The present invention is a marine current turbine comprising a downstream rotor, a faired spar, a deckhouse at the waterline, and a ballasting and mooring arrangement to ensure the center of buoyancy is above the center of gravity to provide a stable platform and ample rotor torque reaction. The faired spar minimizes the wake deficit ingested by the rotor and reduces turbulence and drag on the turbine. The deckhouse provides buoyancy to react to gravitational forces and the downward tension component supplied by the mooring system during maximum platform and rotor drag conditions and reserve buoyancy if a portion of the platform becomes flooded. The mooring arrangement preferably forms a bridle to provide yaw stability.
A marine current turbine rotor comprises a hub and fixed and two or more pitchable blade sections configured to reduce bending moment loads on the pitch bearings and enable the use of non-standard, low-cost structural materials for the hub, blades, and pitch shaft. A submersible pitch drive mechanism or linkage in the hub rotates the pitch shaft to cause the pitchable blade section to move to a specified pitch position. The hub cavity is configured to be “wet” without the expense and maintenance requirement of seals to prevent water intrusion, utilizing water-lubricated pitch bearings.
The present invention provides a novel, floating, offshore wind turbine (FOWT) structure, referred to as a yawing buoy mast (YBM) structure. The YBM platform vertically combines a submerged spar buoy with outrigger legs and a mast on which a wind turbine nacelle is mounted. Compared to a conventional spar buoy wind turbine, weight is significantly reduced by optimizing how loads are borne and reacted by the floating structure. The mass of the YBM platform is reduced relative to the energy captured by the turbine resulting in a reduction in the cost of energy (COE). Platform load dynamics are coupled with the dynamics of the wind turbine by integration of the YBM platform and turbine controllers.
The present invention describes a floating yawing spar buoy current/tidal turbine. The spar includes a spreader above the rotor(s) with the spreader tips connected to fore and aft cable yokes that transition to opposing mooring lines connected to anchors on the seabed. The spreader comprises a yaw motor, which drives gears that engage with a ring gear fixed to the outer perimeter of the spar.
F03B 17/06 - Other machines or engines using liquid flow, e.g. of swinging-flap type
F03B 13/26 - Adaptations of machines or engines for special useCombinations of machines or engines with driving or driven apparatusPower stations or aggregates characterised by using wave or tide energy using tide energy
The present invention describes a floating yawing spar buoy current/tidal turbine. The spar includes a spreader above the rotor(s) with the spreader tips connected to fore and aft cable yokes that transition to opposing mooring lines connected to anchors on the seabed. The spreader comprises a yaw motor, which drives gears that engage with a ring gear fixed to the outer perimeter of the spar. Flow direction sensors activate the yaw motor for automatic yaw adjustments of the spar turbine. As tidal direction changes, the entire spar and turbine are yawed to maintain the rotor plane facing the tidal flow. The bottom end of the spar extends to approximately the bottom sweep of the rotor plane and contains a winched vertical mooring line, extending to the seabed and attached to a gravity or suction pile anchor. The turbine drive train can be accessed for servicing from the surface via hatches and ladders within the spar to enter the drive train and generating system vessel. The spar turbine is deployed by towing it in a horizontal position. At the operating site, the yokes are connected to the forward and aft mooring lines and the winch line is connected to the gravity anchor. The winch inside the keel draws the bottom end of the spar down and may be assisted by flooding the keel to reach a vertical position for the spar. The winch is then locked to retain required operating depth, or can actively control operating depth in areas of wide tide level range.
F03B 13/26 - Adaptations of machines or engines for special useCombinations of machines or engines with driving or driven apparatusPower stations or aggregates characterised by using wave or tide energy using tide energy
F03B 17/06 - Other machines or engines using liquid flow, e.g. of swinging-flap type
The present invention provides a submersible data center vessel that is towed to its operating site, moored to anchors on the ocean floor and connected to an appropriate power generating system. The vessel is then submerged to its recommended operating depth while preferably still allowing air exchange and service crew access to the vessel interior. In the event of extreme weather/sea conditions, the vessel can be submerged deeper for the duration of the extreme conditions and out of range of harmful wind and wave forces. The subsurface vessel is preferably powered by a renewable energy source such as, but not limited to marine hydrokinetic energy provided by wave, tidal, or marine current electric generators and/or offshore wind turbines. Alternatively, an onshore electric power grid supplies a portion or all of the electric power by submarine cable to the vessel. The computer servers housed within the vessel are cooled by heat exchangers drawing from cool ocean water, and continue to operate irrespective of weather and sea conditions on the surface.
The present invention provides a floating tower frame for an ocean current turbine system comprising multiple rotors, which is designed to generate electrical power or high pressure seawater for reverse osmosis or fresh water production from steady (gyre) or tidal currents. Turbines are mounted near the base of a plurality of floating towers held in parallel between a horizontal truss structure above water and a horizontal wing at the base of the towers, below the surface. The center of gravity of the system is located in the bottom one third of the towers below the water line, while the center of buoyancy is in the top third of the towers below the surface, and the entire structure floats vertically, with respect to the towers.
F03B 13/10 - Submerged units incorporating electric generators or motors
F03B 13/12 - Adaptations of machines or engines for special useCombinations of machines or engines with driving or driven apparatusPower stations or aggregates characterised by using wave or tide energy
F03B 13/26 - Adaptations of machines or engines for special useCombinations of machines or engines with driving or driven apparatusPower stations or aggregates characterised by using wave or tide energy using tide energy
The present invention describes a floating yawing spar buoy current/tidal turbine. The spar includes a spreader above the rotor(s) with the spreader tips connected to fore and aft cable yokes that transition to opposing mooring lines connected to anchors on the seabed. The spreader comprises a yaw motor, which drives gears that engage with a ring gear fixed to the outer perimeter of the spar. Flow direction sensors activate the yaw motor for automatic yaw adjustments of the spar turbine. As tidal direction changes, the entire spar and turbine are yawed to maintain the rotor plane facing the tidal flow. The bottom end of the spar extends to approximately the bottom sweep of the rotor plane and contains a winched vertical mooring line, extending to the seabed and attached to a gravity or suction pile anchor. The turbine drive train can be accessed for servicing from the surface via hatches and ladders within the spar to enter the drive train and generating system vessel. The spar turbine is deployed by towing it in a horizontal position. At the operating site, the yokes are connected to the forward and aft mooring lines and the winch line is connected to the gravity anchor. The winch inside the keel draws the bottom end of the spar down and may be assisted by flooding the keel to reach a vertical position for the spar. The winch is then locked to retain required operating depth, or can actively control operating depth in areas of wide tide level range.
F03B 13/12 - Adaptations of machines or engines for special useCombinations of machines or engines with driving or driven apparatusPower stations or aggregates characterised by using wave or tide energy
F03B 17/06 - Other machines or engines using liquid flow, e.g. of swinging-flap type
F03B 13/26 - Adaptations of machines or engines for special useCombinations of machines or engines with driving or driven apparatusPower stations or aggregates characterised by using wave or tide energy using tide energy
9.
Floating tower frame for ocean current turbine system
The present invention provides a floating tower frame for an ocean current turbine system comprising multiple rotors, which is designed to generate electrical power or high pressure seawater for reverse osmosis or fresh water production from steady (gyre) or tidal currents. Turbines are mounted near the base of a plurality of floating towers held in parallel between a horizontal truss structure above water and a horizontal wing at the base of the towers, below the surface. The center of gravity of the system is located in the bottom one third of the towers below the water line, while the center of buoyancy is in the top third of the towers below the surface, and the entire structure floats vertically, with respect to the towers.
F03B 17/06 - Other machines or engines using liquid flow, e.g. of swinging-flap type
F03B 13/26 - Adaptations of machines or engines for special useCombinations of machines or engines with driving or driven apparatusPower stations or aggregates characterised by using wave or tide energy using tide energy
10.
MULTI-MEGAWATT OCEAN CURRENT ENERGY EXTRACTION DEVICE
An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the predetermined operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant- speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.
F03B 13/10 - Submerged units incorporating electric generators or motors
F03B 17/06 - Other machines or engines using liquid flow, e.g. of swinging-flap type
F03B 13/18 - Adaptations of machines or engines for special useCombinations of machines or engines with driving or driven apparatusPower stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member and another member wherein the other member is fixed, at least at one point, with respect to the sea bed or shore
Energy generating apparatus, namely, underwater, hydro, and ocean current operated generators and turbines used to produce electricity Water purification equipment; namely, salt water, brackish water and seawater reverse osmosis and electrolysis desalinators; and water purification units