A system for processing vehicle speed data is disclosed that includes a plurality of speed data systems operating on one or more electronic devices, each speed data system configured to detect vehicle speeds, to generate vehicle speed data for each vehicle and to transmit the vehicle speed data to a central data processing system. The central data processing system operating on one or more electronic devices and configured to receive the vehicle speed data, to transmit user interface control data to a remote device, and to process the vehicle speed data as a function of user-entered data from the remote device to generate a display that incorporates the processed speed data.
A system for detecting a vehicle speed, comprising an exterior housing configured to be secured to an exterior surface of a vehicle. A Doppler radar unit contained within the exterior housing and configured to detect a relative speed of a road surface. A wireless transceiver contained within the exterior housing and coupled to the Doppler radar unit, the wireless transceiver configured to transmit data representing the relative speed of the road surface to a system inside of the vehicle that includes a display.
G01S 13/60 - Velocity or trajectory determination systemsSense-of-movement determination systems wherein the transmitter and receiver are mounted on the moving object, e.g. for determining ground speed, drift angle, ground track
3.
SYSTEM AND METHOD FOR PRECISION SPIN MEASUREMENT USING AUTOCORRELATION
A method for determining spin of a projectile comprising generating an electromagnetic radar signal and transmitting the electromagnetic radar signal towards a projectile. Receiving a reflected electromagnetic radar signal from the projectile. Identifying a component of the reflected electromagnetic radar signal, and performing an autocorrelation process on the reflected electromagnetic radar signal using the component to generate an estimate of a spin of the projectile as a function of the autocorrelation process.
G01S 7/41 - Details of systems according to groups , , of systems according to group using analysis of echo signal for target characterisationTarget signatureTarget cross-section
G01S 17/88 - Lidar systems, specially adapted for specific applications
4.
ADAPTIVE FAN NOISE SUPPRESSION FOR TRAFFIC RADAR SYSTEMS
A system for processing data, comprising a signal processing system configured to receive and process a reflected wireless data signal from a remote source and a noise suppression system configured to receive the wireless data signal and to detect and suppress harmonic components associated with reflected noise from a local source from the wireless data signal.
A method for determining spin of a projectile comprising generating an electromagnetic radar signal and transmitting the electromagnetic radar signal towards a projectile. Receiving a reflected electromagnetic radar signal from the projectile. Identifying a component of the reflected electromagnetic radar signal, and performing an autocorrelation process on the reflected electromagnetic radar signal using the component to generate an estimate of a spin of the projectile as a function of the autocorrelation process.
G01S 7/41 - Details of systems according to groups , , of systems according to group using analysis of echo signal for target characterisationTarget signatureTarget cross-section
G01S 17/88 - Lidar systems, specially adapted for specific applications
6.
System and method for precision spin measurement using autocorrelation
A method for determining spin of a projectile comprising generating an electromagnetic radar signal and transmitting the electromagnetic radar signal towards a projectile. Receiving a reflected electromagnetic radar signal from the projectile. Identifying a component of the reflected electromagnetic radar signal, and performing an autocorrelation process on the reflected electromagnetic radar signal using the component to generate an estimate of a spin of the projectile as a function of the autocorrelation process.
G01S 17/04 - Systems determining the presence of a target
G01S 17/88 - Lidar systems, specially adapted for specific applications
G01S 7/41 - Details of systems according to groups , , of systems according to group using analysis of echo signal for target characterisationTarget signatureTarget cross-section
A method for determining spin of a projectile is disclosed that includes generating an electromagnetic radar signal and transmitting the electromagnetic radar signal towards a projectile, receiving a reflected electromagnetic radar signal from the projectile and transforming the reflected electromagnetic radar signal from a time domain to a frequency domain to generate a frequency domain signal. A peak frequency component of the frequency domain signal is identified, shoulder frequencies adjacent to the peak frequency component in the frequency domain signal are identified, and an estimate of the spin of the projectile as a function of the shoulder frequencies is generated.
A system determines absolute speed of a moving object. In AM, time of flight data over a time period is processed to determine ranges between the system and the moving object. The system performs linear regression analysis on the collected ranges to calculate the radial velocity. The system measures angular swivel rate of the system to determine tangential velocity. From the radial velocity and tangential velocity, the absolute speed can be calculated by taking the square root of the addition of the square of the radial velocity and square of the tangential velocity. In MM, the system calculates object distance, i.e. distance in the direction of travel, by subtracting the square of a pre-determined perpendicular distance L, perpendicular to the direction of travel, from a square of line-of-sight distance R, and taking square root of the result. Absolute speed is determined by calculating the slope of modified linear regression curve-fit.
A system that can determine and provision speed and mapping information of a moving object. Time of flight data over a time period can be processed to determine ranges between the system and the moving object and the speed can be determined therefrom. The speed can be determined by calculating the radial velocity and tangential velocity of the object and taking the square root of the addition of the square of each. Alternatively, the speed can be determined by calculating a linear regression curve fit for instantaneous distances of the moving object in the direction of motion for a plurality of ranges and determining the slope of the linear regression curve fit. After a lock of the determined speed, system coordinates can be identified and associated with the speed. A map can be received based upon the system coordinates and the map, speed and speed related parameters can be communicated.
A system for detecting driver vehicle travelling in an unsafe manner comprising a radar system configured to generate a sequence of frames of radar data. A target trajectory system configured to receive the sequence of frames of radar data and to generate target trajectory data for a vehicle. An alarm system configured to receive the target trajectory data and to generate an alarm as a function of the target trajectory data, a probability of collision, a degree of erratic driving or other suitable data.
G01S 13/93 - Radar or analogous systems, specially adapted for specific applications for anti-collision purposes
B60Q 5/00 - Arrangement or adaptation of acoustic signal devices
B60Q 9/00 - Arrangement or adaptation of signal devices not provided for in one of main groups
G01S 13/72 - Radar-tracking systemsAnalogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
G01S 13/86 - Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
11.
Mobile radar and visual tracking coordinate transformation
A system for generating video data comprising a mobile radar system operating on a processor and configured to generate vertically tilted radar frame data for a plurality of vehicles. A mobile video system operating on a processor and configured to generate video data of the plurality of vehicles. A dynamic plane rotation system operating on a processor and coupled to the mobile radar system and configured to map the vertically tilted radar frame data onto a flat plane parallel to a roadway to generate mapped data.
G01S 13/60 - Velocity or trajectory determination systemsSense-of-movement determination systems wherein the transmitter and receiver are mounted on the moving object, e.g. for determining ground speed, drift angle, ground track
G01S 13/86 - Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
G01S 13/92 - Radar or analogous systems, specially adapted for specific applications for traffic control for velocity measurement
G08G 1/04 - Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors
G08G 1/052 - Detecting movement of traffic to be counted or controlled with provision for determining speed or overspeed
12.
Lidar measurement device for vehicular traffic surveillance and method for use of same
A Lidar measurement device for vehicular traffic surveillance and method for use of same are disclosed. In one embodiment, video circuitry acquires video of a field of view having a target therein. A steerable laser progressively transmits laser range-finding signals to the field of view in a horizontal and vertical step-wise manner and receives reflected laser range-finding signals from the target. A processing circuit portion determines target data of the target based upon range and time measurements associated with the reflected laser range-finding signals. The processing circuit then integrates the target data into the video such that the video may displayed with an image of the target and speed measurement associated therewith.
A Lidar measurement device for vehicular traffic surveillance and method for use of same are disclosed. In one embodiment, video circuitry acquires video of a field of view having a target therein. A steerable laser progressively scans the field of view to identify targets. The steerable laser then progressively, repeatedly scans a sub-field of the field of view containing the target. A processing circuit portion determines target data of the target based upon range and time measurements associated with reflected laser range-finding signals from the scans of the sub-field. The processing circuit then integrates the target data into the video such that the video may displayed with an image of the target and target data, such as a speed measurement, associated therewith.
09 - Scientific and electric apparatus and instruments
Goods & Services
Automated self contained electronic surveillance devices capable of recording and downloading digital video and audio files and GPS tracking and navigation
16.
Lidar measurement device with target tracking and method for use of same
A Lidar measurement device for vehicular traffic surveillance and method for use of same are disclosed. In one embodiment, video circuitry acquires video of a field of view having a target therein. A steerable laser progressively scans the field of view to identify targets. The steerable laser then progressively, repeatedly scans a sub-field of the field of view containing the target. A processing circuit portion determines target data of the target based upon range and time measurements associated with reflected laser range-finding signals from the scans of the sub-field. The processing circuit then integrates the target data into the video such that the video may displayed with an image of the target and target data, such as a speed measurement, associated therewith.
A Lidar measurement device for vehicular traffic surveillance and method for use of same are disclosed. In one embodiment, video circuitry acquires video of a field of view having a target therein. A steerable laser progressively transmits laser range-finding signals to the field of view in a horizontal and vertical step-wise manner and receives reflected laser range-finding signals from the target. A processing circuit portion determines target data of the target based upon range and time measurements associated with the reflected laser range-finding signals. The processing circuit then integrates the target data into the video such that the video may displayed with an image of the target and speed measurement associated therewith.
A vehicular traffic surveillance Doppler radar system and method for use of the same are disclosed. In one embodiment, the system comprises a modulation circuit portion for generating modulated FM signals. An antenna circuit portion transmits the modulated FM signals to a target and receives the reflected modulated FM signals therefrom. A ranging circuit portion performs a quadrature demodulation on the reflected modulated FM signals and determines a range measurement based upon phase angle measurements derived therefrom.
Retail store services, online retail store services and marketing of bingo products; Distributorship services in the field of bingo products; Wholesale distributorships featuring bingo products
20.
Modulation circuit for a vehicular traffic surveillance Doppler radar system
A modulation circuit for a traffic surveillance Doppler radar system is disclosed. In one embodiment, the modulation circuit is utilized in a vehicular traffic surveillance Doppler radar system that processes a reflected double-modulated FM signal to determine a target range based upon a phase angle signal differential associated with the target. The modulation circuit may include a digital-to-analog (D/A) converter/voltage regulator/oscillator arrangement or a D/A converter/varactor device/oscillator arrangement. The modulation circuit generates a double-modulated FM signal based upon a frequency versus voltage characteristic associated with the oscillator.
09 - Scientific and electric apparatus and instruments
Goods & Services
Radar guns used by law enforcement personnel to measure the speed of vehicles; laser guns used by law enforcement personnel to measure the speed and distance of vehicles; sports radar guns to measure the speed of moving objects in the nature of balls, pucks, watercraft, race cars, and remote controlled toys