e. not by contact-making and -breaking
H02M 3/335 - Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
Embodiments of the invention provide IGBT circuit modules with increased efficiencies. These efficiencies can be realized in a number of ways. In some embodiments, the gate resistance and/or voltage can be minimized. In some embodiments, the IGBT circuit module can be switched using an isolated receiver such as a fiber optic receiver. In some embodiments, a single driver can drive a single IGBT. And in some embodiments, a current bypass circuit can be included. Various other embodiments of the invention are disclosed.
Some embodiments of the invention may include an eddy current nondestructive evaluation device. The eddy current nondestructive evaluation device may include a rotating body; a motor coupled with the rotating body such that the motor rotates the rotating body; a permanent magnet coupled with the rotating body; a pickup coil coupled with the rotating body; and an integrator circuit electrically coupled with the pickup coil that integrates a voltage from the pickup coil to produce integrated voltage data.
G01N 27/90 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
A nanosecond pulser is disclosed. In some embodiments, the nanosecond pulser may include one or more switch circuits including one or more solid state switches, a transformer, and an output. In some embodiments, the transformer may include a first transformer core, a first primary winding wound at least partially around a portion of the first transformer core, and a secondary winding wound at least partially around a portion of the first transformer core. In some embodiments, each of the one or more switch circuits are coupled with at least a portion of the first primary winding. In some embodiments, the output may be electrically coupled with the secondary winding and outputs electrical pulses having a peak voltage greater than about 1 kilovolt and a rise time of less than 150 nanoseconds or less than 50 nanoseconds.
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
H03K 17/00 - Electronic switching or gating, i.e. not by contact-making and -breaking
H03K 17/56 - Electronic switching or gating, i.e. not by contact-making and -breaking characterised by the use of specified components by the use, as active elements, of semiconductor devices
A high voltage power system is disclosed. In some embodiments, the high voltage power system includes a high voltage pulsing power supply; a transformer electrically coupled with the high voltage pulsing power supply; an output electrically coupled with the transformer and configured to output high voltage pulses with an amplitude greater than 1 kV and a frequency greater than 1 kHz; and a bias compensation circuit arranged in parallel with the output. In some embodiments, the bias compensation circuit can include a blocking diode; and a DC power supply arranged in series with the blocking diode.
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
H02M 3/335 - Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
H02M 7/5387 - Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
H02M 1/08 - Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
H05G 1/20 - Power supply arrangements for feeding the X-ray tube with high-frequency ACPower supply arrangements for feeding the X-ray tube with pulse trains
A high voltage switch comprising: a high voltage power supply providing power greater than about 5 kV; a control voltage power source; a plurality of switch modules arranged in series with respect to each other each of the plurality of switch modules configured to switch power from the high voltage power supply, and an output configured to output a pulsed output signal having a voltage greater than the rating of any switch of the plurality of switch modules, a pulse width less than 2 μs, and at a pulse frequency greater than 10 kHz.
H02M 7/06 - Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
s, and a turn ratio n; and a resistor with a resistance, R, in series between the transformer and the switches. In some embodiments, the resonant circuit produces a Q factor according to
in.
H02M 3/335 - Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
H03K 17/56 - Electronic switching or gating, i.e. not by contact-making and -breaking characterised by the use of specified components by the use, as active elements, of semiconductor devices
H03K 17/00 - Electronic switching or gating, i.e. not by contact-making and -breaking
18.
Nonlinear transmission line high voltage pulse sharpening with energy recovery
Some embodiments include a nonlinear transmission line system comprising: a power supply providing voltages greater than 100 V; a high frequency switch electrically coupled with the power supply; a nonlinear transmission line electrically coupled with the switch; an antenna electrically coupled with the nonlinear transmission line; and an energy recovery circuit comprising a diode and an inductor electrically coupled with the power supply and the antenna.
Some embodiments include a high voltage, high frequency switching circuit. The switching circuit may include a high voltage switching power supply that produces pulses having a voltage greater than 1 kV and with frequencies greater than 10 kHz and an output. The switching circuit may also include a resistive output stage electrically coupled in parallel with the output and between the output stage and the high voltage switching power supply, the resistive output stage comprising at least one resistor that discharges a load coupled with the output. In some embodiments, the resistive output stage may be configured to discharge over about 1 kilowatt of average power during each pulse cycle. In some embodiments, the output can produce a high voltage pulse having a voltage greater than 1 kV and with frequencies greater than 10 kHz with a pulse fall time less than about 400 ns.
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
H03K 3/021 - Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of more than one type of element or means, e.g. BIMOS, composite devices such as IGBT
H03K 3/53 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
H03K 17/16 - Modifications for eliminating interference voltages or currents
H02M 11/00 - Power conversion systems not covered by the other groups of this subclass
H03K 3/53 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
H02M 3/158 - Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
H03K 3/36 - Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of semiconductors, not otherwise provided for
H03K 17/56 - Electronic switching or gating, i.e. not by contact-making and -breaking characterised by the use of specified components by the use, as active elements, of semiconductor devices
H02M 3/337 - Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
H02M 3/155 - Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
H02M 1/15 - Arrangements for reducing ripples from DC input or output using active elements
H02M 1/088 - Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
21.
Efficient high power microwave generation using recirculating pulses
A high frequency electromagnetic radiation generation device is disclosed that includes a high voltage input, a nonlinear transmission line, an antenna, and a pulse recirculating circuit. In some embodiments, the high voltage input may be configured to receive electrical pulses having a first peak voltage that is greater than 5 kV, and/or may be electrically coupled with the nonlinear transmission line. The antenna may be electrically coupled with the nonlinear transmission line and/or may radiate electromagnetic radiation at a frequency greater than 100 MHz about a voltage greater than 5 kV. The pulse recirculating may be electrically coupled with the high voltage input and the antenna. The pulse recirculating circuit may include a diode; a low pass filter; and a delay line. In some embodiments, unradiated energy from the antenna is directed through the pulse recirculating circuit to the nonlinear transmission line with a delay of less than 100 ns.
H03B 9/14 - Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices and elements comprising distributed inductance and capacitance
H03K 27/00 - Pulse counters in which pulses are continuously circulated in a closed loopAnalogous frequency dividers
A nanosecond pulser may include a plurality of switch modules, a transformer, and an output. Each of the plurality of switch modules may include one or more solid state switches. The transformer may include a core, at least one primary winding wound around at least a portion of the core, each of the plurality of switch modules may be coupled with the primary windings, and a plurality of secondary windings wound at least partially around a portion of the core. The output may output electrical pulses having a peak voltage greater than about 1 kilovolt and having a pulse width of less than about 1000 nanoseconds. The output may output electrical pulses having a peak voltage greater than about 5 kilovolts, a peak power greater than about 100 kilowatts, a pulse width between 10 nanoseconds and 1000 nanoseconds, a rise time less than about 50 nanoseconds, or some combination thereof.
H03K 3/00 - Circuits for generating electric pulsesMonostable, bistable or multistable circuits
H03K 17/56 - Electronic switching or gating, i.e. not by contact-making and -breaking characterised by the use of specified components by the use, as active elements, of semiconductor devices
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
A high voltage switch comprising: a high voltage power supply providing power greater than about 5 kV; a control voltage power source; a plurality of switch modules arranged in series with respect to each other each of the plurality of switch modules configured to switch power from the high voltage power supply, and an output configured to output a pulsed output signal having a voltage greater than the rating of any switch of the plurality of switch modules, a pulse width less than 2 μs, and at a pulse frequency greater than 10 kHz.
H02M 7/06 - Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
24.
High voltage nanosecond pulser with variable pulse width and pulse repetition frequency
A nanosecond pulser is disclosed. In some embodiments, the nanosecond pulser may include one or more switch circuits including one or more solid state switches, a transformer, and an output. In some embodiments, the transformer may include a first transformer core, a first primary winding wound at least partially around a portion of the first transformer core, and a secondary winding wound at least partially around a portion of the first transformer core. In some embodiments, each of the one or more switch circuits are coupled with at least a portion of the first primary winding. In some embodiments, the output may be electrically coupled with the secondary winding and outputs electrical pulses having a peak voltage greater than about 1 kilovolt and a rise time of less than 150 nanoseconds or less than 50 nanoseconds.
H03K 3/00 - Circuits for generating electric pulsesMonostable, bistable or multistable circuits
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
H03K 17/00 - Electronic switching or gating, i.e. not by contact-making and -breaking
H03K 17/56 - Electronic switching or gating, i.e. not by contact-making and -breaking characterised by the use of specified components by the use, as active elements, of semiconductor devices
A pulse generator is disclosed that includes at least the following stages a driver stage, a transformer stage, a rectifier stage, and an output stage. The driver stage may include at least one solid state switch such as, for example, of one or more IGBTs and/or one or more MOSFETs. The driver stage may also have a stray inductance less than 1,000 nH. The transformer stage may be coupled with the driver stage and/or with a balance stage and may include one or more transformers. The rectifier stage may be coupled with the transformer stage and may have a stray inductance less than 1,000 nH. The output stage may be coupled with the rectifier stage. The output stage may output a signal pulse with a voltage greater than 2 kilovolts and a frequency greater than 5 kHz. In some embodiments, the output stage may be galvanically isolated from a reference potential.
H02M 3/335 - Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
H02M 7/5387 - Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
H05G 1/20 - Power supply arrangements for feeding the X-ray tube with high-frequency ACPower supply arrangements for feeding the X-ray tube with pulse trains
H02M 1/08 - Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
A high voltage switch comprising: a high voltage power supply providing power greater than about 5 kV; a control voltage power source; a plurality of switch modules arranged in series with respect to each other each of the plurality of switch modules configured to switch power from the high voltage power supply, and an output configured to output a pulsed output signal having a voltage greater than the rating of any switch of the plurality of switch modules, a pulse width less than 2 μs, and at a pulse frequency greater than 10 kHz.
H02M 7/06 - Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
Some embodiments include a high voltage, high frequency switching circuit. The switching circuit may include a high voltage switching power supply that produces pulses having a voltage greater than 1 kV and with frequencies greater than 10 kHz and an output. The switching circuit may also include a resistive output stage electrically coupled in parallel with the output and between the output stage and the high voltage switching power supply, the resistive output stage comprising at least one resistor that discharges a load coupled with the output. In some embodiments, the resistive output stage may be configured to discharge over about 1 kilowatt of average power during each pulse cycle. In some embodiments, the output can produce a high voltage pulse having a voltage greater than 1 kV and with frequencies greater than 10 kHz with a pulse fall time less than about 400 ns.
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
H03K 3/021 - Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of more than one type of element or means, e.g. BIMOS, composite devices such as IGBT
H03K 3/53 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
Embodiments of the invention provide IGBT circuit modules with increased efficiencies. These efficiencies can be realized in a number of ways. In some embodiments, the gate resistance and/or voltage can be minimized. In some embodiments, the IGBT circuit module can be switched using an isolated receiver such as a fiber optic receiver. In some embodiments, a single driver can drive a single IGBT. And in some embodiments, a current bypass circuit can be included. Various other embodiments of the invention are disclosed.
A high voltage power system is disclosed. In some embodiments, the high voltage power system includes a high voltage pulsing power supply; a transformer electrically coupled with the high voltage pulsing power supply; an output electrically coupled with the transformer and configured to output high voltage pulses with an amplitude greater than 1 kV and a frequency greater than 1 kHz; and a bias compensation circuit arranged in parallel with the output. In some embodiments, the bias compensation circuit can include a blocking diode; and a DC power supply arranged in series with the blocking diode.
H02M 3/335 - Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
H02M 7/5387 - Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
H02M 1/08 - Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
H05G 1/20 - Power supply arrangements for feeding the X-ray tube with high-frequency ACPower supply arrangements for feeding the X-ray tube with pulse trains
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
A high-voltage transformer is disclosed. The high-voltage transformer includes a transformer core; at least one primary winding wound once or less than once around the transformer core; a secondary winding wound around the transformer core a plurality of times; an input electrically coupled with the primary windings; and an output electrically coupled with the secondary windings that provides a voltage greater than 1,1200 volts. In some embodiments, the high-voltage transformer has a stray inductance of less than 30 nH as measured on the primary side and the transformer has a stray capacitance of less than 100 pF as measured on the secondary side.
Some embodiments of the invention may include an eddy current nondestructive evaluation device. The eddy current nondestructive evaluation device may include a rotating body; a motor coupled with the rotating body such that the motor rotates the rotating body; a permanent magnet coupled with the rotating body; a pickup coil coupled with the rotating body; and an integrator circuit electrically coupled with the pickup coil that integrates a voltage from the pickup coil to produce integrated voltage data.
G01N 27/90 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
Some embodiments include a high voltage, high frequency switching circuit. The switching circuit may include a high voltage switching power supply that produces pulses having a voltage greater than 1 kV and with frequencies greater than 10 kHz and an output. The switching circuit may also include a resistive output stage electrically coupled in parallel with the output and between the output stage and the high voltage switching power supply, the resistive output stage comprising at least one resistor that discharges a load coupled with the output. In some embodiments, the resistive output stage may be configured to discharge over about 1 kilowatt of average power during each pulse cycle. In some embodiments, the output can produce a high voltage pulse having a voltage greater than 1 kV and with frequencies greater than 10 kHz with a pulse fall time less than about 400 ns.
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
H03K 3/021 - Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of more than one type of element or means, e.g. BIMOS, composite devices such as IGBT
H03K 3/53 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
A nanosecond pulser may include a plurality of switch modules, a transformer, and an output. Each of the plurality of switch modules may include one or more solid state switches. The transformer may include a core, at least one primary winding wound around at least a portion of the core, each of the plurality of switch modules may be coupled with the primary windings, and a plurality of secondary windings wound at least partially around a portion of the core. The output may output electrical pulses having a peak voltage greater than about 1 kilovolt and having a pulse width of less than about 1000 nanoseconds. The output may output electrical pulses having a peak voltage greater than about 5 kilovolts, a peak power greater than about 100 kilowatts, a pulse width between 10 nanoseconds and 1000 nanoseconds, a rise time less than about 50 nanoseconds, or some combination thereof.
H03K 3/00 - Circuits for generating electric pulsesMonostable, bistable or multistable circuits
H03K 17/56 - Electronic switching or gating, i.e. not by contact-making and -breaking characterised by the use of specified components by the use, as active elements, of semiconductor devices
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
Some embodiments include a high voltage, high frequency switching circuit. The switching circuit may include a high voltage switching power supply that produces pulses having a voltage greater than 1 kV and with frequencies greater than 10 kHz and an output. The switching circuit may also include a resistive output stage electrically coupled in parallel with the output and between the output stage and the high voltage switching power supply, the resistive output stage comprising at least one resistor that discharges a load coupled with the output. In some embodiments, the resistive output stage may be configured to discharge over about 1 kilowatt of average power during each pulse cycle. In some embodiments, the output can produce a high voltage pulse having a voltage greater than 1 kV and with frequencies greater than 10 kHz with a pulse fall time less than about 400 ns.
H03K 3/021 - Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of more than one type of element or means, e.g. BIMOS, composite devices such as IGBT
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
35.
Efficient high power microwave generation using recirculating pulses
A high frequency electromagnetic radiation generation device is disclosed that includes a high voltage input, a nonlinear transmission line, an antenna, and a pulse recirculating circuit. In some embodiments, the high voltage input may be configured to receive electrical pulses having a first peak voltage that is greater than 5 kV, and/or may be electrically coupled with the nonlinear transmission line. The antenna may be electrically coupled with the nonlinear transmission line and/or may radiate electromagnetic radiation at a frequency greater than 100 MHz about a voltage greater than 5 kV. The pulse recirculating may be electrically coupled with the high voltage input and the antenna. The pulse recirculating circuit may include a diode; a low pass filter; and a delay line. In some embodiments, unradiated energy from the antenna is directed through the pulse recirculating circuit to the nonlinear transmission line with a delay of less than 100 ns.
H03B 9/14 - Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices and elements comprising distributed inductance and capacitance
H03K 27/00 - Pulse counters in which pulses are continuously circulated in a closed loopAnalogous frequency dividers
Some embodiments include a high voltage, high frequency switching circuit. The switching circuit may include a high voltage switching power supply that produces pulses having a voltage greater than 1 kV and with frequencies greater than 10 kHz and an output. The switching circuit may also include a resistive output stage electrically coupled in parallel with the output and between the output stage and the high voltage switching power supply, the resistive output stage comprising at least one resistor that discharges a load coupled with the output. In some embodiments, the resistive output stage may be configured to discharge over about 1 kilowatt of average power during each pulse cycle. In some embodiments, the output can produce a high voltage pulse having a voltage greater than 1 kV and with frequencies greater than 10 kHz with a pulse fall time less than about 400 ns.
H03K 3/021 - Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of more than one type of element or means, e.g. BIMOS, composite devices such as IGBT
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
A high voltage inductive adder is disclosed. In some embodiments, the high voltage inductive adder comprising a first adder circuit and a second adder circuit. The first adder circuit including a first source; a first switch electrically coupled with the first source; a first transformer core; and a first plurality of primary windings wound about the first transformer core and electrically coupled with the first switch. The second adder circuit including a second source; a second switch electrically coupled with the second source; a second transformer core; and a second plurality of primary windings wound about the second transformer core and electrically coupled with the second switch. The high voltage inductive adder comprising one or more secondary windings wound around both the first transformer core and the second transformer core and an output coupled with the plurality of secondary windings.
H01F 30/06 - Fixed transformers not covered by group characterised by the structure
H03K 3/53 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
s, and a turn ratio n; and a resistor with a resistance, R, in series between the transformer and the switches. In some embodiments, the resonant circuit produces a Q factor according to
in.
H02M 3/335 - Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
H02M 3/337 - Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
H02M 7/48 - Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
39.
High voltage nanosecond pulser with variable pulse width and pulse repetition frequency
A nanosecond pulser is disclosed. In some embodiments, the nanosecond pulser may include one or more switch circuits including one or more solid state switches, a transformer, and an output. In some embodiments, the transformer may include a first transformer core, a first primary winding wound at least partially around a portion of the first transformer core, and a secondary winding wound at least partially around a portion of the first transformer core. In some embodiments, each of the one or more switch circuits are coupled with at least a portion of the first primary winding. In some embodiments, the output may be electrically coupled with the secondary winding and outputs electrical pulses having a peak voltage greater than about 1 kilovolt and a rise time of less than 150 nanoseconds or less than 50 nanoseconds.
H03K 3/00 - Circuits for generating electric pulsesMonostable, bistable or multistable circuits
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
H03K 17/00 - Electronic switching or gating, i.e. not by contact-making and -breaking
H03K 17/56 - Electronic switching or gating, i.e. not by contact-making and -breaking characterised by the use of specified components by the use, as active elements, of semiconductor devices
A high voltage inductive adder is disclosed. In some embodiments, the high voltage inductive adder comprising a first adder circuit and a second adder circuit. The first adder circuit including a first source; a first switch electrically coupled with the first source; a first transformer core; and a first plurality of primary windings wound about the first transformer core and electrically coupled with the first switch. The second adder circuit including a second source; a second switch electrically coupled with the second source; a second transformer core; and a second plurality of primary windings wound about the second transformer core and electrically coupled with the second switch. The high voltage inductive adder comprising one or more secondary windings wound around both the first transformer core and the second transformer core and an output coupled with the plurality of secondary windings.
Some embodiments include a high voltage nonlinear transmission line that includes a high voltage input configured to receive electrical pulses having a first peak voltage that is greater than 5 kV having a first rise time; a plurality of circuit elements electrically coupled with ground, each of the plurality of circuit elements includes a resistor and a nonlinear semiconductor junction capacitance device; a plurality of inductors, at least one of the plurality of inductors is electrically coupled between two circuit elements of the plurality of circuit elements; and a high voltage output providing a second peak voltage with a second rise time that is faster than the first rise time.
A pulse generator is disclosed that includes at least the following stages a driver stage, a transformer stage, a rectifier stage, and an output stage. The driver stage may include at least one solid state switch such as, for example, of one or more IGBTs and/or one or more MOSFETs. The driver stage may also have a stray inductance less than 1,000 nH. The transformer stage may be coupled with the driver stage and/or with a balance stage and may include one or more transformers. The rectifier stage may be coupled with the transformer stage and may have a stray inductance less than 1,000 nH. The output stage may be coupled with the rectifier stage. The output stage may output a signal pulse with a voltage greater than 2 kilovolts and a frequency greater than 5 kHz. In some embodiments, the output stage may be galvanically isolated from a reference potential.
H05G 1/22 - Power supply arrangements for feeding the X-ray tube with single pulses
H02M 3/335 - Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
H02M 7/5387 - Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
H05G 1/20 - Power supply arrangements for feeding the X-ray tube with high-frequency ACPower supply arrangements for feeding the X-ray tube with pulse trains
H02M 1/08 - Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
43.
High frequency, repetitive, compact toroid-generation for radiation production
Systems and methods are discussed to create radiation from one or more compact toroids. Compact toroids can be created from plasma of gases within a confinement chamber using a plurality of coils of various densities of windings. High current pulses can be generated within the coil and switched at high frequencies to repeatedly generate compact toroids within the plasma. The plasma can produce radiation at various wavelengths that is focused toward a target or an intermediate focus.
H01J 65/04 - Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating
H05G 2/00 - Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
Embodiments of the invention provide IGBT circuit modules with increased efficiencies. These efficiencies can be realized in a number of ways. In some embodiments, the gate resistance and/or voltage can be minimized. In some embodiments, the IGBT circuit module can be switched using an isolated receiver such as a fiber optic receiver. In some embodiments, a single driver can drive a single IGBT. And in some embodiments, a current bypass circuit can be included. Various other embodiments of the invention are disclosed.
A high-voltage transformer is disclosed. The high-voltage transformer includes a transformer core; at least one primary winding wound once or less than once around the transformer core; a secondary winding wound around the transformer core a plurality of times; an input electrically coupled with the primary windings; and an output electrically coupled with the secondary windings that provides a voltage greater than 1,1200 volts. In some embodiments, the high-voltage transformer has a stray inductance of less than 30 nH as measured on the primary side and the transformer has a stray capacitance of less than 100 pF as measured on the secondary side.
Some embodiments of the invention include a thruster system comprising a thruster and a pulsing power supply. The thruster may include a gas inlet port; a plasma jet outlet; and a first electrode. In some embodiments, the pulsing power supply may provide an electrical potential to the first electrode with a pulse repetition frequency greater than 10 kHz, a voltage greater than 5 kilovolts. In some embodiments, the pressure downstream from the thruster can be less than 10 Torr. In some embodiments, when a plasma is produced within the thruster by energizing a gas flowing into the thruster through the gas inlet port, the plasma is expelled from the thruster through the plasma jet outlet.
A nanosecond pulser is disclosed. In some embodiments, the nanosecond pulser may include one or more switch circuits including one or more solid state switches, a transformer, and an output. In some embodiments, the transformer may include a first transformer core, a first primary winding wound at least partially around a portion of the first transformer core, and a secondary winding wound at least partially around a portion of the first transformer core. In some embodiments, each of the one or more switch circuits are coupled with at least a portion of the first primary winding. In some embodiments, the output may be electrically coupled with the secondary winding and outputs electrical pulses having a peak voltage greater than about 1 kilovolt and a rise time of less than 150 nanoseconds or less than 50 nanoseconds.
H03K 3/00 - Circuits for generating electric pulsesMonostable, bistable or multistable circuits
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
H03K 17/00 - Electronic switching or gating, i.e. not by contact-making and -breaking
H03K 17/56 - Electronic switching or gating, i.e. not by contact-making and -breaking characterised by the use of specified components by the use, as active elements, of semiconductor devices
Embodiments described herein include a solid-state switch tube replacement for the radar system such as, for example, the SPY-1 radar system. Some embodiments provide for a technology for the precision switching that enables IGBT power modules to operate robustly in a series configuration and/or a parallel configuration to produce precision switching at high voltage (e.g., 20 kV and above) and high frequencies (e.g., 1 MHz and above).
H03K 17/60 - Electronic switching or gating, i.e. not by contact-making and -breaking characterised by the use of specified components by the use, as active elements, of semiconductor devices the devices being bipolar transistors
H03K 17/567 - Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
H03K 17/04 - Modifications for accelerating switching
A pulse generator is disclosed that includes at least the following stages a driver stage, a transformer stage, a rectifier stage, and an output stage. The driver stage may include at least one solid state switch such as, for example, of one or more IGBTs and/or one or more MOSFETs. The driver stage may also have a stray inductance less than 1,000 nH. The transformer stage may be coupled with the driver stage and/or with a balance stage and may include one or more transformers. The rectifier stage may be coupled with the transformer stage and may have a stray inductance less than 1,000 nH. The output stage may be coupled with the rectifier stage. The output stage may output a signal pulse with a voltage greater than 2 kilovolts and a frequency greater than 5 kHz. In some embodiments, the output stage may be galvanically isolated from a reference potential.
H05G 1/22 - Power supply arrangements for feeding the X-ray tube with single pulses
H05G 1/20 - Power supply arrangements for feeding the X-ray tube with high-frequency ACPower supply arrangements for feeding the X-ray tube with pulse trains
H02M 7/5387 - Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
A nanosecond pulser may include a plurality of switch modules, a transformer, and an output. Each of the plurality of switch modules may include one or more solid state switches. The transformer may include a core, at least one primary winding wound around at least a portion of the core, each of the plurality of switch modules may be coupled with the primary windings, and a plurality of secondary windings wound at least partially around a portion of the core. The output may output electrical pulses having a peak voltage greater than about 1 kilovolt and having a pulse width of less than about 1000 nanoseconds. The output may output electrical pulses having a peak voltage greater than about 5 kilovolts, a peak power greater than about 100 kilowatts, a pulse width between 10 nanoseconds and 1000 nanoseconds, a rise time less than about 50 nanoseconds, or some combination thereof.
H03K 3/00 - Circuits for generating electric pulsesMonostable, bistable or multistable circuits
H03K 17/56 - Electronic switching or gating, i.e. not by contact-making and -breaking characterised by the use of specified components by the use, as active elements, of semiconductor devices
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
51.
High frequency, repetitive, compact toroid-generation for radiation production
Systems and methods are discussed to create radiation from one or more compact toroids. Compact toroids can be created from plasma of gases within a confinement chamber using a plurality of coils of various densities of windings. High current pulses can be generated within the coil and switched at high frequencies to repeatedly generate compact toroids within the plasma. The plasma can produce radiation at various wavelengths that is focused toward a target or an intermediate focus.
H05G 2/00 - Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
H01J 65/04 - Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating
Embodiments of the invention provide IGBT circuit modules with increased efficiencies. These efficiencies can be realized in a number of ways. In some embodiments, the gate resistance and/or voltage can be minimized. In some embodiments, the IGBT circuit module can be switched using an isolated receiver such as a fiber optic receiver. In some embodiments, a single driver can drive a single IGBT. And in some embodiments, a current bypass circuit can be included. Various other embodiments of the invention are disclosed.
Systems and methods are disclosed to integrate signals. Some embodiments include an integrator comprising an active input; a passive input; a first integrator having a first integrator input and a first integrator output; a second integrator having a second integrator input and a second integrator output; a first plurality of switches coupled with the first integrator input, the second integrator input, the active input, and the passive input; a second plurality of switches coupled with the first integrator output and the second integrator output; and a controller. The controller may be configured to control the operation of the first plurality of switches to switch the active input between the first integrator input and the second integrator input, and control the operation of the first plurality of switches to switch the passive input between the first integrator input and the second integrator input.
Embodiments of the invention provide IGBT circuit modules with increased efficiencies. These efficiencies can be realized in a number of ways. In some embodiments, the gate resistance and/or voltage can be minimized. In some embodiments, the IGBT circuit module can be switched using an isolated receiver such as a fiber optic receiver. In some embodiments, a single driver can drive a single IGBT. And in some embodiments, a current bypass circuit can be included. Various other embodiments of the invention are disclosed.