The disclosure relates to a series of independent human-induced non-transgenic mutations found at one or more of the Lip1 genes of a plant; plants having these mutations in one or more of their Lip1 genes; and a method of creating and finding similar and/or additional mutations of Lip1 by screening pooled and/or individual plants. The plants disclosed herein exhibit decreased lipase activity without having the inclusion of foreign nucleic acids in their genomes. Additionally, products produced from the plants disclosed herein exhibit increased hydrolytic and oxidative stability and increased shelf life without having the inclusion of foreign nucleic acids in their genomes.
A01H 6/46 - Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
C12N 9/20 - Triglyceride splitting, e.g. by means of lipase
C12N 15/82 - Vectors or expression systems specially adapted for eukaryotic hosts for plant cells
C12Q 1/6895 - Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
The present application relates to methods for wheat with increased dietary fiber. Methods of increasing dietary fiber by providing mutations in Wheat Prolamin-box Binding Factor are disclosed.
A series of independent human-induced non-transgenic mutations found at one or more of the SBEII genes of wheat; wheat plants having these mutations in one or more of their SBEII genes; and a method of creating and finding similar and/or additional mutations of SBEII by screening pooled and/or individual wheat plants. The seeds and flour from the wheat plants of the present invention exhibit an increase in amylose and resistant starch without having the inclusion of foreign nucleic acids in their genomes. Additionally, the wheat plants of the present invention exhibit altered SBEII activity without having the inclusion of foreign nucleic acids in their genomes.
A series of independent human-induced non-transgenic mutations found at one or more of the SBEII genes of wheat; wheat plants having these mutations in one or more of their SBEII genes; and a method of creating and finding similar and/or additional mutations of SBEII by screening pooled and/or individual wheat plants. The seeds and flour from the wheat plants of the present invention exhibit an increase in amylose and resistant starch without having the inclusion of foreign nucleic acids in their genomes. Additionally, the wheat plants of the present invention exhibit altered SBEII activity without having the inclusion of foreign nucleic acids in their genomes.
A series of independent human-induced non-transgenic mutations found at one or more of the Lpx genes of wheat; wheat plants having these mutations in one or more of their Lpx genes; and a method of creating and finding similar and/or additional mutations of Lpx by screening pooled and/or individual wheat plants. The wheat plants disclosed herein exhibit decreased lipoxygenase activity without having the inclusion of foreign nucleic acids in their genomes. Additionally, products produced from the wheat plants disclosed herein display increased oxidative stability and increased shelf life without having the inclusion of foreign nucleic acids in their genomes.
Coconut water; Smoothies; Energy drinks; Fruit juice; Fruit juice, namely, coconut, acai, blueberry, mango, pomegranate juice; Fruit juices; Fruit juices and fruit drinks; Non-alcoholic fruit juice beverages; Non-alcoholic beverages flavored with coffee
The present application relates to methods for wheat with increased dietary fiber. Methods of increasing dietary fiber by providing mutations in Wheat Prolamin-box Binding Factor are disclosed.
CannabisCannabisCannabisCannabis Ubiquitin genes and functional fragments thereof, and their use in the expression of heterologous nucleotides in plant cells.
The disclosure relates to a series of independent human-induced non-transgenic mutations found at one or more of the Lip1 genes of a plant; plants having these mutations in one or more of their Lip1 genes; and a method of creating and finding similar and/or additional mutations of Lip1 by screening pooled and/or individual plants. The plants disclosed herein exhibit decreased lipase activity without having the inclusion of foreign nucleic acids in their genomes. Additionally, products produced from the plants disclosed herein exhibit increased hydrolytic and oxidative stability and increased shelf life without having the inclusion of foreign nucleic acids in their genomes.
A01H 1/06 - Processes for producing mutations, e.g. treatment with chemicals or with radiation
A01H 6/46 - Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
A21D 13/06 - Products with modified nutritive value, e.g. with modified starch content
C12N 9/20 - Triglyceride splitting, e.g. by means of lipase
C12N 15/82 - Vectors or expression systems specially adapted for eukaryotic hosts for plant cells
C12Q 1/6895 - Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
CannabisCannabis Cannabis U6 RNA Polymerase 111 promoters, and functional fragments thereof, and their use in promoting the expression of one or more heterologous nucleotide fragments in plants. The present application further discloses compositions, nucleotide constructs, and transformed cells containing the DNA construct with the promoter, and methods for preparing and using the same.
A series of independent human-induced non-transgenic mutations found at one or more of the SBEII genes of wheat; wheat plants having these mutations in one or more of their SBEII genes; and a method of creating and finding similar and/or additional mutations of SBEII by screening pooled and/or individual wheat plants. The seeds and flour from the wheat plants of the present invention exhibit an increase in amylose and resistant starch without having the inclusion of foreign nucleic acids in their genomes. Additionally, the wheat plants of the present invention exhibit altered SBEII activity without having the inclusion of foreign nucleic acids in their genomes.
C12N 15/00 - Mutation or genetic engineeringDNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purificationUse of hosts therefor
A01H 6/46 - Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
Plants with resistance to glyphosate are disclosed herein. In one embodiment, the disclosure relate to human induced non-transgenic mutations in the EPSPS gene in plants.
A series of independent human-induced non-transgenic mutations found at one or more of the Lpx genes of wheat; wheat plants having these mutations in one or more of their Lpx genes; and a method of creating and finding similar and/or additional mutations of Lpx by screening pooled and/or individual wheat plants. The wheat plants disclosed herein exhibit decreased lipoxygenase activity without having the inclusion of foreign nucleic acids in their genomes. Additionally, products produced from the wheat plants disclosed herein display increased oxidative stability and increased shelf life without having the inclusion of foreign nucleic acids in their genomes.
Soybean plants with one or more non-transgenic human-induced, mutations of the phytate transport genes, LPA-3 and LPA-19, and the agglutinin gene, LEC1, are disclosed. Soybean plants and seeds having reduced levels of phytate and/or lectin as a result of such non-transgenic human-induced mutations are provided. Meal prepared from soybean seeds provided herein is useful, for example, as a source of food or feed for poultry, human, swine, or fish, wherein the food or feed has reduced levels of antinutrient factors, including phytate and lectin.
A23K 10/30 - Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hayAnimal feeding-stuffs from material of fungal origin, e.g. mushrooms
33.
Soybeans with reduced antinutritional factor content
Soybean plants with one or more non-transgenic human-induced mutations of the phytate transport genes, LPA-3 and LPA-19, and the agglutinin gene, LEC1, are disclosed. Soybean plants and seeds having reduced levels of phytate and/or lectin as a result of such non-transgenic human-induced mutations are provided. Meal prepared from soybean seeds provided herein is useful, for example, as a source of food or feed for poultry, human, swine, or fish, wherein the food or feed has reduced levels of antinutrient factors, including phytate and lectin.
30 - Basic staples, tea, coffee, baked goods and confectionery
Goods & Services
Non-transgenic enhanced wheat flour, wheat germ, and wheat bran for use as an ingredient in foods for human consumption, namely, processed snacks, breads, pastas, cereals, and crackers; non-transgenic enhanced processed wheat grains, wheat flour, wheat germ, wheat bran and wheat seeds for improved nutrition and health benefits
42 - Scientific, technological and industrial services, research and design
44 - Medical, veterinary, hygienic and cosmetic services; agriculture, horticulture and forestry services
Goods & Services
Plant products of the plant genus Cannabis with a delta-9 tetrahydrocannabinol concentration of not more than 0.3 percent on a dry weight basis, namely, live plants, live plant varieties, plant seeds for planting, live plant parts, namely, live plant tissue, live plant clones and live plant transplants in the form of live plant branches Scientific research in the field of the genetics of the plant genus Cannabis with a delta-9 tetrahydrocannabinol concentration of not more than 0.3 percent on a dry weight basis; research and development of new stable and useful varieties of the plant genus Cannabis with a delta-9 tetrahydrocannabinol concentration of not more than 0.3 percent on a dry weight basis through a breeding program Agricultural services, namely, breeding, planting, growing, fertilizing, pruning and picking of the plant genus Cannabis with a delta-9 tetrahydrocannabinol concentration of not more than 0.3 percent on a dry weight basis for others
42 - Scientific, technological and industrial services, research and design
44 - Medical, veterinary, hygienic and cosmetic services; agriculture, horticulture and forestry services
Goods & Services
Plant products of the plant genus Cannabis with a delta-9 tetrahydrocannabinol concentration of not more than 0.3 percent on a dry weight basis, namely, live plants, live plant varieties, plant seeds for planting, live plant parts, namely, live plant tissue, live plant clones and live plant transplants in the form of live plant branches Scientific research in the field of the genetics of the plant genus Cannabis with a delta-9 tetrahydrocannabinol concentration of not more than 0.3 percent on a dry weight basis; research and development of new stable and useful varieties of the plant genus Cannabis with a delta-9 tetrahydrocannabinol concentration of not more than 0.3 percent on a dry weight basis through a breeding program Agricultural services, namely, breeding, planting, growing, fertilizing, pruning and picking of the plant genus Cannabis with a delta-9 tetrahydrocannabinol concentration of not more than 0.3 percent on a dry weight basis for others
The disclosure relates to a series of independent human-induced non-transgenic mutations found at one or more of the Lip1 genes of a plant; plants having these mutations in one or more of their Lip1 genes; and a method of creating and finding similar and/or additional mutations of Lip1 by screening pooled and/or individual plants. The plants disclosed herein exhibit decreased lipase activity without having the inclusion of foreign nucleic acids in their genomes. Additionally, products produced from the plants disclosed herein exhibit increased hydrolytic and oxidative stability and increased shelf life without having the inclusion of foreign nucleic acids in their genomes.
C12N 9/20 - Triglyceride splitting, e.g. by means of lipase
A01H 1/06 - Processes for producing mutations, e.g. treatment with chemicals or with radiation
C12Q 1/6895 - Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
A series of independent human-induced non-transgenic mutations found at one or more of the Lpx genes of wheat; wheat plants having these mutations in one or more of their Lpx genes; and a method of creating and finding similar and/or additional mutations of Lpx by screening pooled and/or individual wheat plants. The wheat plants disclosed herein exhibit decreased lipoxygenase activity without having the inclusion of foreign nucleic acids in their genomes. Additionally, products produced from the wheat plants disclosed herein display increased oxidative stability and increased shelf life without having the inclusion of foreign nucleic acids in their genomes.
Plants with resistance to glyphosate are disclosed herein. In one embodiment, the disclosure relate to human induced non-transgenic mutations in the EPSPS gene in plants.
C12N 15/00 - Mutation or genetic engineeringDNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purificationUse of hosts therefor
A series of independent human-induced non-transgenic mutations found at one or more of the SBEII genes of wheat; wheat plants having these mutations in one or more of their SBEII genes; and a method of creating and finding similar and/or additional mutations of SBEII by screening pooled and/or individual wheat plants. The seeds and flour from the wheat plants of the present invention exhibit an increase in amylose and resistant starch without having the inclusion of foreign nucleic acids in their genomes. Additionally, the wheat plants of the present invention exhibit altered SBEII activity without having the inclusion of foreign nucleic acids in their genomes.
C12N 15/00 - Mutation or genetic engineeringDNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purificationUse of hosts therefor
A01H 6/46 - Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
A series of independent human-induced non-transgenic mutations found at one or more of the Lpx genes of wheat; wheat plants having these mutations in one or more of their Lpx genes; and a method of creating and finding similar and/or additional mutations of Lpx by screening pooled and/or individual wheat plants. The wheat plants disclosed herein exhibit decreased lipoxygenase activity without having the inclusion of foreign nucleic acids in their genomes. Additionally, products produced from the wheat plants disclosed herein display increased oxidative stability and increased shelf life without having the inclusion of foreign nucleic acids in their genomes.
30 - Basic staples, tea, coffee, baked goods and confectionery
Goods & Services
Non-transgenic enhanced wheat flour, wheat germ, and wheat bran for use as an ingredient in foods for human consumption, namely, processed snacks, breads, pastas, cereals, and crackers; non-transgenic enhanced processed wheat grains, wheat flour, wheat germ, wheat bran and wheat seeds for improved nutrition and health benefits
The disclosure relates to a series of independent human-induced non-transgenic mutations found at one or more of the Lip1 genes of a plant; plants having these mutations in one or more of their Lip1 genes; and a method of creating and finding similar and/or additional mutations of Lip1 by screening pooled and/or individual plants. The plants disclosed herein exhibit decreased lipase activity without having the inclusion of foreign nucleic acids in their genomes. Additionally, products produced from the plants disclosed herein exhibit increased hydrolytic and oxidative stability and increased shelf life without having the inclusion of foreign nucleic acids in their genomes.
C12Q 1/6895 - Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
The disclosure relates to a series of independent human-induced non-transgenic mutations found at one or more of the Lip1 genes of a plant; plants having these mutations in one or more of their Lip1 genes; and a method of creating and finding similar and/or additional mutations of Lip1 by screening pooled and/or individual plants. The plants disclosed herein exhibit decreased lipase activity without having the inclusion of foreign nucleic acids in their genomes. Additionally, products produced from the plants disclosed herein exhibit increased hydrolytic and oxidative stability and increased shelf life without having the inclusion of foreign nucleic acids in their genomes.
The disclosure relates to a series of independent human-induced non-transgenic mutations found at one or more of the Lip1 genes of a plant; plants having these mutations in one or more of their Lip1 genes; and a method of creating and finding similar and/or additional mutations of Lip1 by screening pooled and/or individual plants. The plants disclosed herein exhibit decreased lipase activity without having the inclusion of foreign nucleic acids in their genomes. Additionally, products produced from the plants disclosed herein exhibit increased hydrolytic and oxidative stability and increased shelf life without having the inclusion of foreign nucleic acids in their genomes.
This disclosure concerns the response of a plant to stress (e.g., drought stress). Embodiments relate to nucleic acids that may be introduced into a transgenic plant to modulate the response of the plant to environmental stress.
A series of independent human-induced non-transgenic mutations found at one or more of the SBEII genes of wheat; wheat plants having these mutations in one or more of their SBEII genes; and a method of creating and finding similar and/or additional mutations of SBEII by screening pooled and/or individual wheat plants. The seeds and flour from the wheat plants of the present invention exhibit an increase in amylose and resistant starch without having the inclusion of foreign nucleic acids in their genomes. Additionally, the wheat plants of the present invention exhibit altered SBEII activity without having the inclusion of foreign nucleic acids in their genomes.
C12N 15/00 - Mutation or genetic engineeringDNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purificationUse of hosts therefor
C12N 15/82 - Vectors or expression systems specially adapted for eukaryotic hosts for plant cells
A series of independent human-induced non-transgenic mutations found at one or more of the Lpx genes of wheat; wheat plants having these mutations in one or more of their Lpx genes; and a method of creating and finding similar and/or additional mutations of Lpx by screening pooled and/or individual wheat plants. The wheat plants disclosed herein exhibit decreased lipoxygenase activity without having the inclusion of foreign nucleic acids in their genomes. Additionally, products produced from the wheat plants disclosed herein display increased oxidative stability and increased shelf life without having the inclusion of foreign nucleic acids in their genomes.
Plants with resistance to glyphosate are disclosed herein. In one embodiment, the disclosure relate to human induced non-transgenic mutations in the EPSPS gene in plants.
A series of independent human-induced non-transgenic mutations found at one or more of the Lpx genes of wheat; wheat plants having these mutations in one or more of their Lpx genes; and a method of creating and finding similar and/or additional mutations of Lpx by screening pooled and/or individual wheat plants. The wheat plants disclosed herein exhibit decreased lipoxygenase activity without having the inclusion of foreign nucleic acids in their genomes. Additionally, products produced from the wheat plants disclosed herein display increased oxidative stability and increased shelf life without having the inclusion of foreign nucleic acids in their genomes.
A series of independent human-induced non-transgenic mutations found at one or more of the Lpx genes of wheat; wheat plants having these mutations in one or more of their Lpx genes; and a method of creating and finding similar and/or additional mutations of Lpx by screening pooled and/or individual wheat plants. The wheat plants disclosed herein exhibit decreased lipoxygenase activity without having the inclusion of foreign nucleic acids in their genomes. Additionally, products produced from the wheat plants disclosed herein display increased oxidative stability and increased shelf life without having the inclusion of foreign nucleic acids in their genomes.
A series of independent human-induced non-transgenic mutations found at one or more of the SBEII genes of wheat; wheat plants having these mutations in one or more of their SBEII genes; and a method of creating and finding similar and/or additional mutations of SBEII by screening pooled and/or individual wheat plants. The seeds and flour from the wheat plants of the present invention exhibit an increase in amylose and resistant starch without having the inclusion of foreign nucleic acids in their genomes. Additionally, the wheat plants of the present invention exhibit altered SBEII activity without having the inclusion of foreign nucleic acids in their genomes.
A series of independent human-induced non-transgenic mutations found in an expansin gene (LeExp1) of tomato; tomato plants having these mutations in their LeExp1 genes; and a method of creating and identifying similar and/or additional mutations in the LeExp1 gene by screening pooled and/or individual tomato plants. The tomato plants of the present invention exhibit fruit that soften more slowly post-harvest without having the inclusion of foreign nucleic acids in their genomes.
A series of independent human-induced, non-transgenic mutations found in at least one non-ripening (NOR) gene of tomato; tomato plants having these mutations in at least one of their NOR genes; and a method of creating and identifying similar and/or additional mutations in the NOR gene by screening pooled and/or individual tomato plants. The tomato plants of the present invention exhibit fruit that ripen more slowly, rot more slowly, are firmer, and have a longer shelf life post-harvest as a result of non-transgenic mutations in at least one of their NOR genes.
A series of independent human-induced, non-transgenic mutations found in at least one non-ripening (NOR) gene of tomato; tomato plants having these mutations in at least one of their NOR genes; and a method of creating and identifying similar and/or additional mutations in the NOR gene by screening pooled and/or individual tomato plants. The tomato plants of the present invention exhibit fruit that ripen more slowly, rot more slowly, are firmer, and have a longer shelf life post-harvest as a result of non-transgenic mutations in at least one of their NOR genes.
A series of independent human-induced non-transgenic mutations found at one or more of the SBEII genes of wheat; wheat plants having these mutations in one or more of their SBEII genes; and a method of creating and finding similar and/or additional mutations of SBEII by screening pooled and/or individual wheat plants. The seeds and flour from the wheat plants of the present invention exhibit an increase in amylose and resistant starch without having the inclusion of foreign nucleic acids in their genomes. Additionally, the wheat plants of the present invention exhibit altered SBEII activity without having the inclusion of foreign nucleic acids in their genomes.
A series of independent human-induced non-transgenic mutations found at one or more of the SBEII genes of wheat; wheat plants having these mutations in one or more of their SBEII genes; and a method of creating and finding similar and/or additional mutations of SBEII by screening pooled and/or individual wheat plants. The seeds and flour from the wheat plants of the present invention exhibit an increase in amylose and resistant starch without having the inclusion of foreign nucleic acids in their genomes. Additionally, the wheat plants of the present invention exhibit altered SBEII activity without having the inclusion of foreign nucleic acids in their genomes.
A series of independent human-induced non-transgenic mutations found at one or more of the SBEII genes of wheat; wheat plants having these mutations in one or more of their SBEII genes; and a method of creating and finding similar and/or additional mutations of SBEII by screening pooled and/or individual wheat plants. The seeds and flour from the wheat plants of the present invention exhibit an increase in amylose and resistant starch without having the inclusion of foreign nucleic acids in their genomes. Additionally, the wheat plants of the present invention exhibit altered SBEII activity without having the inclusion of foreign nucleic acids in their genomes.
A series of independent human-induced, non-transgenic mutations found in at least one non-ripening (NOR) gene of tomato; tomato plants having these mutations in at least one of their NOR genes; and a method of creating and identifying similar and/or additional mutations in the NOR gene by screening pooled and/or individual tomato plants. The tomato plants of the present invention exhibit fruit that ripen more slowly, rot more slowly, are firmer, and have a longer shelf life post-harvest as a result of non-transgenic mutations in at least one of their NOR genes.
C07H 21/04 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
65.
Non-transgenic tomato varieties having increased shelf life post-harvest due to alterations in β-galactosidase 4
The present invention provides a series of independent human-induced, non-transgenic mutations found in at least one tomato β-galactosidase 4 gene, tomato plants having these mutations in at least one of their tomato β-galactosidase 4 genes, and a method of creating and identifying similar and/or additional mutations in the tomato β-galactosidase 4 gene by screening pooled and/or individual tomato plants. Tomato plants identified and produced in accordance with the present invention have fruit that are firmer when ripe with reduced post-harvest softening compared to fruit from wild type tomato plants as a result of non-transgenic mutations in at least one of their tomato β-galactosidase 4 genes.
Non-naturally occurring soybean plants and seeds having reduced isoflavones are provided. A series of independent non-transgenic human-induced mutations found in one or more isoflavone synthase genes of soybean; soybean plants having these mutations in one or more isoflavone synthase genes; and a method of creating and finding similar and/or additional mutations of the isoflavone synthase gene by screening pooled and/or individual DNA of soybean plants. The results are soybean plants and seeds having reduced isoflavones.
A series of independent human-induced, non-transgenic mutations found in at least one non-ripening (NOR) gene of tomato; tomato plants having these mutations in at least one of their NOR genes; and a method of creating and identifying similar and/or additional mutations in the NOR gene by screening pooled and/or individual tomato plants. The tomato plants of the present invention exhibit fruit that ripen more slowly, rot more slowly, are firmer, and have a longer shelf life post-harvest as a result of non-transgenic mutations in at least one of their NOR genes.
A series of independent human-induced non-transgenic mutations found in an expansin gene (LeExp1) of tomato; tomato plants having these mutations in their LeExp1 genes; and a method of creating and identifying similar and/or additional mutations in the LeExp1 gene by screening pooled and/or individual tomato plants. The tomato plants of the present invention exhibit fruit that soften more slowly post- harvest without having the inclusion of foreign nucleic acids in their genomes.
C07H 21/02 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
69.
ENERGY EFFICIENT AND GREENHOUSE GAS EFFICIENT BIOFUEL
An energy efficient biofuel that has a net energy value (NEV). The net energy value is calculated with a disclosed NEV formula and set of calculations. The energy efficient biofuel comprises ethanol that is derived from a genetically modified crop that is produced with a genetically modified seed. The Crop yield per Nitrogen Application Rate of the genetically modified crop is at least 11% higher than the Crop Yield per Nitrogen Application Rate of a non-genetically modified control crop. The irrigation, plant density, plant species, plant variety, and residual nitrogen of the genetically modified crop and the non-genetically modified control crop are substantially the same.
Non-naturally occurring soybean plants and seeds having reduced isoflavones are provided. A series of independent non-transgenic human-induced mutations found in one or more isoflavone synthase genes of soybean; soybean plants having these mutations in one or more isoflavone synthase genes; and a method of creating and finding similar and/or additional mutations of the isoflavone synthase gene by screening pooled and/or individual DNA of soybean plants. The results are soybean plants and seeds having reduced isoflavones.
To trade nitrogen credits on an electronic trading market, an amount of nitrogen applied or to be applied to obtain a desired crop yield using a genetically modified version of a plant is determined. The genetically modified version of the plant has a nitrogen utilization efficiency greater than a non-genetically modified version of the plant. A nitrogen credit is calculated based on the determined amount of nitrogen. The credit is conveyed to one or more potential buyers through the electronic trading market.
To trade greenhouse gas emission credits on an electronic trading market, an amount of nitrogen applied or to be applied to obtain a desired crop yield using a genetically modified version of a plant is determined. The genetically modified version of the plant has a nitrogen utilization efficiency greater than a non-genetically modified version of the plant. An amount of greenhouse gas emission is determined based on the amount of nitrogen. A greenhouse gas credit is calculated based on the determined amount of greenhouse gas emission. The calculated greenhouse gas credit is conveyed to one or more potential buyers through the electronic trading market.
Methods are provided by which Oryza saliva plants and seeds thereof may be modified to express a coding region of interest using a promoter sequence operatively linked to the coding region. The promoter sequence is an isolated Oryza sativa antiquitin (OsAntl) promoter sequence including SEQ ID NO: 1. The coding region of interest may encode a nitrogen utilization protein, suitably alanine aminotransferase. Methods to develop Oryza sativa plants that have increased biomass and seed yield are also presented. Furthermore, Oryza saliva plants may be produced that maintain a desired yield while reducing the need for high levels of nitrogen application.
Methods of increasing nitrogen utilization efficiency in monocot plants through genetic modification to increase the levels of alanine aminotransferase expression and plants produced there from are described. In particular, methods for increasing the biomass and yield of transgenic monocot plants grown under nitrogen limiting conditions compared to non-transgenic plants are described. In this way, monocot plants may be produced that maintain a desired yield while reducing the need for high levels of nitrogen application.
The present invention relates to compositions and methods for preparing gamma-linoleic acid (GLA) in safflower plants, particularly from seeds of safflower. Nucleic acid sequences and constructs encoding one or more fatty acid desaturase sequences are used to generate transgenic safflower plants that contain and express one or more of these sequences and produce high levels of GLA in safflower seeds. Provided are transgenic safflower plants and seeds that produce high levels of GLA. Additionally provided are oils produced from seeds of this invention. The invention also relates to methods of treating a variety of diseases including nervous system disorders, inflammatory conditions, cancer and cardiovascular disorders using the oils of this invention.
The present invention relates to compositions and methods for preparing gamma- linoleic acid (GLA) in safflower plants, particularly from seeds of safflower. Nucleic acid sequences and constructs encoding one or more fatty acid desaturase sequences are used to generate transgenic safflower plants that contain and express one or more of these sequences and produce high levels of GLA in safflower seeds. Provided are transgenic safflower plants and seeds that produce high levels of GLA. Additionally provided are oils produced from seeds of this invention. The invention also relates to methods of treating a variety of diseases including nervous system disorders, inflammatory conditions, cancer and cardiovascular disorders using the oils of this invention.
78.
Wheat having reduced waxy protein due to non-transgenic alterations of a waxy gene
A series of independent non-transgenic mutations found at the waxy loci of wheat; wheat plants having these mutations in their waxy loci; and a method of creating and finding similar and/or additional mutations of the waxy by screening pooled and/or individual wheat plants. The wheat plants of the present invention exhibiting altered waxy activity in the wheat without having the inclusion of foreign nucleic acids in their genomes. The invention also includes food and non-food products as well as non-food products that incorporate seeds from the wheat plants having non-transgenic mutations in one or more waxy genes.
A series of independent non-transgenic mutations found at thewaxy loci of wheat; wheat plants having these mutations in their waxy loci; and a method of creating and finding similar and/or additional mutations of the waxy by screening pooled and/or individual wheat plants. The wheat plants of the present invention exhibiting altered waxy activity in the wheat without having the inclusion of foreign nucleic acids in their genomes. The invention also includes food and non-food products as well as non-food products that incorporate seeds from the wheat plants having non-transgenic mutations in one or more waxy genes.
A series of independent non-transgenic mutations found in the fruit PG gene of tomato; tomato plants having these mutations in their fruit PG gene; and a method of creating and identifying similar and/or additional mutations in the PG gene by screening pooled and/or individual tomato plants. The tomato plants of the present invention exhibit reduced PG enzyme activity and fruit that soften more slowly post harvest without having the inclusion of foreign nucleic acids in their genomes.
42 - Scientific, technological and industrial services, research and design
Goods & Services
Biotechnology services namely, research and development of biotechnological methods and products in the field of agriculture; agricultural research; and biotechnology services relating to crop efficiency and vitality