A friction stir welding (FSW) tool includes a head, a tool holder and a body between the head and the tool holder and attached to the head and the tool holder. The body may include a plurality of cooling fins. An interior of the body may include a pressure sensor, a temperature sensor, a torque sensor, and a communication node in electronic communication with the pressure sensor, the temperature sensor, and the torque sensor. The communication node may be in Bluetooth communication with a computing device.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
B23K 9/095 - Monitoring or automatic control of welding parameters
A friction-stir processing tool includes a pin, a shoulder, and a bearing surface. The pin and shoulder are rotatable around a rotational axis. The bearing surface is between the shoulder and pin, and the bearing surface allows the shoulder and pin to rotate independently relative to one another around the rotational axis on the bearing surface.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
A friction-stir processing tool includes a pin, a shoulder, and a bearing surface. The pin and shoulder are rotatable around a rotational axis. The bearing surface is between the shoulder and pin, and the bearing surface allows the shoulder and pin to rotate independently relative to one another around the rotational axis on the bearing surface.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
4.
Systems and methods for load control in friction stir processing
A device for friction stirring a workpiece material includes a body, a spindle, a driver, and a biasing element. The spindle is configured to rotate around a rotational axis. The driver is rotationally coupled to the spindle. The biasing element supports the driver and is configured to apply a biasing force in an axial direction, wherein the biasing element axially overlaps the spindle.
B23K 20/00 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
Industrial robots; Industrial robots for use with machine tools; Industrial robots used to transfer and position materials for cutting and forming by machine tools
In one aspect, a swiss-type machine tool is provided that includes a workpiece holding shaft, a workpiece supporting shaft, and a tool holder associated with the workpiece supporting shaft for holding at least one tool. The machine tool includes a drive operable to rotate the workpiece holding shaft and the workpiece supporting shaft around an axis. The workpiece holding shaft has a work holder configured to secure a workpiece to the workpiece holding shaft. The workpiece holding shaft is axially shiftable relative to the workpiece supporting shaft to adjust a position of the workpiece relative to the workpiece supporting shaft. The machine tool further includes a removable workpiece support, such as a guide bushing, configured to be releasably connected to the workpiece supporting shaft and rotate therewith. The workpiece support slidably contacts the workpiece and permits axial movement of the workpiece relative to the workpiece support.
B23Q 1/26 - Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable membersMeans for preventing relative movement of such members
B23B 3/06 - Turning-machines or devices characterised only by the special arrangement of constructional units
B23B 39/10 - General-purpose boring or drilling machines or devicesSets of boring or drilling machines characterised by the drive, e.g. by fluid-pressure drive, pneumatic power drive
B23Q 15/12 - Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
7.
SYSTEMS AND METHODS FOR LOAD CONTROL IN FRICTION STIR PROCESSING
A device for friction stirring a workpiece material includes a body, a spindle, a driver, and a biasing element. The spindle is configured to rotate around a rotational axis. The driver is rotationally coupled to the spindle. The biasing element supports the driver and is configured to apply a biasing force in an axial direction, wherein the biasing element axially overlaps the spindle.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
B23K 37/047 - Auxiliary devices or processes, not specially adapted for a procedure covered by only one of the other main groups of this subclass for holding or positioning work moving work to adjust its position between soldering, welding or cutting steps
F16F 15/32 - Correcting- or balancing-weights or equivalent means for balancing rotating bodies, e.g. vehicle wheels
G05B 19/18 - Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
F16F 15/36 - Correcting- or balancing-weights or equivalent means for balancing rotating bodies, e.g. vehicle wheels operating automatically
8.
DEVICES, SYSTEMS, AND METHODS FOR INCREASED WEAR RESISTANCE DURING LOW TEMPERATURE FRICTION STIR PROCESSING
A method of friction stir processing (FSP) includes contacting a first workpiece with a FSP tool, where the first workpiece is a low-melting temperature metal or alloy and the FSP tool is a single-body FSP tool having a diamond working surface. The method also includes rotating the FSP tool in contact with the first workpiece at an interface and generating thermal energy at the interface to heat the first workpiece. The method further includes conducting thermal energy away from the interface with the FSP tool, and friction stirring the first workpiece at a temperature of the FSP tool below 800° C.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
B23K 20/233 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
An additive manufacturing machine that includes a wire supply including a wire drive configured to advance a wire at a wire feed rate and a wire heater configured to apply resistive heating to heat the wire. The additive manufacturing machine includes an additive head for emitting a laser beam to weld the wire to a substrate, a sensor configured to detect a weld parameter, and a controller operatively connected to the wire supply, additive head, and sensor. The controller is configured to determine a failure mode of the weld as the laser beam welds the wire to the substrate based at least in part upon the weld parameter. In response to determining the failure mode, the controller is configured to adjust at least one of the wire feed rate, the resistive heating, and a power of the laser beam as the laser beam welds the wire to stabilize the weld.
Systems, methods, and computer program products for remaining useful life prediction. Operational data is collected from a test machine (14) until a component fails, and a training dataset generated from the operational data. The training dataset is used to define and validate a prediction model (54). Operational data received from one or more field machines (14) is provided to the prediction model (54). The prediction model (54) then predicts the remaining useful life of the component of the field machine (14). To reduce the time-to-failure of the component in the test machine (14), the component may be repeatedly subjected to an accelerated wear cycle (88). The prediction model (54) may be defined by extracting features from the training dataset. Like features may be extracted from the field dataset and provided to the prediction model (54) as part of the prediction process (100). The operational data received from the field machines (14) may be used to generate an updated prediction model (54).
Systems, methods, and computer program products for monitoring a health condition of a tool (34). Operational data is collected from a machine (14) while the machine (14) is operating in a predetermined manner with the tool (34) in each of at least two known health conditions. A plurality of features (138, 140, 142) is extracted from the operational data, a training dataset is generated from the extracted features (138, 140, 142), and an analytic model (54) is trained using the training dataset. The analytic model (54) can then be used to determine the health condition of the tool (34) by providing features (138, 140, 142) extracted from operational data received from one or more field machines (14) to the analytic model (54). The analytic model (54) may then determine a health condition of the tool (34) in the field machine (14) based on like features (138, 140, 142) extracted from the operational data from the one or more field machines (14).
Systems, methods, and computer program products for remaining useful life prediction. Operational data is collected from a test machine until a component fails, and a training dataset generated from the operational data. The training dataset is used to define and validate a prediction model. Operational data received from one or more field machines is provided to the prediction model. The prediction model then predicts the remaining useful life of the component of the field machine. To reduce the time-to-failure of the component in the test machine, the component may be repeatedly subjected to an accelerated wear cycle. The prediction model may be defined by extracting features from the training dataset. Like features may be extracted from the field dataset and provided to the prediction model as part of the prediction process. The operational data received from the field machines may be used to generate an updated prediction model.
G05B 19/418 - Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
Systems, methods, and computer program products for monitoring a health condition of a tool. Operational data is collected from a machine while the machine is operating in a predetermined manner with the tool in each of at least two known health conditions. A plurality of features is extracted from the operational data, a training dataset is generated from the extracted features, and an analytic model is trained using the training dataset. The analytic model can then be used to determine the health condition of the tool by providing features extracted from operational data received from one or more field machines to the analytic model. The analytic model may then determine a health condition of the tool in the field machine based on like features extracted from the operational data from the one or more field machines.
B23Q 17/24 - Arrangements for indicating or measuring on machine tools using optics
G06F 30/27 - Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
14.
Instrumented tool handler for friction stir welding
A friction stir welding (FSW) tool includes a head, a tool holder and a body between the head and the tool holder and attached to the head and the tool holder. The body may include a plurality of cooling fins. An interior of the body may include a pressure sensor, a temperature sensor, a torque sensor, and a communication node in electronic communication with the pressure sensor, the temperature sensor, and the torque sensor. The communication node may be in Bluetooth communication with a computing device.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
B23K 9/095 - Monitoring or automatic control of welding parameters
15.
Friction stir processing tip, apparatus, and method
In one aspect of the present disclosure, a friction stir processing tip is provided for a friction stir processing device. The friction stir processing tip includes a body having a central longitudinal axis, a friction stir processing portion of the body, and a connecting portion of the body configured to connect to a tip holder of the friction stir processing device. The connecting portion includes splines configured to receive a torque from the tip holder for rotating the body about the central longitudinal axis.
B23K 20/00 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
16.
FRICTION STIR PROCESSING TIP, APPARATUS, AND METHOD
In one aspect of the present disclosure, a friction stir processing tip is provided for a friction stir processing device. The friction stir processing tip includes a body having a central longitudinal axis, a friction stir processing portion of the body, and a connecting portion of the body configured to connect to a tip holder of the friction stir processing device. The connecting portion includes splines configured to receive a torque from the tip holder for rotating the body about the central longitudinal axis.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
B61D 17/00 - Construction details of vehicle bodies
B61D 17/04 - Construction details of vehicle bodies with bodies of metalConstruction details of vehicle bodies with composite, e.g. metal and wood, body structures
37 - Construction and mining; installation and repair services
41 - Education, entertainment, sporting and cultural services
42 - Scientific, technological and industrial services, research and design
43 - Food and drink services, temporary accommodation
Goods & Services
Planning and laying out of factory machine tool installations; Installation, maintenance and repair of machine tools and computer hardware; Providing machine tool maintenance and repair information via telephone, e-mail, website and in person; Computer consultation about the repair of computer hardware Educational services, namely, one-on-one training, instruction, classes, seminars, conferences, workshops in the field of operating machine tools; Arranging and conducting educational conferences in the field of operating machine tools; Educational services, namely, conducting seminars and symposiums concerning the operation of machine tools Technology consultation in the field of factory automation; Technology consultation in the field of machine tool installation and use; Technical consultation in the field of CNC (Computer Numerical Control) machine tool installation and use; Mechanical research; Mechanical engineering; Computer technology consultation in the field of computer hardware Arranging and providing hotel reservation services; providing hotel information
A tool for friction bit joining a workpiece material includes a bit with a tapered pin and a non-cutting tip. The bit has a top surface opposite the pin with at least one feature recessed in, or extending from, the top surface and configured to transmit torque to the bit to rotate the bit around a rotational axis.
B23K 20/00 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
A friction stir processing (FSP) tool includes a working material. The working material has a matrix phase and a particulate phase. The matrix phase includes tungsten and an alloy material. The particulate phase is located within the matrix phase, and the particulate phase has an indentation hardness less than 45 GPa.
B22F 7/02 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite layers
B32B 5/16 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by features of a layer formed of particles, e.g. chips, chopped fibres, powder
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
C22C 27/04 - Alloys based on tungsten or molybdenum
C22C 29/00 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides
C23C 28/04 - Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of main groups , or by combinations of methods provided for in subclasses and only coatings of inorganic non-metallic material
A friction stir processing (FSP) tool includes a working material. The working material has a matrix phase and a particulate phase. The matrix phase includes tungsten and an alloy material. The particulate phase is located within the matrix phase, and the particulate phase has an indentation hardness less than 45 GPa.
B23K 20/00 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
B22F 7/00 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting
A friction stir processing (FSP) tool includes a pin having a pin body and a rotational axis. The pin is configured to rotate about the rotational axis in a rotational direction. The pin has a radial protrusion protruding radially from the pin body, and the radial protrusion has a working surface oriented in the rotational direction with a depth in a radial direction relative to the rotational axis.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
23.
Instrumented tool handler for friction stir welding
A friction stir welding (FSW) tool includes a head, a tool holder and a body between the head and the tool holder and attached to the head and the tool holder. The body may include a plurality of cooling fins. An interior of the body may include a pressure sensor, a temperature sensor, a torque sensor, and a communication node in electronic communication with the pressure sensor, the temperature sensor, and the torque sensor. The communication node may be in Bluetooth communication with a computing device.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
B23K 9/095 - Monitoring or automatic control of welding parameters
24.
Devices, systems, and methods for increased wear resistance during low temperature friction stir processing
A method of friction stir processing (FSP) includes contacting a first workpiece with a FSP tool, where the first workpiece is a low-melting temperature metal or alloy and the FSP tool is a single-body FSP tool having a diamond working surface. The method also includes rotating the FSP tool in contact with the first workpiece at an interface and generating thermal energy at the interface to heat the first workpiece. The method further includes conducting thermal energy away from the interface with the FSP tool, and friction stirring the first workpiece at a temperature of the FSP tool below 800° C.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
B23K 20/233 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
A tool includes a friction stir welding (FSW) tool, a first body, a second body, and a plurality of biasing elements. The FSW tool has a rotational axis. The first body is rotationally fixed relative to the FSW tool and the second body is rotational fixed relative to the FSW tool. The plurality of biasing elements is positioned longitudinally between at least a portion of the first body and at least a portion of the second body.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
In accordance with one aspect, a vertical machine tool is provided having an upper headstock with an upper spindle and a lower tailstock with a lower spindle. A workpiece is secured to the lower tailstock and the headstock drives the upper spindle and a milling tool connected thereto at high speeds for milling the workpiece. The vertical machine tool is also operable to perform turning operations on the workpiece using a turning tool connected to the headstock spindle. The headstock has a mechanical spindle lock that may be configured to rigidly fix the headstock spindle to the headstock housing so that, during the turning operation, the headstock spindle is secured against rotation from loading applied to the turning tool held in the headstock spindle. The lower tailstock drives the lower spindle to rotate the workpiece at speeds up to 2,500 RPM while the non-rotating turning tool held in the upper headstock machines the workpiece.
B23Q 37/00 - Metal-working machines, or constructional combinations thereof, built-up from units designed so that at least some of the units can form parts of different machines or combinationsUnits therefor in so far as the feature of interchangeability is important
B23B 3/06 - Turning-machines or devices characterised only by the special arrangement of constructional units
B23Q 1/70 - Stationary or movable members for carrying working-spindles for attachment of tools or work
B23Q 5/20 - Adjusting or stopping working-spindles in a predetermined position
In accordance with one aspect, a vertical machine tool is provided having an upper headstock with an upper spindle and a lower tailstock with a lower spindle. A workpiece is secured to the lower tailstock and the headstock drives the upper spindle and a milling tool connected thereto at high speeds for milling the workpiece. The vertical machine tool is also operable to perform turning operations on the workpiece using a turning tool connected to the headstock spindle. The headstock has a mechanical spindle lock that may be configured to rigidly fix the headstock spindle to the headstock housing so that, during the turning operation, the headstock spindle is secured against rotation from loading applied to the turning tool held in the headstock spindle. The lower tailstock drives the lower spindle to rotate the workpiece at speeds up to 2,500 RPM while the non-rotating turning tool held in the upper headstock machines the workpiece.
09 - Scientific and electric apparatus and instruments
Goods & Services
Electronic interface equipment and software for machine tools to input or output CNC (computer numerical control) data; Computer hardware and software for monitoring and control of machine tools; Computer hardware and software for monitoring and control of machine tools through the Internet and communications networks
30.
Material surface modification using friction stir welding hybrid process
A system and method for modifying a work piece surface of high melting temperature materials such as Advanced High Strength Steels, wherein a friction stir welding tool may include cutting elements located on the outside diameter of a collar assembly, wherein the collar assembly may be retrofitted for existing friction stir welding tools, or may be designed as a custom attachment for a new hybrid friction stir welding tool, wherein the surface of the work piece may be modified by removing detrimental flash and burr created during operation of the friction stir welding tool.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
B23K 37/08 - Auxiliary devices or processes, not specially adapted for a procedure covered by only one of the other main groups of this subclass for flash removal
A system and method of joining at least two workpieces together using a friction rivet and a friction rivet cap that are friction stirred together after a cutting tip or cutting feature on the friction rivet cuts through workpieces and is then bonded to the friction rivet cap, and wherein the friction rivet cap may be excluded if the friction rivet includes a hollow in the cutting tip, the hollow being flared after the friction rivets cuts through the workpieces to thereby create an integral rivet cap in the end of the friction rivet.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
A machine tool apparatus and method for exterior and interior cutting operations on a workpiece is provided. In one form, the machine tool apparatus has a common support assembly with a tailstock and a boring tool holder mounted thereto. The common support assembly has a common support carriage that is mounted to a machine base for travel along a longitudinal axis parallel to a central axis of the workpiece. The tailstock and boring tool holder are mounted to a mounting base portion for travel transverse to the workpiece central axis. In one form, a turret having external cutting tools is separate from the boring tool holder and mounted to the machine base for performing external cutting operations on the workpiece. This separate mounting allows the turret to machine the exterior of the workpiece while also permitting a longer boring tool to perform deep internal cutting operations on the workpiece.
B23B 3/06 - Turning-machines or devices characterised only by the special arrangement of constructional units
B23B 5/08 - Turning-machines or devices specially adapted for particular workAccessories specially adapted therefor for turning axles, bars, rods, tubes, rolls, i.e. shaft-turning lathes, roll lathesCentreless turning
B23B 27/00 - Tools for turning or boring machinesTools of a similar kind in generalAccessories therefor
B23B 29/04 - Tool holders for a single cutting tool
33.
Method for using a non-linear control parameter ramp profile to approach a temperature set point of a tool or weld that prevents temperature overshoot during friction stir welding
A control parameter ramp profile that enables control parameters to be modified in a non-linear manner, such that as a temperature set point of a tool or a weld is approached, the control parameter ramp profile enables the temperature set point to be approached in a manner that prevents temperature overshoot and therefore creating a better weld along the length thereof, wherein the control parameter ramp profile includes but is not limited to proportional, exponential or an S-curve waveform.
B23K 31/02 - Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by any single one of main groups relating to soldering or welding
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
34.
Three-body joining using friction stir processing techniques
A friction stir tool is provided to perform friction stir riveting using a partially consumable pin, wherein the pin includes a cutting edge on a bottom surface thereof, wherein the tool is rotated at a first speed to enable cutting by the pin into a first material that is overlapping a second material, wherein after the pin has cut to a sufficient depth, the rotational speed of the tool is increased to thereby enable plasticization of the consumable pin, the first material, and the second material, wherein the tool is then rapidly decelerated until stopped, enabling diffusion bonding between the pin, the first material and the second material.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
A method and apparatus are provided to machine a curved surface such as an inner or outer peripheral surface of a pipe. The pipe is held stationary during machining and a rotatable spindle of a machine head moves along multiple orthogonal axes to align the rotational axis of the spindle with the longitudinal pipe axis. Preferably, the pipe axis is located by using a touch probe to engage the curved surface at multiple spots and the calculating the location of the pipe axis. The cutting tool, which is preferably a cutting tool insert, is rotated by the spindle to machine the curved surface.
A method and apparatus are provided to machine a curved surface such as an inner or outer peripheral surface of a pipe. The pipe is held stationary during machining and a rotatable spindle of a machine head moves along multiple orthogonal axes to align the rotational axis of the spindle with the longitudinal pipe axis. Preferably, the pipe axis is located by using a touch probe to engage the curved surface at multiple spots and the calculating the location of the pipe axis. The cutting tool, which is preferably a cutting tool insert, is rotated by the spindle to machine the curved surface.
A tool is provided that is capable of friction stir processing, friction stir mixing, and friction stir welding of high melting temperature and low melting temperature materials, wherein the collar is now divided into at least an inner and an outer collar coupled to the shank and the FSW tip, wherein new thermal barriers enable expansion of the inner collar to be directed inward to thereby create compression on the FSW tip instead of allowing the FSW tip to become loose in the tool at elevated temperatures.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
A method and apparatus are provided to machine a curved surface such as an inner or outer peripheral surface of a pipe. The pipe (12) is held stationary during machining and a rotatable spindle of a machine head (16) moves along multiple orthogonal axes to align the rotational axis of the spindle with the longitudinal pipe axis. Preferably, the pipe axis is located by using a touch probe to engage the curved surface at multiple spots and the calculating the location of the pipe axis. The cutting tool, which is preferably a cutting tool insert, is rotated by the spindle to machine the curved surface.
A friction stir tool is provided to perform friction stir riveting using a partially consumable pin, wherein the pin includes a cutting edge on a bottom surface thereof, wherein the tool is rotated at a first speed to enable cutting by the pin into a first material that is overlapping a second material, wherein after the pin has cut to a sufficient depth, the rotational speed of the tool is increased to thereby enable plasticization of the consumable pin, the first material, and the second material, wherein the tool is then rapidly decelerated until stopped, enabling diffusion bonding between the pin, the first material and the second material.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding