Devices, systems, methods including a fluidic device with a BAW sensor and a wicking material for moving a fluidic sample are provided. The fluidic device may include a BAW sensor configured to detect an analyte in a fluid sample. The BAW sensor may have an active region including a functional material including a first member of a binding pair. The fluidic device may further include a fluidic channel positioned across the BAW sensor such that the fluidic channel is disposed over the active region. The fluidic channel may have an inlet and an outlet. A wicking material may be disposed within the fluidic channel between the inlet and the outlet. The wicking material may be disposed in contact with the functional material coupled to the active region of the BAW sensor.
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
G01N 33/52 - Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper
G01N 33/558 - ImmunoassayBiospecific binding assayMaterials therefor using diffusion or migration of antigen or antibody
A sensor device includes a sensor, which may include an acoustic wave resonator structure, having a surface to which analyte capture ligand is bound. The device also includes a crowding agent to reduce the ratio of binding of an analyte in a sample composition to the analyte capture ligand when the sample composition is flowed across the surface of the sensor.
H10N 30/079 - Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing using intermediate layers, e.g. for growth control
3.
FLUIDIC DEVICE WITH FLUID PORT ORTHOGONAL TO FUNCTIONALIZED ACTIVE REGION
A fluidic device includes at least one bulk acoustic wave (BAW) resonator structure with a functionalized active region, and at least one first (inlet) port defined through a cover structure arranged over a fluidic passage containing the active region. At least a portion of the at least one inlet port is registered with the active region, permitting fluid to be introduced in a direction orthogonal to a surface of the active region bearing functionalization material. Such arrangement promotes mixing proximate to a BAW resonator structure surface, thereby reducing analyte stratification, increasing analyte binding rate, and reducing measurement time.
G01N 29/024 - Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
G01N 29/032 - Analysing fluids by measuring attenuation of acoustic waves
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
A device that includes a first portion, the first portion including at least one fluid channel; a fluid actuator; and an introducer, a second portion, the second portion including at least one well, the well containing at least one material, wherein one of the first or second portion is moveable with respect to the other, wherein the introducer is configured to obtain at least a portion of the material from the at least one well and deliver it to the fluid channel, and wherein the fluid actuator is configured to move at least a portion of the material in the fluid channel.
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
G01N 33/543 - ImmunoassayBiospecific binding assayMaterials therefor with an insoluble carrier for immobilising immunochemicals
5.
BULK ACOUSTIC WAVE RESONATOR WITH INCREASED DYNAMIC RANGE
Devices that include a low sensitivity bulk acoustic wave (BAW) resonator sensor including a surface to which a low recognition component is immobilized, the low recognition component being configured to selectively bind the analyte, an analyte molecule to which a tag is linked, or a tag, or any one of these molecules to which an amplification element-linked second recognition component is bound; a high sensitivity BAW resonator sensor including a surface to which a high recognition component is immobilized, the high recognition component being configured to selectively bind the analyte, an analyte molecule to which a tag is linked, or a tag, or any one of these molecules to which an amplification element-linked second recognition component is bound; one or more containers housing an amplification molecule, the amplification element-linked second recognition component, and optionally one or both of the tag and the analyte molecule.
Methods include treating a portion of a sample composition to be tested for presence of an analyte by depleting or blocking the target analyte. The treated composition may be used to equilibrate an acoustic wave sensor prior to exposing the sensor to the untreated sample composition for analysis. By using the treated sample composition, in which the analyte is depleted or blocked, to equilibrate the sensor, the sensor may be equilibrated with a composition having a similar viscosity and non-specific binding characteristics to the untreated sample composition, which should result in improved accuracy when analyzing the analyte in the untreated sample composition.
B01L 3/00 - Containers or dishes for laboratory use, e.g. laboratory glasswareDroppers
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
Devices that includes a first portion, the first portion including at least one fluid channel; a fluid actuator; an analysis sensor disposed within the fluid channel; a conductivity sensor disposed within the fluid channel; and an introducer; a second portion, the second portion comprising: at least one well, the well containing at least one material, wherein one of the first or second portion is moveable with respect to the other, wherein the introducer is configured to obtain at least a portion of the material from the at least one well and deliver it to the fluid channel, and wherein the fluid actuator is configured to move at least a portion of the material in the fluid channel.
B01L 3/00 - Containers or dishes for laboratory use, e.g. laboratory glasswareDroppers
G01F 1/58 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
G01N 27/08 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid which is flowing continuously
G01N 33/49 - Physical analysis of biological material of liquid biological material blood
Disclosed sensors can include at least one resonator (in some embodiments, at least two resonators) and various other structures that may be formed in association with the resonators. The at least one resonator in embodiments can include a bottom electrode, a piezoelectric layer, and a top electrode, wherein the piezoelectric layer is positioned between the bottom electrode and the top electrode.
G01N 33/543 - ImmunoassayBiospecific binding assayMaterials therefor with an insoluble carrier for immobilising immunochemicals
G01N 29/30 - Arrangements for calibrating or comparing, e.g. with standard objects
C23C 16/06 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
C23C 16/455 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into the reaction chamber or for modifying gas flows in the reaction chamber
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
9.
METHODS OF MEASURING HEMATOCRIT IN FLUIDIC CHANNELS INCLUDING CONDUCTIVITY SENSOR
A device and a method of using the device for determining hematocrit in a whole blood sample. The device includes a first portion having an introducer, at least one fluid channel, a fluid actuator, and an analysis sensor and conductivity sensor disposed within the fluid channel. The second portion includes at least one well containing at least one material. The first portion and second portion are movable with respect to each other. The introducer is configured to transfer at least a portion of the material from the well in portion two into the fluid channel of portion one. The method includes measuring the resistance over substantially the entire portion of a whole blood sample and calculating an average hematocrit level of the whole blood sample based on the measured resistance.
B01L 3/00 - Containers or dishes for laboratory use, e.g. laboratory glasswareDroppers
G01F 1/58 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
G01N 27/08 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid which is flowing continuously
G01N 33/49 - Physical analysis of biological material of liquid biological material blood
Various embodiments of an interconnect device and modules and systems that utilize such interconnect device are disclosed. In one or more embodiments, the interconnect device can include a printed circuit board (PCB). The PCB can include a substrate forming a resiliently deflectable element, a conductive material disposed on the substrate, and an electrical contact disposed on the resiliently deflectable element and electrically coupled to the conductive material. The interconnect device can also include a connector that includes a connecting pin configured to electrically couple with the electrical contact of the resiliently deflectable element of the PCB and cause the resiliently deflectable element to deflect when the element contacts the connecting pin.
G01N 29/30 - Arrangements for calibrating or comparing, e.g. with standard objects
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
H05K 1/11 - Printed elements for providing electric connections to or between printed circuits
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
G01N 33/543 - ImmunoassayBiospecific binding assayMaterials therefor with an insoluble carrier for immobilising immunochemicals
H01L 41/08 - Piezo-electric or electrostrictive elements
H03H 9/54 - Filters comprising resonators of piezoelectric or electrostrictive material
11.
Fluidic device with fluid port orthogonal to functionalized active region
A fluidic device includes at least one bulk acoustic wave (BAW) resonator structure with a functionalized active region, and at least one first (inlet) port defined through a cover structure arranged over a fluidic passage containing the active region. At least a portion of the at least one inlet port is registered with the active region, permitting fluid to be introduced in a direction orthogonal to a surface of the active region bearing functionalization material. Such arrangement promotes mixing proximate to a BAW resonator structure surface, thereby reducing analyte stratification, increasing analyte binding rate, and reducing measurement time.
G01N 29/024 - Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
G01N 29/032 - Analysing fluids by measuring attenuation of acoustic waves
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
A connector assembly and method of attaching the same to one or more biosensor module boards. The connector assembly includes a body portion defining a first surface and a second surface opposite the first surface. The connector assembly also includes a coaxial RF connector positioned in the body portion and extending between the first surface and the second surface. The coaxial RF connector includes a ground ring, an RF pin positioned within the ground ring, and dielectric therebetween. The connector assembly is configured to be coupled to an RF detection board such that the coaxial RF connector is operably coupled thereto. The connector assembly is also configured to be connected to a biosensor module board such that the coaxial RF connector is operably connected thereto.
H01R 24/50 - Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency mounted on a PCB [Printed Circuit Board]
Devices that include a low sensitivity bulk acoustic wave (BAW) resonator sensor including a surface to which a low recognition component is immobilized, the low recognition component being configured to selectively bind the analyte, an analyte molecule to which a tag is linked, or a tag, or any one of these molecules to which an amplification element-linked second recognition component is bound; a high sensitivity BAW resonator sensor including a surface to which a high recognition component is immobilized, the high recognition component being configured to selectively bind the analyte, an analyte molecule to which a tag is linked, or a tag, or any one of these molecules to which an amplification element-linked second recognition component is bound; one or more containers housing an amplification molecule, the amplification element-linked second recognition component, and optionally one or both of the tag and the analyte molecule.
Various embodiments of an apparatus for measuring binding kinetics of an interaction of an analyte material present in a fluid sample are disclosed. The apparatus includes a sensing resonator having at least one binding site for the analyte material; actuation circuitry adapted to drive the sensing resonator into an oscillating motion; measurement circuitry coupled to the sensing resonator and adapted to measure an output signal of the sensing resonator representing resonance characteristics of the oscillating motion of the sensing resonator; and a controller coupled to the actuation and measurement circuitry, wherein the controller is adapted to detect an individual binding event between the at least one binding site and a molecule of the analyte material.
G01N 5/02 - Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
G01N 33/557 - ImmunoassayBiospecific binding assayMaterials therefor using kinetic measurement, i.e. time rate of progress of an antigen-antibody interaction
Methods include treating a portion of a sample composition to be tested for presence of an analyte by depleting or blocking the target analyte. The treated composition may be used to equilibrate an acoustic wave sensor prior to exposing the sensor to the untreated sample composition for analysis. By using the treated sample composition, in which the analyte is depleted or blocked, to equilibrate the sensor, the sensor may be equilibrated with a composition having a similar viscosity and non-specific binding characteristics to the untreated sample composition, which should result in improved accuracy when analyzing the analyte in the untreated sample composition.
B01L 3/00 - Containers or dishes for laboratory use, e.g. laboratory glasswareDroppers
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
Devices that includes a first portion, the first portion including at least one fluid channel; a fluid actuator; an analysis sensor disposed within the fluid channel; a conductivity sensor disposed within the fluid channel; and an introducer; a second portion, the second portion comprising: at least one well, the well containing at least one material, wherein one of the first or second portion is moveable with respect to the other, wherein the introducer is configured to obtain at least a portion of the material from the at least one well and deliver it to the fluid channel, and wherein the fluid actuator is configured to move at least a portion of the material in the fluid channel.
B01L 3/00 - Containers or dishes for laboratory use, e.g. laboratory glasswareDroppers
G01F 1/58 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
G01N 27/08 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid which is flowing continuously
G01N 33/49 - Physical analysis of biological material of liquid biological material blood
A sampler for acquiring and transporting sample material may include a sampler body defining a sampling volume configured to hold the sample material. The sampler body may define a sample port that may be used as an entrance to collect the sample material and an exit to expel the sample material. The sample port may be configured to be operably connected to a fluidic channel of a cartridge. The sampler may also define a pump connection port configured to be operably connected to a pump. The pump may force the sample material out of the sampling volume through the sample port.
A device that includes a first portion, the first portion including at least one fluid channel; a fluid actuator; and an introducer, a second portion, the second portion including at least one well, the well containing at least one material, wherein one of the first or second portion is moveable with respect to the other, wherein the introducer is configured to obtain at least a portion of the material from the at least one well and deliver it to the fluid channel, and wherein the fluid actuator is configured to move at least a portion of the material in the fluid channel.
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
G01N 33/543 - ImmunoassayBiospecific binding assayMaterials therefor with an insoluble carrier for immobilising immunochemicals
Methods include treating a portion of a sample composition to be tested for presence of an analyte by depleting or blocking the target analyte. The treated composition may be used to equilibrate an acoustic wave sensor prior to exposing the sensor to the untreated sample composition for analysis. By using the treated sample composition, in which the analyte is depleted or blocked, to equilibrate the sensor, the sensor may be equilibrated with a composition having a similar viscosity and non-specific binding characteristics to the untreated sample composition, which should result in improved accuracy when analyzing the analyte in the untreated sample composition.
G01N 30/00 - Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography
G01N 35/00 - Automatic analysis not limited to methods or materials provided for in any single one of groups Handling materials therefor
G01N 15/06 - Investigating concentration of particle suspensions
B01L 3/00 - Containers or dishes for laboratory use, e.g. laboratory glasswareDroppers
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
A sensor device includes a sensor, which may include an acoustic wave resonator structure, having a surface to which analyte capture ligand is bound. The device also includes a crowding agent to reduce the rate of binding of an analyte in a sample composition to the analyte capture ligand when the sample composition is flowed across the surface of the sensor.
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
H10N 30/079 - Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing using intermediate layers, e.g. for growth control
Sensors employing bulk acoustic wave (BAW) resonators are used to assay characteristics of blood. The BAW sensors may be used to sense viscosity of a sample comprising blood to determine coagulation properties of the blood. The viscosity of the blood may be evaluated in the presence of agents that inhibit coagulation or that promote coagulation. The change in viscosity of the sample in the presence of such agents may provide information regarding whether the blood suffers from a coagulation disorder.
A fluidic device includes at least one bulk acoustic wave (BAW) resonator structure with a functionalized active region, and at least one first (inlet) port defined through a cover structure arranged over a fluidic passage containing the active region. At least a portion of the at least one inlet port is registered with the active region, permitting fluid to be introduced in a direction orthogonal to a surface of the active region bearing functionalization material. Such arrangement promotes mixing proximate to a BAW resonator structure surface, thereby reducing analyte stratification, increasing analyte binding rate, and reducing measurement time.
G01N 29/024 - Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
H03H 9/17 - Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
23.
Methods of measuring hematocrit in fluidic channels including conductivity sensor
A device and a method of using the device for determining hematocrit in a whole blood sample. The device includes a first portion having an introducer, at least one fluid channel, a fluid actuator, and an analysis sensor and conductivity sensor disposed within the fluid channel. The second portion includes at least one well containing at least one material. The first portion and second portion are movable with respect to each other. The introducer is configured to transfer at least a portion of the material from the well in portion two into the fluid channel of portion one. The method includes measuring the resistance over substantially the entire portion of a whole blood sample and calculating an average hematocrit level of the whole blood sample based on the measured resistance.
B01L 3/00 - Containers or dishes for laboratory use, e.g. laboratory glasswareDroppers
G01F 1/58 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
G01N 27/08 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid which is flowing continuously
G01N 33/49 - Physical analysis of biological material of liquid biological material blood
A cartridge for collecting sample material may include a cartridge body and a fluid reservoir. The cartridge body may define a capless sample well port configured to receive the sample material and a fluidic channel in fluid communication with the capless sample well port. The fluidic channel may include a sample fluidic channel portion and may be configured such that an effect of gravity on the sample material within the sample fluidic channel portion does not overcome a capillary action of the fluidic channel. The fluidic channel may extend between the capless sample well port and the fluid reservoir. The fluidic channel may be configured to direct the sample material towards the fluid reservoir when a pressure is applied within the fluidic channel.
Devices that includes a first portion, the first portion including at least one fluid channel; a fluid actuator; an analysis sensor disposed within the fluid channel; a conductivity sensor disposed within the fluid channel; and an introducer; a second portion, the second portion comprising: at least one well, the well containing at least one material, wherein one of the first or second portion is moveable with respect to the other, wherein the introducer is configured to obtain at least a portion of the material from the at least one well and deliver it to the fluid channel, and wherein the fluid actuator is configured to move at least a portion of the material in the fluid channel.
B01L 3/00 - Containers or dishes for laboratory use, e.g. laboratory glasswareDroppers
G01F 1/58 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
G01N 27/08 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid which is flowing continuously
G01N 33/49 - Physical analysis of biological material of liquid biological material blood
A cartridge for collecting sample material may include a cartridge body, a filter, a fluid reservoir, and a fluid drive port. The cartridge body may define a capless sample well port configured to receive a sample material and a fluidic channel in fluid communication with the capless sample well port. The filter may be positioned between the capless sample well port and the fluidic channel. The fluidic channel may extend between the capless sample well port and the fluid reservoir. The fluid drive port may be in fluid communication with the fluidic channel. The fluid drive port may be configured to be operably connected to a pressure source such that a pressure is applied within the fluidic channel to direct the sample material towards the fluid reservoir.
G01N 35/02 - Automatic analysis not limited to methods or materials provided for in any single one of groups Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
B01L 3/00 - Containers or dishes for laboratory use, e.g. laboratory glasswareDroppers
G01N 35/10 - Devices for transferring samples to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
27.
Bulk acoustic wave resonator with increased dynamic range
Devices that include a low sensitivity bulk acoustic wave (BAW) resonator sensor including a surface to which a low recognition component is immobilized, the low recognition component being configured to selectively bind the analyte, an analyte molecule to which a tag is linked, or a tag, or any one of these molecules to which an amplification element-linked second recognition component is bound; a high sensitivity BAW resonator sensor including a surface to which a high recognition component is immobilized, the high recognition component being configured to selectively bind the analyte, an analyte molecule to which a tag is linked, or a tag, or any one of these molecules to which an amplification element-linked second recognition component is bound; one or more containers housing an amplification molecule, the amplification element-linked second recognition component, and optionally one or both of the tag and the analyte molecule.
A resonator sensor module is disclosed. The resonator sensor module includes one or more sensing resonators that includes binding sites for an analyte material; one or more reference resonators that lacks any binding sites for the analyte material; a module interface; and one or more switches each including a first position that operatively couples at least one of the one or more sensing resonators and the module interface and a second position that operatively couples at least one of the one or more reference resonators and the module interface.
G01N 33/543 - ImmunoassayBiospecific binding assayMaterials therefor with an insoluble carrier for immobilising immunochemicals
G01N 33/557 - ImmunoassayBiospecific binding assayMaterials therefor using kinetic measurement, i.e. time rate of progress of an antigen-antibody interaction
A sensor using electrophoresis may include a microfluidic channel and electrodes on opposite sides of the microfluidic channel to generate an electric field across, or normal to, the channel. The electric field may be used to drive charged particles of material, particularly material suspended in fluid in the microfluidic channel, toward or away from the one of the electrodes. The electric field may be modulated to allow material to continue flowing through the microfluidic channel, to remove non-target material, or to measure another target material.
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
B03C 5/00 - Separating dispersed particles from liquids by electrostatic effect
30.
Baw sensing and filtration device and related methods
A fluidic device incorporating at least one BAW resonator structure (e.g., a biosensing device) and a fluidic passage includes one or more features that provide filtration capability. Certain embodiments include at least one group of pillars extending into the fluidic passage which are arranged between an active region of the at least one BAW resonator structure and at least one fluidic port. Individual pillars are separated from one another by inter-pillar spaces that provide redundant fluid flow paths while preventing passage of obstruction media such as particulate matter, cells, and/or bubbles. Certain embodiments provide porous material arranged in fluid communication with at least one fluidic port and configured to filter contents of fluid supplied thereto. Porous material (e.g., porous membranes) may be provided in a cover structure of a fluidic device or within a filtration cartridge.
H01L 41/08 - Piezo-electric or electrostrictive elements
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
H03H 9/17 - Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
31.
Cartridges for integrated BAW biosensors and methods for using the same
A cartridge for sample handling and sensing includes (i) a sample port; (ii) a first fluid port connected to the sample reservoir in the distal region via a first fluid channel; and (iii) a second fluid port connected to the sample reservoir via a second fluid channel. The cartridge includes (i) a sensor platform comprising a bulk acoustic wave (BAW) resonator and a fluid flow path comprising a sensing region extending across a sensing surface of the BAW resonator; and (ii) a fluid valve between the sample reservoir and the sensing region. A sample may be applied to the sample port; first volume of fluid may be injected through the first fluid port; and then a second volume of fluid may be injected through the second fluid port to drive the sample into the sensing region of the fluid flow path.
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
Various embodiments of an apparatus for measuring binding kinetics of an interaction of an analyte material present in a fluid sample are disclosed. The apparatus includes a sensing resonator having at least one binding site for the analyte material; actuation circuitry adapted to drive the sensing resonator into an oscillating motion; measurement circuitry coupled to the sensing resonator and adapted to measure an output signal of the sensing resonator representing resonance characteristics of the oscillating motion of the sensing resonator; and a controller coupled to the actuation and measurement circuitry, wherein the controller is adapted to detect an individual binding event between the at least one binding site and a molecule of the analyte material.
G01N 5/02 - Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
G01N 33/557 - ImmunoassayBiospecific binding assayMaterials therefor using kinetic measurement, i.e. time rate of progress of an antigen-antibody interaction
Disclosed sensors can include at least one resonator (in some embodiments, at least two resonators) and various other structures that may be formed in association with the resonators. The at least one resonator in embodiments can include a bottom electrode, a piezoelectric layer, and a top electrode, wherein the piezoelectric layer is positioned between the bottom electrode and the top electrode.
C23C 16/06 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
C23C 16/455 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into the reaction chamber or for modifying gas flows in the reaction chamber
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
G01N 33/543 - ImmunoassayBiospecific binding assayMaterials therefor with an insoluble carrier for immobilising immunochemicals
G01N 29/30 - Arrangements for calibrating or comparing, e.g. with standard objects
A fluidic sensing device includes a first sidewall, a second sidewall, a bulk acoustic resonator structure, a biomolecule, and a cover. A fluidic channel is defined between the first and second sidewalls. The bulk acoustic resonator structure has a surface defining at least a portion of the bottom of the channel. The biomolecule is attached to the surface of the bulk acoustic resonator that forms the bottom of the channel. The cover is disposed over the channel and the first and second sidewalls. A portion of the cover disposed over the channel defines at least a portion of the top of the channel and blocks UV radiation from being transmitted through the cover. A first portion of the cover disposed over the first sidewall is transparent to UV radiation, and a second portion of the cover disposed over the second sidewall is transparent to UV radiation.
H03H 9/17 - Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
H03H 9/13 - Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
H03H 3/02 - Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
G01N 33/543 - ImmunoassayBiospecific binding assayMaterials therefor with an insoluble carrier for immobilising immunochemicals
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
Redox of an analyte is coupled with redox of a precipitation precursor to generate a precipitating molecule that precipitates on the surface of a thin film bulk acoustic resonance (TFBAR) to allow mass detection of the precipitation molecule as a surrogate for the analyte. This disclosure describes, among other things, detection of an analyte using a TFBAR operating at a high frequency without direct binding of the analyte on a surface of the TBAR. Detection of the analyte is indirect with a precipitating molecule serving as a surrogate for the analyte.
C12Q 1/26 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions involving oxidoreductase
G01N 33/543 - ImmunoassayBiospecific binding assayMaterials therefor with an insoluble carrier for immobilising immunochemicals
A fluidic device includes a base structure including at least one bulk acoustic wave (BAW) resonator structure having a fluidic passage containing at least one functionalized active region overlaid with functionalization material suitable to bind an analyte. One or more of a wall structure, a cover structure, or a portion of the base structure defining the fluidic passage includes additional functionalization material to form at least one absorber configured to bind at least one analyte. The dynamic measurement range of a BAW resonator structure is increased when the at least one absorber is placed upstream of the at least one functionalized active region.
H01L 41/22 - Processes or apparatus specially adapted for the assembly, manufacture or treatment of piezo-electric or electrostrictive devices or of parts thereof
38.
BAW sensing and filtration device and related methods
A fluidic device incorporating at least one BAW resonator structure (e.g., a biosensing device) and a fluidic passage includes one or more features that provide filtration capability. Certain embodiments include at least one group of pillars extending into the fluidic passage which are arranged between an active region of the at least one BAW resonator structure and at least one fluidic port. Individual pillars are separated from one another by inter-pillar spaces that provide redundant fluid flow paths while preventing passage of obstruction media such as particulate matter, cells, and/or bubbles. Certain embodiments provide porous material arranged in fluid communication with at least one fluidic port and configured to filter contents of fluid supplied thereto. Porous material (e.g., porous membranes) may be provided in a cover structure of a fluidic device or within a filtration cartridge.
H01L 41/08 - Piezo-electric or electrostrictive elements
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
A resonator sensor module is disclosed. The resonator sensor module includes one or more sensing resonators that includes binding sites for an analyte material; one or more reference resonators that lacks any binding sites for the analyte material; a module interface; and one or more switches each including a first position that operatively couples at least one of the one or more sensing resonators and the module interface and a second position that operatively couples at least one of the one or more reference resonators and the module interface.
G01N 22/00 - Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
G01N 33/557 - ImmunoassayBiospecific binding assayMaterials therefor using kinetic measurement, i.e. time rate of progress of an antigen-antibody interaction
A fluidic device includes a base structure, a wall structure, and a cover structure bounding a fluidic passage containing a functionalized active region of at least one bulk acoustic wave (BAW) resonator structure. One or more of the wall structure, the cover structure, or a portion of the base structure includes multiple features (e.g., protrusions and/or recesses) configured to interact with fluid flowing within the fluidic passage to promote mixing between constituents of the fluid. Methods for fabricating a fluidic device, as well as methods for biological or chemical sensing using a fluidic device, are further provided.
H01L 41/107 - Piezo-electric or electrostrictive elements with electrical input and electrical output
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
A bulk acoustic wave MEMS resonator device includes at least one functionalization (e.g., specific binding or non-specific binding) material arranged over a top side electrode, with at least one patterned enhanced surface area element arranged between a lower surface of the top side electrode and the functionalization material. The at least one patterned enhanced surface area element increases non-planarity of the at least one functionalization material, thereby providing a three-dimensional structure configured to increase sensor surface area and reduce analyte diffusion distance, and may also promote fluid mixing. Methods for biological and chemical sensing, and methods for forming MEMS resonator devices and fluidic devices are further disclosed.
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
G01N 33/543 - ImmunoassayBiospecific binding assayMaterials therefor with an insoluble carrier for immobilising immunochemicals
H03H 3/02 - Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
42.
Fluidic device including BAW resonators along opposing channel surfaces
Multiple bulk acoustic wave (BAW) resonator structures are arranged along opposing surfaces of a fluidic passage arranged to receive a fluid. At least one resonator structure may be overlaid with functionalization (e.g., specific binding or non-specific binding) material to bind one or more analytes contained in the fluid. Combinations of BAW resonators providing dominant shear response for detection, and providing dominant longitudinal response for mixing or analyte movement, may be provided on one or more surfaces bounding a fluidic passage. Embodiments may reduce the footprint of multi-resonator fluidic device, enhance analyte binding rate, and/or enhance mixing of sample constituents.
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
H03H 9/205 - Constructional features of resonators consisting of piezoelectric or electrostrictive material having multiple resonators
B01L 3/00 - Containers or dishes for laboratory use, e.g. laboratory glasswareDroppers
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
H03H 9/17 - Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
43.
Multi-frequency BAW mixing and sensing system and method
A sensing system utilizes a channel, a BAW resonator structure including piezoelectric material with a c-axis having an inclined orientation, at least one functionalization material arranged over an active region of the BAW resonator structure, and a driving circuit configured to apply AC signals at different frequencies to cause the piezoelectric material to selectively exhibit a dominant shear response or a dominant longitudinal response. Driving the piezoelectric material in longitudinal mode induces localized fluid mixing proximate to the active region, whereas driving in shear mode permits detection of analyte bound to the at least one functionalization material in a liquid environment. Recesses may be defined in a surface of a top side electrode to enhance longitudinal mode mixing.
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
H03H 9/17 - Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
44.
Fluidic device with fluid port orthogonal to functionalized active region
A fluidic device includes at least one bulk acoustic wave (BAW) resonator structure with a functionalized active region, and at least one first (inlet) port defined through a cover structure arranged over a fluidic passage containing the active region. At least a portion of the at least one inlet port is registered with the active region, permitting fluid to be introduced in a direction orthogonal to a surface of the active region bearing functionalization material. Such arrangement promotes mixing proximate to a BAW resonator structure surface, thereby reducing analyte stratification, increasing analyte binding rate, and reducing measurement time.
Various embodiments of an interconnect device and modules and systems that utilize such interconnect device are disclosed. In one or more embodiments, the interconnect device can include a printed circuit board (PCB). The PCB can include a substrate forming a resiliently deflectable element, a conductive material disposed on the substrate, and an electrical contact disposed on the resiliently deflectable element and electrically coupled to the conductive material. The interconnect device can also include a connector that includes a connecting pin configured to electrically couple with the electrical contact of the resiliently deflectable element of the PCB and cause the resiliently deflectable element to deflect when the element contacts the connecting pin.
G01N 29/30 - Arrangements for calibrating or comparing, e.g. with standard objects
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
H05K 1/11 - Printed elements for providing electric connections to or between printed circuits
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
G01N 33/543 - ImmunoassayBiospecific binding assayMaterials therefor with an insoluble carrier for immobilising immunochemicals
H01L 41/08 - Piezo-electric or electrostrictive elements
H03H 9/54 - Filters comprising resonators of piezoelectric or electrostrictive material
H05K 1/18 - Printed circuits structurally associated with non-printed electric components
Disclosed sensors can include at least one resonator (in some embodiments, at least two resonators) and various other structures that may be formed in association with the resonators. The at least one resonator in embodiments can include a bottom electrode, a piezoelectric layer, and a top electrode, wherein the piezoelectric layer is positioned between the bottom electrode and the top electrode.
C23C 16/06 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
C23C 16/455 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into the reaction chamber or for modifying gas flows in the reaction chamber
G01N 29/036 - Analysing fluids by measuring frequency or resonance of acoustic waves
G01N 33/543 - ImmunoassayBiospecific binding assayMaterials therefor with an insoluble carrier for immobilising immunochemicals
G01N 29/30 - Arrangements for calibrating or comparing, e.g. with standard objects
47.
Thin film bulk acoustic resonator with signal enhancement
Biosensor apparatus and associated method for detecting a target material using a vibrating resonator having a surface that operably interacts with the target material. A detector is in electrical communication with a sensor, the sensor comprising a first paddle assembly connected to a second paddle assembly, the first paddle assembly having at least one microbalance sensing resonator proximate a proximal end and at least one sensing electrical contact proximate a distal end in electrical communication with the sensing resonator. The at least one sensing resonator has a target coating for operably interacting with the target material, and the second paddle assembly has a microbalance reference resonator proximate the proximal end and at least one reference electrical contact proximate the distal end in electrical communication with the reference resonator.
Biosensor apparatus and associated method for detecting a target material using a vibrating resonator having a surface that operably interacts with the target material. A detector is in electrical communication with a sensor, the sensor comprising a first paddle assembly connected to a second paddle assembly, the first paddle assembly having at least one microbalance sensing resonator proximate a proximal end and at least one sensing electrical contact proximate a distal end in electrical communication with the sensing resonator. The at least one sensing resonator has a target coating for operably interacting with the target material, and the second paddle assembly has a microbalance reference resonator proximate the proximal end and at least one reference electrical contact proximate the distal end in electrical communication with the reference resonator.
A subject material in a fluid sample is detected using a resonating sensor immersible in the fluid sample. Binding kinetics of an interaction of an analyte material present in the fluid sample are measured with the resonating sensor, which has binding sites for the analyte material. Prior to exposing the resonating sensor to the fluid sample, operation of the resonating sensor is initiated, producing a sensor output signal representing a resonance characteristic of the resonating sensor. Optionally, a reference resonator that lacks binding sites for the analyte is used to produce a reference output signal. Introduction of a fluid sample to the resonating sensor is automatically detected based on a characteristic change in the sensor output signal or a reference output signal. In response to the detecting of the introduction of the fluid sample, automated measurement of the binding kinetics are measured.