Engineered polypeptides useful in synthesizing acyl amino acids are provided. Also provided are methods of making acyl amino acids using engineered polypeptides. In certain embodiments, an acyl amino acid produced using compositions and/or methods at the present invention comprises cocoyl glutamate.
In certain embodiments, the present invention comprises compositions and methods useful in the generation of acyl amino acids. In certain embodiments, the present invention provides an engineered polypeptide comprising a peptide synthetase domain; in some such embodiments, the engineered polypeptide comprises only a single peptide synthetase domain. In some embodiments, the present invention provides an engineered peptide synthetase that is substantially free of a thioesterase domain, and/or a reductase domain. In certain embodiments, the present invention provides an acyl amino acid composition comprising a plurality of different forms of an acyl amino acid. In some such compositions, substantially all of the acyl amino acids within the composition contain the same amino acid moiety and differ with respect to acyl moiety. We also described populations where the fatty acid is for example 95% one length (C14, myristic).
C12N 9/80 - Hydrolases (3.) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides
A01N 37/36 - Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio-analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio-analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids
C07C 235/06 - Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
C12N 9/00 - Enzymes, e.g. ligases (6.)ProenzymesCompositions thereofProcesses for preparing, activating, inhibiting, separating, or purifying enzymes
Engineered polypeptides or engineered microbial cells useful in synthesizing acyl amino acids are provided. In some embodiments, engineered polypeptides or engineered microbial cells are useful in synthesizing acyl amino acids with one or more hydroxyl and/or methyl groups at one or more positions of the fatty acid portion of the acyl amino acid (e.g., at ω-1, ω-2, and/or ω-3 positions of the fatty acid portion of the acyl amino acid). Also provided are methods of making acyl amino acids using engineered polypeptides and/or engineered microbial cells.
In certain embodiments, the present invention comprises compositions and methods useful in the generation of acyl amino acids. In certain embodiments, the present invention provides an engineered polypeptide comprising a peptide synthetase domain; in some such embodiments, the engineered polypeptide comprises only a single peptide synthetase domain. In some embodiments, the present invention provides an engineered peptide synthetase that is substantially free of a thioesterase domain, and/or a reductase domain. In certain embodiments, the present invention provides an acyl amino acid composition comprising a plurality of different forms of an acyl amino acid. In some such compositions, substantially all of the acyl amino acids within the composition contain the same amino acid moiety and differ with respect to acyl moiety. We also described populations where the fatty acid si for example 95% one length (C14, myristic).
C12N 9/00 - Enzymes, e.g. ligases (6.)ProenzymesCompositions thereofProcesses for preparing, activating, inhibiting, separating, or purifying enzymes
A01N 37/36 - Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio-analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio-analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids
C07C 235/06 - Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
e.ge.g., at ω-1, ω -2, and/or ω-3 positions of the fatty acid portion of the acyl amino acid). Also provided are methods of making acyl amino acids using engineered polypeptides and/or engineered microbial cells.
In certain embodiments, the present invention comprises compositions and methods useful in the generation of acyl amino acids. In certain embodiments, the present invention provides an engineered polypeptide comprising a peptide synthetase domain; in some such embodiments, the engineered polypeptide comprises only a single peptide synthetase domain. In some embodiments, the present invention provides an engineered peptide synthetase that is substantially free of a thioesterase domain, and/or a reductase domain. In certain embodiments, the present invention provides an acyl amino acid composition comprising a plurality of different forms of an acyl amino acid. In some such compositions, substantially all of the acyl amino acids within the composition contain the same amino acid moiety and differ with respect to acyl moiety. We also described populations where the fatty acid si for example 95% one length (C14, myristic).
C12N 9/00 - Enzymes, e.g. ligases (6.)ProenzymesCompositions thereofProcesses for preparing, activating, inhibiting, separating, or purifying enzymes
C12N 9/80 - Hydrolases (3.) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides
A01N 37/36 - Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio-analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio-analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids
C07C 235/06 - Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
Engineered polypeptides useful in synthesizing acyl amino acids are provided. Also provided are methods of making acyl amino acids using engineered polypeptides. In certain embodiments, an acyl amino acid produced using compositions and/or methods of the present invention comprises cocoyl glutamate.
C12N 15/82 - Vectors or expression systems specially adapted for eukaryotic hosts for plant cells
C12P 13/16 - Glutamic acidGlutamine using surfactants, fatty acids or fatty acid esters, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group or a carboxyl ester group
C12P 13/16 - Glutamic acidGlutamine using surfactants, fatty acids or fatty acid esters, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group or a carboxyl ester group
Engineered polypeptides useful in synthesizing acyl amino acids are provided. Also provided are methods of making acyl amino acids using engineered polypeptides.
C12N 9/00 - Enzymes, e.g. ligases (6.)ProenzymesCompositions thereofProcesses for preparing, activating, inhibiting, separating, or purifying enzymes
A01N 37/36 - Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio-analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio-analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids
C07C 235/06 - Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
In certain embodiments, the present invention comprises compositions and methods useful in the generation of acyl amino acids. In certain embodiments, the present invention provides an engineered polypeptide comprising a peptide synthetase domain; in some such embodiments, the engineered polypeptide comprises only a single peptide synthetase domain. In some embodiments, the present invention provides an engineered peptide synthetase that is substantially free of a thioesterase domain, and/or a reductase domain. In certain embodiments, the present invention provides an acyl amino acid composition comprising a plurality of different forms of an acyl amino acid. In some such compositions, substantially all of the acyl amino acids within the composition contain the same amino acid moiety and differ with respect to acyl moiety. We also described populations where the fatty acid si for example 95% one length (C14, myristic).
In certain embodiments, the present invention comprises compositions and methods useful in the generation of acyl amino acids. In certain embodiments, the present invention provides an engineered polypeptide comprising a peptide synthetase domain; in some such embodiments, the engineered polypeptide comprises only a single peptide synthetase domain. In some embodiments, the present invention provides an engineered peptide synthetase that is substantially free of a thioesterase domain, and/or a reductase domain. In certain embodiments, the present invention provides an acyl amino acid composition comprising a plurality of different forms of an acyl amino acid. In some such compositions, substantially all of the acyl amino acids within the composition contain the same amino acid moiety and differ with respect to acyl moiety. We also described populations where the fatty acid si for example 95% one length (C14, myristic).
Engineered polypeptides useful in synthesizing acyl amino acids are provided. Also provided are methods of making acyl amino acids using engineered polypeptides. In certain embodiments, an acyl amino acid produced using compositions and/or methods of the present invention comprises cocoyl glutamate.
Engineered polypeptides useful in synthesizing acyl amino acids are provided. Also provided are methods of making acyl amino acids using engineered polypeptides. In certain embodiments, an acyl amino acid produced using compositions and/or methods of the present invention comprises cocoyl glutamate.
C12P 13/16 - Glutamic acidGlutamine using surfactants, fatty acids or fatty acid esters, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group or a carboxyl ester group
The present invention provides, among other things, engineered microorganisms and methods that allow efficient conversion of soy carbohydrates to industrial chemicals by fermentation. In some embodiments, the invention provides microbial cells engineered to have increased efficiency in utilizing a soy carbon source (e.g., soy molasses, soy meal, and/or soy hulls) as compared to a parent cell. In some embodiments, microbial cells are engineered to have altered (e.g., increased) expression or activity of one or more carbohydrate modifying enzymes (e.g., glycosidases). In some embodiments, microbial cells are engineered to have altered localization of carbohydrate modifying enzymes (e.g., glycosidases). In some embodiments, engineered microbial cells provided herein are used to produce industrial chemicals (e.g., surfactin) using soy components as primary or sole carbon sources.
C12P 1/00 - Preparation of compounds or compositions, not provided for in groups , by using microorganisms or enzymesGeneral processes for the preparation of compounds or compositions by using microorganisms or enzymes
Antimicrobial compositions and methods of using the compositions are described herein. The compositions include an antibacterial acyl amino acid. In some embodiments, the acyl amino acid is a fatty acylated glutamate. The methods herein include methods of using acyl amino acids for treating and preventing bacterial infections.
The present invention provides novel methods of growing of microorganisms in cell culture media comprising cellulosic material as a carbon source. The present invention further provides novel cell culture media cellulosic material as a carbon source. In certain embodiments, inventive cell culture media substantially lack a carbon source other than cellulosic material (e.g., the media substantially lack glucose and glycerol). In certain embodiments, inventive cell culture media comprise cellulosic material as the sole carbon source.
The present invention provides novel methods of growing of microorganisms in cell culture media comprising soy components (e.g., soy molasses) as a carbon source. The present invention further provides novel cell culture media comprising soy components (e.g., soy molasses) as a carbon source. In certain embodiments, inventive cell culture media substantially lack a carbon source other than soy molasses (e.g., the media substantially lack glucose and glycerol). In certain embodiments, inventive cell culture media comprise soy components (e.g., soy molasses) as the sole carbon source.
Engineered polypeptides useful in synthesizing acyl amino acids are provided. Also provided are methods of making acyl amino acids using engineered polypeptides. In certain embodiments, an acyl amino acid produced using compositions and/or methods of the present invention comprises cocoyl glutamate.
Novel lipopeptides, and engineered polypeptides useful in synthesizing lipopeptides are provided. Also provided are methods of making lipopeptides using engineered polypeptides, and methods of using lipopeptides, e.g., as insecticidal and/or antimicrobial agents.
C07H 21/04 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
C12N 1/21 - BacteriaCulture media therefor modified by introduction of foreign genetic material
C12N 15/74 - Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
C12P 21/06 - Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
22.
METHODS OF INTRODUCING TARGETED DIVERSITY INTO NUCLEIC ACID MOLECULES
Systems are disclosed that are useful for introducing one or more targeted positions or regions of diversity into a nucleic acid molecule. In certain embodiments, diversity in a targeted position or region is generated by providing one or more degenerate primer sets and a template nucleic acid molecule, wherein the primers are extended in opposite directions against the template nucleic acid molecule in a polymerase-mediated extension reaction. In certain embodiments, the generated nucleic acid molecule into which diversity has been introduced comprises single-stranded regions at its termini, which ingle-stranded regions are capable of annealing to each other.
The present invention provides sequences and reagents for preparing microarrays with internal controls. Specifically, the present invention defines and provides sequences that are not present in the hybridizing mRNA or cDNA, and therefore can be used both as hybridization controls and for inter-spot normalization.
C07H 21/04 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
C12Q 1/68 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions involving nucleic acids
24.
Ladder assembly and system for generating diversity
The present invention provides novel methods of generating a nucleic acid molecule. In certain embodiments, a double stranded nucleic acid chunk is generated from a ladder complex comprising partially complementary oligonucleotides, which chunk is combined with a nucleic acid acceptor molecule. In certain embodiments, the assembled chunk/nucleic acid acceptor molecule complex may be propagated in vivo or in vitro. The present invention also provides improved systems for generating a plurality of nucleic acid molecules that differ at one or more nucleotide positions. In certain embodiments, the plurality of nucleic acid molecules encodes a polypeptide or portion of a polypeptide.