A composite material implements self-healing microcapsules in thermoplastic matrices, such as polyethylene. A microencapsulated dicyclopentadiene monomer and a solid phase Grubbs's catalyst is embedded in a polyethylene matrix to achieve self-healing properties. Nanofillers may be added to improve the properties of the polyethylene matrix incorporating a self-healing system.
B29C 73/22 - Auto-repairing or self-sealing arrangements or agents the article containing elements including a sealing composition, e.g. powder being liberated when the article is damaged
A glass fiber-reinforced polymer composite includes a polymer matrix, a plurality of glass fibers embedded within the polymer matrix, a first hollow glass fiber containing a resin embedded within the polymer matrix, a second hollow glass fiber containing a catalyst suitable for curing the resin embedded within the polymer matrix. When damage occurs to such a composite, the glass fibers containing the resin and the catalyst are ruptured, resulting in their mixing together so that the resin is cured for repairing the ruptured location.
Embodiments of the present invention disclosed herein use innovative pastes to fill surface pores (cavities) and flatten (planarize) surfaces of porous materials. A method for making a heat transfer apparatus comprises making a paste comprising particles of a first heat transfer material, a vehicle, and a binder, filling cavities on an external surface of a second heat transfer material with the paste, and drying the paste filled in the cavities so that an external, surface of the dried paste in a cavity is substantially planar with the external surface of the second heat transfer material.
C09K 5/00 - Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerantsMaterials for the production of heat or cold by chemical reactions other than by combustion
C09K 5/16 - Materials undergoing chemical reactions when used
H01L 23/34 - Arrangements for cooling, heating, ventilating or temperature compensation
H01L 23/373 - Cooling facilitated by selection of materials for the device
4.
OPTIMIZE ANALYTE DYNAMIC RANGE IN GAS CHROMATOGRAPHY
A non-specific gas analyzer with a wide dynamic range of concentration is used to assess the gas sample for total load of volatile organic constituents, and then control either a dilution with neutral gas or the quantity of sample aspirated in order to consistently deliver an appropriate total load of volatile analyte to a high-sensitivity analyzer. Such high-sensitivity analyzers may be gas chromatography combined with mass spectrometry or related mass spectrometry configurations, such as selected ion flow tube mass spectrometry, gas chromatography combined with ion mobility spectrometry, or related ion mobility configurations such as differential mobility spectrometry.
A means of monitoring the health of a person by monitoring odor in gas samples taken from the ear. This can be performed by taking gas samples directly from the ear and analyzing them in a gas analysis tool or by trapping gas on an absorbent material that is loaded into a gas analyzer for analysis. Based on the analysis, a diagnosis can be made or recommendations for further action can be provided.
A method and apparatus for background cancellation for electronic noses to make automated aroma analysis practical in complex field environments. The system and methods compensate for background contaminants while automatically emphasizing all constituents, be they chemically identified or not, which represent information content in the sample being tested.
Silicon dioxide particles can reinforce the mechanical properties of an epoxy matrix. Combining carbon nanotubes with the silicon dioxide particles to co-reinforce the epoxy matrix achieves increases in compression strength, flexural strength, compression modulus, and flexural modulus. Such composites have increased mechanical properties over that of neat epoxy.
A dielectric layer is directly applied onto the surface of a heat sink part. For example, the composition for making the dielectric layer may be made into a paste or ink and then printed as a paste or ink, or applied with some other equivalent method, such as a lamination technique. The electrical circuit traces are then printed in a similar fashion onto the dielectric layer in the required pattern for whatever circuitry is to be applied. That circuitry (e.g., circuit elements) is then attached to the electrical traces as needed for the particular application.
H05K 3/12 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using printing techniques to apply the conductive material
A combination of multi-walled carbon nanotubes and single-walled carbon nanotubes and/or double-walled carbon nanotubes significantly improves the mechanical properties of polymer nanocomposites. Both flexural strength and flexural modulus of the MWNTs and single-walled carbon nanotubes and/or double-walled carbon nanotubes co-reinforced epoxy nanocomposites are further improved compared with same amount of either single-walled carbon nanotubes and/or double-walled carbon nanotubes or multi-walled carbon nanotubes reinforced epoxy nanocomposites. Besides epoxy, other thermoset polymers may also work.
Different kinds of printing pastes or inks are utilized in various combinations to develop multiple ceramic dielectric layers on graphitic substrates in order to create effective dielectric ceramic layers that combine good adhesion to both graphitic substrates and printed copper traces, and strong insulating capability. The pastes or inks may comprise a high thermal conductivity powder.
B32B 7/00 - Layered products characterised by the relation between layers Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties Layered products characterised by the interconnection of layers
An electronic memory device based on the reversible changes in a resistance of graphene when it is oxidized to graphene oxide or reduced back to graphene by voltage application. The redox chemical reactions are enabled by access of the graphene to a source of oxygen. The device is ionizing radiation tolerant and immune to single event effects.
Reflective color inks are used, such as for signage applications and as an electronic display medium and material. The reflective color inks comprise a core-shell particle that includes a core particle coated with a molecular surface coating. One example of such a particle is using a core of a polystyrene type of material that has a relatively low refractive index, with a high reflective index acrylic copolymer added as the shell material.
System and method for operating an ionizer using a combination of amplitude modulation and pulse width modulation to control the plasma temperature and the type of ions needed for analytic equipment. Ion density can be controlled by the repetition rate. The ionizer may utilize a non-radioactive ionization source, and be coupled to a differential mobility spectroscopy (DMS) analyzer.
Provided is a conductive film forming method, whereby a conductive film having a low electrical resistance can be formed on a base material using optical firing, even if heat resistance of the base material is low. This conductive film forming method is a method for forming a conductive film (2) on a base material (1), said method having a step of forming, on the base material, a film (3b) composed of copper fine particles (4), a step of optically firing the film (3b), and a step of plating the optically fired film (3c). Consequently, even if heat resistance of the base material (1) is low, the conductive film (2) can be formed on the base material (1) by reducing irradiation energy of light in optical firing. Since the conductive film (2) has a plating layer (21), electrical resistance thereof becomes low.
H05K 3/12 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using printing techniques to apply the conductive material
H05K 3/18 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
15.
COPPER PARTICLE DISPERSION, CONDUCTIVE FILM FORMATION METHOD, AND CIRCUIT SUBSTRATE
Provided is a copper particle dispersion suitable for discharge as droplets. This copper particle dispersion has copper particles, at least one dispersion medium which contains the copper particles, and at least one dispersant for dispersing the copper particles in the aforementioned dispersion medium. The copper particles have a median particle diameter of greater than or equal to 1nm and less than 100nm. The dispersion medium is a polar dispersion medium having a boiling point in the range of 150-250°C. By this configuration, when the copper particle dispersion is discharged as droplets, the discharge part is prevented from clogging due to drying of the dispersion medium, viscosity is low despite the high boiling point, and the copper particle dispersion is suitable to being discharged as droplets.
H01B 1/02 - Conductors or conductive bodies characterised by the conductive materialsSelection of materials as conductors mainly consisting of metals or alloys
16.
COPPER PARTICLE DISPERSION, CONDUCTIVE FILM FORMATION METHOD, AND CIRCUIT SUBSTRATE
Provided is a formulation for a copper particle dispersion comprising dispersed copper particles. This copper particle dispersion has copper particles, at least one dispersion medium which contains the copper particles, and at least one dispersant for dispersing the copper particles in the dispersion medium. The copper particles have a median particle diameter of greater than or equal to 1nm and less than 100nm. The dispersion medium is a polar dispersion medium. The dispersant is a compound having at least one acidic functional group and a molecular weight of 200-100000, or a salt thereof. By this configuration, the dispersant is compatible with the dispersion medium, and, because the surface of the copper particles is covered by dispersant molecules, the copper particles are dispersed in the dispersion medium.
H01B 1/02 - Conductors or conductive bodies characterised by the conductive materialsSelection of materials as conductors mainly consisting of metals or alloys
17.
SINTERING METALLIC INKS ON LOW MELTING POINT SUBSTRATES
Tape lamination on a dry copper ink film, followed by a flash lamp procedure, produces conductive films. The tape lamination increases the curing parameter window and reduces crack formation in the metallic film. Tape lamination facilitates curing of a continuous copper film on temperature sensitive substrates, such as PET, at power levels that would usually crack blow off the copper film. This lamination process also improves adhesion and uniformity of the cured film.
A process where a printed ink is placed onto a sacrificial ribbon. The ink is then converted to a metal film and transferred to a substrate, such as a silicon solar cell at very low temperatures. Further low-temperature processing may be utilized to form an ohmic contact. This process provides the speed and low-cost structure of ink and paste based processing with the diffusion control of vacuum deposited films.
A method of manufacturing a thermal management hybrid article includes electroplating a copper layer on a graphitic layer, adhering the copper-plated graphitic layer to a plate of aluminum with a nano-copper paste to form a substrate, heating the substrate in a forming gas at a temperature less than 500°C to melt to recrystallize the nano-copper paste, and cooling the substrate after the heating. A method of manufacturing a thermal management hybrid article includes electroplating a copper layer on a graphitic layer, electroplating copper on a plate of aluminum, and soldering the copper-plated layer on the graphitic layer to the copper-plated plate of aluminum. A method of manufacturing a thermal management hybrid article also includes electroplating a copper layer on a graphitic layer and immersing the copper-plated graphitic layer in molten aluminum to cast the an aluminum layer on the copper layer.
An electronic odor sensor is used in conjunction with a surgical tool, for example when wounds are cleansed to remove dead tissue and exudates, known clinically as debridement. The surgical tool will atomize substrate tissues and thereby mechanically generate vapors that can be sensed. Abrasion will likewise atomize substrate tissues liberating odors. Air near the surgical tool is collected and fed into the electronic odor sensor. The odor is analyzed by the sensor and a signal fed back based on the analysis.
A base material or composite material such as graphite, may be combined with another material, such as aluminum oxide or polyimide, to produce a new insulating thermal management material. The base material may be impregnated with another metal to create a composite base material.
H05K 3/02 - Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
22.
SURFACE-MODIFIED NANOPARTICLE INK FOR PHOTOVOLTAIC APPLICATIONS
Described herein is a novel material that easily penetrates silicon nitride-based anti-reflective coatings, forming a high quality electrical contact. A method for metallization on a solar cell includes depositing a passivation layer on a silicon substrate of a solar cell, depositing derivatized metal particles onto the passive layer, heating the substrate of the solar cell to migrate surface coatings from the derivatized metal particles onto the passivation layer creating a diffusion channel through the passivation layer to the silicon substrate, and as the metal particles melt due to the heating on the substrate, the melted metal diffuses through the diffusion channel forming a metallic content with the silicon substrate.
For solar cell fabrication, the addition of precursors to printable media to assist etching through silicon nitride or silicon oxide layer thus affording contact with the substance underneath the nitride or oxide layer. The etching mechanism may be by molten ceramics formed in situ, fluoride-based etching, as well as a combination of the two.
In a process for producing a solar cell, a sintering process performed on a nickel nanoparticle ink forms nickel silicide to create good adhesion and a low electrical ohmic contact to a silicon layer underneath, and allows for a subsequently electroplated metal layer to reduce electrode resistances. The printed nickel nanoparticles react with the silicon nitride of the antireflective layer to form conductive nickel silicide.
A highly transparent and electrically conductive substrate is made by applying a conductive mesh over a transparent substrate, depositing a UV-curable transparent material over the conductive mesh and the transparent substrate, and exposing the UV-curable transparent material to a directional UV light from a UV light source positioned so that the UV light emitted from the UV light source travels through the transparent substrate before being received by the UV-curable transparent material, wherein the UV-curable transparent material is cured in response to exposure from the UV light except for those portions of the UV-curable transparent material masked from exposure to the UV light by the conductive mesh. Uncured portions of the UV-curable transparent material are removed, and a transparent conductive material layer is deposited over the cured UV-curable transparent material and conductive mesh.
A solar cell having a first conductive layer positioned over the first substrate, and a first solar cell material positioned on the first conductive layer, wherein the first solar cell material is configured for converting incident light of a first wavelength into electrical energy. A second conductive layer is positioned over the first solar cell material, wherein the second conductive layer is transparent to at least light of the first wavelength. A second solar cell material is positioned on the second conductive layer, wherein the second solar cell material is configured for converting incident light of a second wavelength into electrical energy, wherein the second conductive layer comprises a meshed conductive material having gaps where no conductive material resides.
Improved mechanical properties of either clay or carbon nanotube (CNT)-reinforced polymer matrix nanocomposites are obtained by pre-treating nanoparticles and polymer pellets prior to a melt compounding process. The clay or CNTs are coated onto the surfaces of the polymer pellets by a milling process. The introduction of moisture into the mixture of the nanoparticles and the polymer pellets results in the nanoparticles more easily, firmly, and thoroughly coating onto the surfaces of the polymer pellets.
Graphite aluminum composites for use in thermal management applications, such as heat sinks, are manufactured using pressure molds. The materials may be mixed previous to insertion into the mold, or can be mixed within the mold. Further, graphitic particles, such as graphitic needle coke surfaces, can be coated with the aluminum before the mold process is performed. Further, ceramic sheets can be inserted into the mixture before the mold process is performed so that the molded material can then be sliced to provide a carbon aluminum composite plate with a ceramic sheet on one of its surfaces.
Nanoparticle inks and powders are sintered using an applied mechanical energy, such as uniaxial pressure, hydrostatic pressure, and ultrasonic energy, which may also include applying a sheer force to the inks or powders in order to make the resultant film or line conductive.
H01B 5/00 - Non-insulated conductors or conductive bodies characterised by their form
C09D 5/00 - Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects producedFilling pastes
H01R 43/00 - Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
A gas sensor with instant response uses one or more oscillators while no chemical reactions or other material modifications are involved. Sensor can be used in any application to measure a percent range of gas concentrations, or mass of the absorbed gas.
The instant article of manufacture is made by applying optical energy to one or more layers of nanoparticulate materials under predetermined conditions to produce a nanostructure. The nanostructure has layers of optically fused nanoparticles including a predetermined pore density, a predetermined pore size, or both. The predetermined conditions for applying the optical energy may include a predetermined voltage, a predetermined duration, a predetermined power density, or combinations thereof.
A metallic ink including a vehicle, a multiplicity of copper nanoparticles, and an alcohol. The conductive metallic ink may be deposited on a substrate by methods including inkjet printing and draw-down printing. The ink may be pre-cured and cured to form a conductor on the substrate.
B05D 5/12 - Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
Conductive lines are deposited on a substrate to produce traces for conducting electricity between electronic components. A patterned metal layer is formed on the substrate, and then a layer of material having a low thermal conductivity is coated over the patterned metal layer and the substrate. Vias are formed through the layer of material having the low thermal conductivity thereby exposing portions of the patterned metal layer. A film of conductive ink is then coated over the layer of material having the low thermal conductivity and into the vias to thereby coat the portions of the patterned metal layer, and then sintered. The film of conductive ink coated over the portion of the patterned metal layer does not absorb as much energy from the sintering as the film of conductive ink coated over the layer of material having the low thermal conductivity. The layer of material having the low thermal conductivity may be a polymer, such as polyimide.
H01L 21/223 - Diffusion of impurity materials, e.g. doping materials, electrode materials, into, or out of, a semiconductor body, or between semiconductor regionsRedistribution of impurity materials, e.g. without introduction or removal of further dopant using diffusion into, or out of, a solid from or into a gaseous phase
Improved mechanical properties of both clay and carbon nanotube (CNT)-reinforced polymer matrix nanocomposites are obtained by pre-treating nanoparticles and thermosetting or thermoplastic polymer pellets prior to a melt compounding process. The nanoparticles are coated onto the surface of the polymer pellets by a ball-milling process. The nanoparticle thin film is formed onto the surface of the polymer pellets after the mixture is ground for a certain time.
B32B 7/00 - Layered products characterised by the relation between layers Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties Layered products characterised by the interconnection of layers
A method for manufacturing an electrochromic window positions a pattern of conductive lines over a first transparent substrate, a transparent conductive film over the pattern of conductive lines and first transparent substrate, and an electrochromic layer over the transparent conductive film, wherein the transparent conductive layer is a physical barrier separating the electrochromic layer from the pattern of conductive lines. The first transparent substrate may be flexible. The pattern of conductive lines and transparent conductive film may be deposited and processed at a temperature less than 180 degrees C. The pattern of conductive lines may be deposited on the first transparent substrate by printing techniques.
G02F 1/15 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
A silicon solar cell is formed with an N-type silicon layer on a P-type silicon semiconductor substrate. An antireflective and passivation layer is deposited on the N-type silicon layer, and then an aluminum ink composition is printed on the back of the silicon wafer to form the back contact electrode. The back contact electrode is sintered to produce an ohmic contact between the electrode and the P-type silicon layer. The aluminum ink composition may include aluminum powders, a vehicle, an inorganic polymer, and a dispersant. Other electrodes on the solar cell can be produced in a similar manner with the aluminum ink composition.
Carbon nanotubes (CNTs) are so long that they cannot be penetrated inbetween carbon fibers during a prepreg preparation process, and are shortened in order for them not to be filtered out by the carbon fibers. This results in a huge improvement of the mechanical properties (flexural strength and flexural modulus) compared with neat epoxy.
B32B 5/24 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by the presence of two or more layers which comprise fibres, filaments, granules, or powder, or are foamed or specifically porous one layer being a fibrous or filamentary layer
A metallic composition including a solvent and a plurality of metal nanoparticles dispersed therein is formulated such that curing of the metallic composition on a substrate provides a metallic conductor with a resistivity of about 5 x 10-4 Ωcm or less. Electrical components of an assembly can be interconnected by a metallic conductor formed by curing the metallic composition on a substrate. A metallic composition including metal nanoparticles can be deposited on a substrate and solidified. The metallic composition can be contacted with a metal wire before or after solidification of the metallic composition and secured to the solidified metallic composition.
A solution of metal ink is mixed and then printed or dispensed onto the substrate using the dispenser. The film then is dried to eliminate water or solvents. In some cases, a thermal curing step can be introduced subsequent to dispensing the film and prior to the photo-curing step. The substrate and deposited film can be cured using an oven or by placing the substrate on the surface of a heater, such as a hot plate. Following the drying and/or thermal curing step, a laser beam or focused light from the light source is directed onto the surface of the film in a process known as direct writing. The light serves to photo-cure the film such that it has low resistivity.
B05D 3/00 - Pretreatment of surfaces to which liquids or other fluent materials are to be appliedAfter-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
B82B 3/00 - Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
41.
ADDITIVES AND MODIFIERS FOR SOLVENT- AND WATER-BASED METALLIC CONDUCTIVE INKS
A conductive ink includes metallic nanoparticles, a polymeric dispersant, and a solvent. The polymeric dispersant may be ionic, non-ionic, or any combination of ionic and non-ionic polymeric dispersants. The solvent may include water, an organic solvent, or any combination thereof. The conductive ink may include a stabilizing agent, an adhesion promoter, a surface tension modifier, a defoaming agent, a leveling additive, a rheology modifier, a wetting agent, an ionic strength modifier, or any combination thereof.
An ion-based analyzer including a non-radioactive ion source, an ion generation chamber for generating ions, a sample ionization chamber and a controller for employing ion flow control, an ion-based filter, and a detector for analyzing a sample.
Forming a conductive film comprising depositing a non-conductive film on a surface of a substrate, wherein the film contains a plurality of copper nanoparticles and exposing at least a portion of the film to light to make the exposed portion conductive. Exposing of the film to light photosinters or fuses the copper nanoparticles.
Strings configured for use in sports racquets (400) and musical instruments are fabricated as a plastic core wrapped with one or more filaments (101) of plastic. The strings are coated with a material composite that includes rigid nanoparticles, and lubricated nylon. The rigid nanoparticles may include clay or carbon nanotubes. The strings are coated with the material composite using various processes that result in a coating thickness of between 1 and 200 µm. The material composite may further include impact modifiers. The strings experience extended life due to reduced frictional wear and improved mechanical properties.
Tagged products (including tagged petroleum products) and methods of detecting the same are disclosed. The tagged petroleum products are tagged with a violanthrone, e.g., a substituted violanthrone and/or an isoviolanthrone, e.g., a substituted isoviolanthrone.
A thin buffer layer (303) is used to coat on the multi-filament (401) wrapped string to fill the gaps. The polymers of the buffer-layer coating have a high melt-flow (low viscosity) during coating process to fill all the gaps between the filaments, and the filaments are fixed by the coatings onto base core materials.
Carbon nanotubes are grown on a first substrate (301). The CNTs (101) grown on the first substrate (301) are immersed in a biological solution at a predetermined depth to functionalize ends of the CNTs (101) with a biological molecule. The functionalized CNTs are harvested from the first substrate (301). A second substrate is functionalized with a complementary biological modification (203), which is a complementary binding partner to the biological molecule functionalized to the ends of the CNTs. The functionalized CNTs are attached to the second substrate by way of the complementary binding partner (203).
Improved mechanical properties of both clay and carbon nanotube (CNT)-reinforced polymer matrix nanocomposites are obtained by pre-treating nanoparticles and polymer pellets prior to a melt compounding process. The nanoparticles are coated onto the surface of the polymer pellets by a ball-milling process. The nanoparticles thin film is formed onto the surface of the polymer pellets after the mixture is ground for a certain time.
Fabrication of thin-film transistor devices on polymer substrate films that is low-temperature and fully compatible with polymer substrate materials. The process produces micron-sized gate length struc¬ tures that can be fabricated using inkjet and other standard printing techniques. The process is based on microcrack technology developed for surface conduction emitter configurations for field emission devices.
H01L 51/10 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching and having at least one potential-jump barrier or surface barrier; Capacitors or resistors with at least one potential-jump barrier or surface barrier - Details of devices
H01L 51/40 - Processes or apparatus specially adapted for the manufacture or treatment of such devices or of parts thereof
A nanoparticle based sensor in which smaller particles are seeded at a higher density to produce a faster response time than that of a sensor using larger particles and less dense seeding. The nanoparticles may comprise palladium nanoparticles. The sensor may be used in hydrogen fuel cells.
G01N 27/26 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variablesInvestigating or analysing materials by the use of electric, electrochemical, or magnetic means by using electrolysis or electrophoresis
51.
MODULATION OF STEP FUNCTION PHENOMENA BY VARYING NANOPARTICLE SIZE
The present invention is directed to methods and systems of modulating step function phenomena by varying nanoparticle size-particularly wherein a plurality of such nanoparticles are employed, and wherein such nanoparticles comprise a size distribution favorable for collectively smoothing the step function. Such methods and systems are particularly favorable for hydrogen sensors.
G01N 27/26 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variablesInvestigating or analysing materials by the use of electric, electrochemical, or magnetic means by using electrolysis or electrophoresis
A combination of MWNTs (herein, MWNTs have more than 2 walls) and DWNTs significantly improves the mechanical properties of polymer nanocomposites. A small amount of DWNTs reinforcment (<1wt.%) significantly improves the flexural strength of epoxy matrix nanocomposites. A same or similar amount of MWNTs reinforcement significantly improves the flexural modulus (stiffness) of epoxy matrix nanocomposites. Both flexural strength and flexural modulus of the MWNTs and DWNTs-coreinforced epoxy nanocomposites are further improved compared with same amount of either DWNTs or MWNTs-reinforced epoxy nanocomposites. In this epoxy/DWNTs/MWNTs nanocomposite system, SWNTs may also work instead of DWNTs. Besides epoxy, other thermoset polymers may also work.
A binder material, inorganic polymer, is used to formulate carbon nanotube pastes. This material can be cured at 200°C and has a thermal-stability up to 500°C. Low out-gassing of this binder material makes it a good candidate for long life field emission devices. Due to better adhesion with this binder material, a strong adhesive peelable polymer from liquid form can be applied on the CNT cathode to achieve a uniform activation with even contact and pressure on the surface. The peelable polymer films may be used both as an activation layer and a mask layer to fabricate high-resolution patterned carbon nanotube cathodes for field emission devices using lithographic processes.
C08G 77/00 - Macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon
H01B 1/00 - Conductors or conductive bodies characterised by the conductive materialsSelection of materials as conductors
Composition of carbon nanotubes (CNTs) are produced into inks (1205) that are dispensable via printing or stencil printing processes. The CNT ink (1205) is dispensed into wells formed in a cathode structure through a stencil (1204).
H01J 9/12 - Manufacture of electrodes or electrode systems of photo-emissive cathodesManufacture of electrodes or electrode systems of secondary-emission electrodes
H01J 9/02 - Manufacture of electrodes or electrode systems
B05D 5/12 - Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties