A multichannel actuation system for a launch vehicle. The multichannel actuation system includes a control unit operably connected to a single interface unit, and a plurality of individual hold-and-release mechanisms (HRMs) configured for releasably holding a plurality of payloads to the launch vehicle. Each of the plurality of HRMs is operably connected to the interface unit. The interface unit is configured for controlling actuation of the plurality of HRMs based on release operation instructions received from the control unit.
A Hold Down Release Mechanism (HDRM) interface for attachment of a first spacecraft to an adjacent structure of a launch vehicle or a second spacecraft, wherein the HDRM interface is configured for forming part of a single-point or multi-point releasable attachment of the first spacecraft to the adjacent structure. The HDRM interface includes first and second connector parts, wherein one of the first and second connector parts is configured to be fastened to the adjacent structure, and the other of the first and second connector parts is configured to be fastened to the first spacecraft. The first connector part has a tapered projection and the second connector part has a matching formed tapered recess configured for receiving the tapered projection, enabling load transfer between the first and second connector parts when the tapered projection is located in the tapered recess and the first and second connector parts are pressed together.
A Hold Down Release Mechanism, HDRM, interface for attachment of a spacecraft to an adjacent structure of a launch vehicle or another spacecraft, wherein the HDRM interface is configured for forming part of a single or multi-point releasable attachment of the spacecraft to said adjacent structure. The HDRM interface includes first and second connector parts, wherein one of the first and second connector parts is fastened to said adjacent structure, and other is fastened to the spacecraft; wherein the first connector part has a tapered projection with a non-circular external surface; wherein the second connector part has a tapered recess with a non-circular interior surface configured for form-lockingly receiving the tapered projection, for enabling transfer of torsion and shear load between the first and second connector parts, when the tapered projection is inserted in the tapered recess and the first and second connector parts are pressed together.
An assembly comprising a multiple payload set for a launch vehicle and a stiff and rigid ground support equipment. The multiple payload set comprising a plurality of payloads, wherein the plurality of payloads are interconnected via a non-self-supported connection structure before assembly of the multiple payload set to a dispenser body. Each payload comprises first attachment means attached to the non-self-supported connection structure, wherein the non-self-supported connection structure comprises second attachment means attached to the ground support equipment, for attachment of the multiple payload set to the dispenser body. The ground support equipment is attached to the multiple payload set via the second attachment means to reinforce and secure the multiple payload set to enable transport and maneuverability of the multiple payload set without jeopardizing the non-self-supported connection structure.
A separation device for a spacecraft or launcher, separation device being movable from a locked state, in which the separation device is arranged to lock onto a component of a spacecraft or launcher, to a released state, in which component is released, separation device including: an inner housing divided into at least two portions for locking onto component of spacecraft or launcher, and a locking arrangement arranged to move between a locking configuration and a releasing configuration, wherein the locking configuration is such that said at least two portions of inner housing are prevented from separating, wherein said locking arrangement includes: a first part arranged to at least partially enclose said at least two portions of inner housing when locking arrangement is in the locking configuration.
A waveguide polarizer for converting between a linearly polarized electromagnetic field in a first waveguide and a circularly polarized electromagnetic field in a second waveguide is provided. The waveguide polarizer includes a structure interconnecting the first and second waveguide which includes a waveguide excitation arrangement with a bifilar helical shape. A circularly polarized antenna arranged to be connected to the first waveguide of the waveguide polarizer and a satellite arrangement are also provided.
H01Q 21/24 - Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
The invention relates to a phase sequencing three-phase network comprising a first side connected to a second side via the network. The first side comprises one endpoint (EP1) and the second side comprises three endpoints (EP2, EP3, and EP4). The network comprises five nodes (NP1-NP5) interconnected via feed line sections (FP1-FP10) comprising at least one transmission line section (R11-R102) each. The invention further relates to an optimization method for the network for deciding characteristic impedance and length of each transmission line section (R11-R102).
A payload dispenser for a launch vehicle including a plurality of panels, wherein at least one panel includes at least one payload mounted onto the panel. The panels are attachable to each other by means of attachment means in the form of at least one payload dispenser joint whereby a self-supporting dispenser is formed.
The invention relates to a separation device for a spacecraft or launcher. The separation device includes an inner housing divided into at least two portions locked to each other by a locking device in a locking position. The locking device is arranged to move between a locking position and a releasing position. The separation device includes an initiator including means for providing high pressure fluid to an expansion chamber when the separation device is switched from a locked state to a released state. The high pressure fluid in an expansion chamber moves the locking device from the locking position to the releasing position when the separation device is switched from the locked state to the released state. The separation device includes a dampening arrangement arranged to attenuate a peak load when the separation device is switched from the locked state to the released state.
The present disclosure relates to a separable roller screw assembly comprising: a first screw shaft having a first external thread and being axially separated from a second screw shaft having a second external thread; a planetary roller arrangement comprising multiple rotatable rollers radially arrayed about the first and second screw shafts, whilst being encapsulated by a rotatable nut module; the rotatable nut module being coaxially arranged about the first and second screw shafts and configured for maintaining the planetary roller arrangement, the first and second screw shafts in an axially fixed configuration to permit the assembly to carry a load in an axial direction corresponding to an axial tensile force, whilst enabling displacement of the first screw shaft relative to the second screw shaft when said assembly is released from said axially fixed configuration; and wherein each one of the multiple rollers comprises first and second roller external thread regions adapted to engage said first external thread and said second external thread, respectively. Moreover, the present disclosure relates to a space craft release mechanism for separating a first space craft element from a second space craft element and comprising a separable roller screw assembly. In addition, the present disclosure relates a clamp band system for a load bearing interface assembly of a space craft comprising a separable roller screw assembly.
B64G 1/64 - Systems for coupling or separating cosmonautic vehicles or parts thereof, e.g. docking arrangements
F16B 2/08 - Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening external, i.e. with contracting action using bands
A microwave transmission line assembly operated in vacuum for satellite antennas and beamforming networks comprising a first ground plane and a conductor strip positioned a distance from the first ground plane. The conductor strip comprises a first strip portion and a second strip portion (6). The first strip portion is positioned at a first distance from the first ground plane and wherein the second strip portion is positioned at a second distance from the first ground plane. The first distance is smaller than the second distance, wherein the first distance is chosen to avoid multipaction.
A separation device for a spacecraft or launcher comprising a nut divided into at least two nut portions locked to each other by a locking device in a locking position. A releasing device is arranged to switch the locking device from the locking position to a releasing position. The separation device comprises at least two bearing elements arranged between the locking device and the nut. The nut comprises an outer envelope surface which comprises as many indentations as the number of bearing elements and locking surfaces between the indentations. In the locked state each bearing element is jammed between the locking surface and an inner envelope surface of the locking device and in the released state each bearing element is positioned facing the indentations.
The invention relates to a separation device for a spacecraft or launcher. The separation device includes an inner housing divided into at least two portions locked to each other by a locking device in a locking position. The locking device is arranged to move between a locking position and a releasing position. The separation device includes an initiator including means for providing high pressure fluid to an expansion chamber when the separation device is switched from a locked state to a released state. The high pressure fluid in an expansion chamber moves the locking device from the locking position to the releasing position when the separation device is switched from the locked state to the released state. The separation device comprises a dampening arrangement arranged to attenuate a peak load when the separation device is switched from the locked state to the released state.
b) and drives them towards each other when tightening the payload joint (10). The payload joint (10) further comprises a bolt cutter (101) arranged for cutting the bolt upon activation.
The disclosure concerns a joint (1) for releasably connecting a first space craft element (2) to a second space craft element (3) comprising a first flange (4) on the first space craft element (2) and a second flange (5) on the second space craft element (3). The joint (1) comprises first shoe portions (6) and second shoe portions (13) formed as sectors of a solid of revolution, keeping the flanges (4, 5) together in a longitudinal direction, The shoe portions are positioned next to each other in a circumferential direction the reference to a longitudinal direction of the space crafts. The first shoe portions being arranged to, at a prevailing Coulomb friction, not allow self-locking and the second show portions are arranged to allow self-locking.
B64G 1/64 - Systems for coupling or separating cosmonautic vehicles or parts thereof, e.g. docking arrangements
F16B 2/08 - Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening external, i.e. with contracting action using bands
A payload dispenser for a launch vehicle includes a plurality of panels. At least one panel includes a payload mounted onto the panel. The panels are attachable to each other to thereby form a self-supporting dispenser.
The invention relates to a multifilar helix antenna (1) comprising a wave feed and polarizing section (2) comprising a cover portion (3) comprising a through opening (4). The antenna (1) comprises a helix radiator (5) comprising three or more resonant helical elements (6) evenly distributed about an imaginary circle. Each helical element (6) extends in a longitudinal direction (Z) from the feed and polarizing section (2) through the opening (4) in the cover portion (3) and wound to form the helix radiator (5). Each helical element (6) comprises one or a plurality of wave perturbations (7) separated in the longitudinal direction (Z) and that each set of perturbations are positioned at the same level in the longitudinal direction (Z) to yield an equivalent array of stacked helical radiators, wherein the cover portion (3) comprises a rotationally symmetric corrugated assembly (8).
H01Q 11/14 - Resonant antennas with parts bent, folded, shaped or screened or with phasing impedances, to obtain desired phase relation of radiation from selected sections of the antenna or to obtain desired polarisation effects
H01Q 1/36 - Structural form of radiating elements, e.g. cone, spiral, umbrella
H01Q 21/24 - Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
A shock damping element includes a first shock damping structure that includes a multitude of first elements, a multitude of second elements and a first central member. The first elements and the second elements are located at opposite sides of the first central member. The first and second elements extend towards the first central member at a first acute angle (α) relative the first central member and are connected to the first central member. The first and second elements extend in a first direction circumferentially.
F16F 15/02 - Suppression of vibrations of non-rotating, e.g. reciprocating, systemsSuppression of vibrations of rotating systems by use of members not moving with the rotating system
F16F 1/02 - Springs made of steel or other material having low internal frictionWound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
B64G 1/22 - Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
19.
Spurious-free flexible frequency converter and a satellite communication repeater architecture
H04B 1/00 - Details of transmission systems, not covered by a single one of groups Details of transmission systems not characterised by the medium used for transmission