The present disclosure is directed to an apparatus for an improved ultrasound eye scanning device wherein the size of the scan head is reduced significantly and the entire instrument can be placed on a desktop. The improved ultrasound eye scanning device also utilizes imaging goggles to enable better coupling between the patient and the instrument. The imaging goggles also allow both eyes of the patient to be scanned without the patient moving. Another innovation of the ultrasound imaging system according to the present disclosure is the use of the contralateral (opposite) eye for fixation and focusing during scanning.
Systems, processes, and apparatuses are provided for imaging a body part of a patient such as an eye of the patient. In some embodiments, a process is provided for adjusting the readings from an ultrasound probe to account for the different speeds of sound through different portions of the eye. In various embodiments, a process is provided for combing multiple images of the body part together. In some embodiments, a process is provided for determining the diameter of the lens of the eye.
Methods, systems, and devices include locating one or more target structures comprised in an eye of a patient based on processing image data of the eye of the patient, determining one or more measurements associated with an anterior portion of the eye based on the location data, and determining a presence, an absence, a progression, or a stage of a disease of the eye based on the one or more measurements. Locating the one or more target structures may be based on an output provided by a machine learning model.
A61B 5/00 - Measuring for diagnostic purposes Identification of persons
A61B 3/16 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions for measuring intraocular pressure, e.g. tonometers
A61B 3/14 - Arrangements specially adapted for eye photography
A61B 3/117 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions for examining the anterior chamber or the anterior chamber angle, e.g. gonioscopes
A61B 3/10 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions
A61B 3/12 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
G16H 50/20 - ICT specially adapted for medical diagnosis, medical simulation or medical data miningICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
Methods, systems, and devices include locating one or more target structures comprised in an eye of a patient based on processing image data of the eye of the patient, determining one or more measurements associated with an anterior portion of the eye based on the location data, and determining a presence, an absence, a progression, or a stage of a disease of the eye based on the one or more measurements. Locating the one or more target structures may be based on an output provided by a machine learning model.
A61B 5/398 - Electrooculography [EOG], e.g. detecting nystagmusElectroretinography [ERG]
A61B 3/024 - Subjective types, i.e. testing apparatus requiring the active assistance of the patient for determining the visual field, e.g. perimeter types
A61B 3/10 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions
A61B 3/107 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions for determining the shape or measuring the curvature of the cornea
A61B 3/11 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions for measuring interpupillary distance or diameter of pupils
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
The present disclosure is directed to improvement of a precision ultrasound scanner for imaging the human eye and in particular to method for the manufacture and assembly of an eye piece suitable for use with an ultrasonic arc scanning device. The method disclosed herein describes an improved eye piece for ultrasound imaging that reduces saline leakage around its optically and acoustically transparent membrane and improves the efficiency of assembly.
The present disclosure is directed to improvement of a precision ultrasound scanner for imaging the human eye and in particular to method for the manufacture and assembly of an eye piece suitable for use with an ultrasonic arc scanning device. The method disclosed herein describes an improved eye piece for ultrasound imaging that reduces saline leakage around its optically and acoustically transparent membrane and improves the efficiency of assembly.
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
The present disclosure relates to ultrasound imaging and treatment of an eye and in particular directed to an apparatus and method for reducing intraocular pressure by 1) ablating the ciliary process which is the structure responsible for production of aqueous humor and 2) by vibrating the trabecular mesh to stimulate better drainage of fluid through the trabecular mesh and out of the eye. The present disclosure describes an apparatus and method for forming a high precision image of the eye wherein the resolution is sufficient to image, for example, ciliary body and region around the trabecular mesh. The present disclosure further discloses an imaging transducer and an irradiating therapeutic transducer that can be mounted such that they are movable between a plurality of positions.
A61B 3/117 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions for examining the anterior chamber or the anterior chamber angle, e.g. gonioscopes
The present disclosure relates to ultrasound imaging and treatment of an eye and in particular directed to an apparatus and method for reducing intraocular pressure by 1) ablating the ciliary process which is the structure responsible for production of aqueous humor and 2) by vibrating the trabecular mesh to stimulate better drainage of fluid through the trabecular mesh and out of the eye. The present disclosure describes an apparatus and method for forming a high precision image of the eye wherein the resolution is sufficient to image, for example, ciliary body and region around the trabecular mesh. The present disclosure further discloses an imaging transducer and an irradiating therapeutic transducer that can be mounted such that they are movable between a plurality of positions.
The present disclosure is directed to an apparatus for an improved ultrasound eye scanning device wherein the size of the scan head is reduced significantly and the entire instrument can be placed on a desktop. The improved ultrasound eye scanning device also utilizes imaging goggles to enable better coupling between the patient and the instrument. The imaging goggles also allow both eyes of the patient to be scanned without the patient moving. Another innovation of the ultrasound imaging system according to the present disclosure is the use of the contralateral (opposite) eye for fixation and focusing during scanning.
The present disclosure is directed to an apparatus for an improved ultrasound eye scanning device wherein the size of the scan head is reduced significantly and the entire instrument can be placed on a desktop. The improved ultrasound eye scanning device also utilizes imaging goggles to enable better coupling between the patient and the instrument. The imaging goggles also allow both eyes of the patient to be scanned without the patient moving. Another innovation of the ultrasound imaging system according to the present disclosure is the use of the contralateral (opposite) eye for fixation and focusing during scanning.
The present disclosure is directed to a method and apparatus for holding an eyelid open and preventing involuntary blinking during an ultrasound imaging procedure while ensuring patient safety and comfort. Eyelids can be taped up to the forehead or down to the cheek with common medical tape; however, this does not provide the instrument operator with the ability to adjust or control the amount of eye lid opening very well, nor allow the patient to relax the eyelids between scanning sessions. The present disclosure includes a speculum that can be placed in an eye piece such as used in a precision ultrasound device or other imaging device wherein the optical acoustic and transmission path between the eye and instrument is formed by a fluid such as saline solution and distilled water.
The present disclosure is directed to a method and apparatus for holding an eyelid open and preventing involuntary blinking during an ultrasound imaging procedure while ensuring patient safety and comfort. Eyelids can be taped up to the forehead or down to the cheek with common medical tape; however, this does not provide the instrument operator with the ability to adjust or control the amount of eye lid opening very well, nor allow the patient to relax the eyelids between scanning sessions. The present disclosure includes a speculum that can be placed in an eye piece such as used in a precision ultrasound device or other imaging device wherein the optical acoustic and transmission path between the eye and instrument is formed by a fluid such as saline solution and distilled water.
A61B 17/02 - Surgical instruments, devices or methods for holding wounds open, e.g. retractorsTractors
A61B 1/32 - Devices for opening or enlarging the visual field, e.g. of a tube of the body
A61F 9/00 - Methods or devices for treatment of the eyesDevices for putting in contact-lensesDevices to correct squintingApparatus to guide the blindProtective devices for the eyes, carried on the body or in the hand
15.
METHOD FOR MAPPING THE VAULT FOR AN IMPLANTED INTER OCULAR LENS
The present disclosure is directed to a system and method that detects and measures a vault of an anterior segment of an eye of a patient. The system and method locate an implanted contact lens (ICL) between a cornea and a natural lens, form a B-scan of the eye based on the received ultrasound pulses, removes background pixels, such as by binarizing and thresholding, from the B-Scan from a grayscale color palette to a black/white color palette, determines, from the resulting B-scan a fiduciary location in the anterior segment of the eye, and forms using the resulting B-scan and fiduciary location, a vault map mapping a distance between an anterior segment surface and a posterior surface of the ICL along a plurality of lines drawn perpendicular to a local surface of the anterior segment surface.
A61B 3/00 - Apparatus for testing the eyesInstruments for examining the eyes
A61B 3/107 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions for determining the shape or measuring the curvature of the cornea
A61B 3/117 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions for examining the anterior chamber or the anterior chamber angle, e.g. gonioscopes
Systems, processes, and apparatuses are provided for imaging a body part of a patient such as an eye of the patient. In some embodiments, a process is provided for adjusting the readings from an ultrasound probe to account for the different speeds of sound through different portions of the eye. In various embodiments, a process is provided for combining multiple images of the body part together. In some embodiments, a process is provided for determining the diameter of the lens of the eye.
Systems, processes, and apparatuses are provided for imaging a body part of a patient such as an eye of the patient. In some embodiments, a process is provided for adjusting the readings from an ultrasound probe to account for the different speeds of sound through different portions of the eye. In various embodiments, a process is provided for combing multiple images of the body part together. In some embodiments, a process is provided for determining the diameter of the lens of the eye.
Apparatuses, systems, and methods are provided herein to control movement of a patient's eyelid during a diagnostic procedure such as scanning the patient's eye with an ultrasound or optical imaging device. Strips having a non-adhesive portion and an adhesive portion are attached to each eyelid. The patient can then pull on distal ends of the strip to open the patient's eye and press the strips into an eyepiece to hold the patient's eyelids and keep the patient's eye open.
A method is disclosed for using a precision ultrasound scanning device to image the anterior segment of the human eye, automatically locate the scleral spur, and, using the scleral spur as a fiduciary, to automatically make measurements in front of and behind the iris. The scleral spur can be used as a fiduciary to make measurements that characterize the normal and abnormal shapes of components within this region of the anterior segment of the eye. One or more of the measurements of the iridocorneal angle and the anterior chamber depth can be related to other measurements behind the iris including the iris lens contact distance, the iris zonule distance and the trabecular ciliary process distance. Over a period of time, these measurements can change and can indicate a change, or be a precursor for a change, of intraocular pressure (IOP), and therefore can determine an earlier onset of glaucoma.
A61B 3/00 - Apparatus for testing the eyesInstruments for examining the eyes
A61B 3/117 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions for examining the anterior chamber or the anterior chamber angle, e.g. gonioscopes
The present disclosure is directed to a precision ultrasound scanner for imaging, for example, the prostate in a way that produces a superior image of the prostate while removing the iatrogenic risk and patient discomfort associated with other methods of providing an ultrasound image of the prostate. The present disclosure describes an apparatus and method for forming a high precision image of the prostate from outside the patient's body wherein the resolution in sufficient to image, for example, cancerous lesions on the surface of the prostate. To achieve such images, coded excitation, tissue harmonic imaging, advanced transducers operating in the 10 MHz to 40 MHz range is used to achieve a useable signal-to-noise reflection while being able to position the imaging transducer as close as possible to the prostate without risk or discomfort to the patient. The present disclosure further discloses an imaging transducer and an irradiating therapeutic transducer can be mounted such that they are movable between a plurality of positions. The irradiating transducer is, for example, about a 12 MHz transducer with a focal length of about 20 mm to about 40 mm that would produce a strong second harmonic at about 24 MHz that could be used for imaging. The imaging transducer has, for example, a focal length of about 10 mm to about 20 mm and typically operates in the range of about 25 MHz to about 40 MHz.
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
The present disclosure is directed to a precision ultrasound scanner for imaging, for example, the prostate in a way that produces a superior image of the prostate while removing the iatrogenic risk and patient discomfort associated with other methods of providing an ultrasound image of the prostate. The present disclosure describes an apparatus and method for forming a high precision image of the prostate from outside the patient's body wherein the resolution in sufficient to image, for example, cancerous lesions on the surface of the prostate. To achieve such images, coded excitation, tissue harmonic imaging, advanced transducers operating in the 10 MHz to 40 MHz range is used to achieve a useable signal-to-noise reflection while being able to position the imaging transducer as close as possible to the prostate without risk or discomfort to the patient.
The present disclosure is directed to a precision ultrasound scanner for imaging, for example, the prostate in a way that produces a superior image of the prostate while removing the iatrogenic risk and patient discomfort associated with other methods of providing an ultrasound image of the prostate. The present disclosure describes an apparatus and method for forming a high precision image of the prostate from outside the patient's body wherein the resolution in sufficient to image, for example, cancerous lesions on the surface of the prostate. To achieve such images, coded excitation, tissue harmonic imaging, advanced transducers operating in the 10 MHz to 40 MHz range is used to achieve a useable signal-to-noise reflection while being able to position the imaging transducer as close as possible to the prostate without risk or discomfort to the patient.
Embodiments of the present invention are directed to various aspects of imaging systems, including permeable and impermeable barriers separating liquid compartments, one of which contains the object to be imaged and the other an ultrasonic transducer, a fluidic bearing between a transducer carriage and guide supporting the carriage, a linear motor for the carriage, and a location sensing device for the carriage. A method and apparatus are disclosed for performing an ultrasound scan on a body part and specifically an instrument which directly attaches to the surface of the body. This apparatus provides high resolution images and increased depth of imaging for high resolution ultrasound of targeted subsurface body tissues. Targeted tissues may include joints, ocular structures, and internal organs. The method and apparatus stabilize and provide accurate determination of the position of the body part relative to the ultrasound probe.
A method and apparatus are disclosed for integrating optical coherence tomography (OCT) and very high frequency ultrasound (VHFU) imaging systems. An OCT probe and reference arm are mounted along with an ultrasound probe on a carriage capable of rotational, linear, and/or arcuate motion. The probe carriage may be immersed in water or other suitable medium. The OCT and VHFU probes move about the cornea surface such that the probe axes are substantially perpendicular relative to the cornea surface throughout a scan. The probes are able to be scanned in an arcuate path across the entire cornea surface. The method and apparatus disclosed are also directed towards providing a positioning mechanism and scan head comprising an arcuate guide track wherein only an OCT probe is mounted on the probe carriage. This embodiment allows the OCT probe beam to remain substantially perpendicular to the cornea and lens surfaces.
A61B 3/00 - Apparatus for testing the eyesInstruments for examining the eyes
A61B 3/10 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions
A61B 3/14 - Arrangements specially adapted for eye photography
A61B 3/113 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions for determining or recording eye movement
A61B 8/00 - Diagnosis using ultrasonic, sonic or infrasonic waves
A disposable eye piece system, including the eye piece and other disposable components, for a precision ultrasonic scanning apparatus is disclosed. The eye piece includes a fill port, a vent port and a drain port molded into the base of the eye piece. An RF Identification chip may be molded into the plastic base of the eye piece or, alternately into the conformable face seal of the eye piece. The components of a disposable eye piece system form an integrated disposable package that can be assembled, packaged, transported and used while maintaining the eye piece and saline solution in a sterile condition. The protective shipping container 1) protects the eye piece from damage, human contact and exposure to ambient air during shipping and storage and 2) allows the scanning physician or technician to attach the eye piece to the scanning machine without compromising the sterile condition of the eye piece.
A disposable eye piece system, including the eye piece and other disposable components, for a precision ultrasonic scanning apparatus is disclosed. The eye piece includes a fill port, a vent port and a drain port molded into the base of the eye piece. An RF Identification chip may be molded into the plastic base of the eye piece or, alternately into the conformable face seal of the eye piece. The components of a disposable eye piece system form an integrated disposable package that can be assembled, packaged, transported and used while maintaining the eye piece and saline solution in a sterile condition. The protective shipping container 1) protects the eye piece from damage, human contact and exposure to ambient air during shipping and storage and 2) allows the scanning physician or technician to attach the eye piece to the scanning machine without compromising the sterile condition of the eye piece.
Ophthalmic medical imaging apparatus; software for use in data acquisition, signal processing and report generation sold as a component of an ophthalmic medical imaging apparatus
28.
Tracking system for an ultrasonic arc scanning apparatus
Embodiments of the present invention are directed to various aspects of imaging systems, including permeable and impermeable barriers separating liquid compartments, one of which contains the object to be imaged and the other an ultrasonic transducer, a fluidic bearing between a transducer carriage and guide supporting the carriage, a linear motor for the carriage, and a location sensing device for the carriage.
A method and apparatus are disclosed for generating accurate and precise ultrasonic images of biological materials or animate objects, such as the cornea and lens of the eye, and, in particular, to an ultrasonic scanning apparatus that can position its virtual center of curvature such that its ultrasonic transducer will emit pulses that reflect substantially perpendicularly from a curved specular surface of interest within the eye. This invention can allow real time imaging of a lens as it accommodates and can better enable researchers and ophthalmic surgeons to develop, fit, implant and diagnose performance of artificial lenses including accommodative lenses.
A method and apparatus are disclosed for integrating optical coherence tomography (OCT) and very high frequency ultrasound (VHFU) imaging systems. An OCT probe and reference arm are mounted along with an ultrasound probe on a carriage capable of rotational, linear, and/or arcuate motion. The probe carriage may be immersed in water or other suitable medium. The OCT and VHFU probes move about the cornea surface such that the probe axes are substantially perpendicular relative to the cornea surface throughout a scan. The probes are able to be scanned in an arcuate path across the entire cornea surface. The method and apparatus disclosed are also directed towards providing a positioning mechanism and scan head comprising an arcuate guide track wherein only an OCT probe is mounted on the probe carriage. This embodiment allows the OCT probe beam to remain substantially perpendicular to the cornea and lens surfaces.
A device and method are disclosed for detecting and correcting unintended eye movements that may occur during an ultrasound scan by monitoring multiple position tracking sensors, examples being but not limited to ultrasound or optical position sensors. These position tracking sensors are in addition to the ultrasound imaging transducer and are in a fixed position on the scan head so as not to move during the scanning operation. These position tracking sensors can continuously monitor the distance to the cornea or other clearly defined anatomical features of the eye such as the posterior pigment layer of the iris during the movement of the scan head assembly and can provide continuous multi-dimensional correction for any unwanted motion of the eye relative to the scan head that may occur during the ultrasound scan.
A method and apparatus are disclosed for generating accurate and precise ultrasonic images of biological materials or animate objects, such as the cornea and lens of the eye, and, in particular, to an ultrasonic scanning apparatus that can position its virtual center of curvature such that its ultrasonic transducer will emit pulses that reflect substantially perpendicularly from a curved specular surface of interest within the eye. This invention can allow real time imaging of a lens as it accommodates and can better enable researchers and ophthalmic surgeons to develop, fit, implant and diagnose performance of artificial lenses including accommodative lenses.
A method and apparatus are disclosed for generating accurate and precise ultrasonic images of biological materials or animate objects, such as the cornea and lens of the eye, and, in particular, to an ultrasonic scanning apparatus that can position its virtual center of curvature such that its ultrasonic transducer will emit pulses that reflect substantially perpendicularly from a curved specular surface of interest within the eye. This invention can allow real time imaging of a lens as it accommodates and can better enable researchers and ophthalmic surgeons to develop, fit, implant and diagnose performance of accommodative lenses.
A method and apparatus are disclosed for a method for securing a patient for a medical procedure and specifically for an innovative headrest system for securing a patient for an ocular imaging procedure. The approach avoids the need for linkages and sliding rods and such. Instead, it relies on three independently movable face rests (two for the forehead or temples and one for the chin) each with a deformable cushion that is urged into conformity with the patient's head and chin during an adjustment phase of operation. Once a comfortable position and suitable conforming shape is achieved, the positions of the face rests are rigidly fixed and the shape of the cushions are rendered rigid and non-deformable, by application of a light vacuum, for the procedural or imaging phase of operation.
A method and apparatus are disclosed for generating accurate and precise ultrasonic images of biological materials or animate objects, such as the cornea and lens of the eye, and, in particular, to an ultrasonic scanning apparatus that can position its virtual center of curvature such that its ultrasonic transducer will emit pulses that reflect substantially perpendicularly from a curved specular surface of interest within the eye. This invention can allow real time imaging of a lens as it accommodates and can better enable researchers and ophthalmic surgeons to develop, fit, implant and diagnose performance of accommodative lenses.
Embodiments of the present invention are directed to methods of rapidly obtaining ultrasonic images of the eye using a set of procedural options that can be automated by a positioning mechanism that can be controlled by software.
In one embodiment, the invention is directed to an ultrasound transducer whose holding device moves along a guide track while the transducer on the end of the holding device oscillates about a known position during ultrasound transmission and receiving. In this embodiment, most refractive eye components including zonules and their connection points can be imaged.
In one embodiment, the invention is directed to an ultrasound transducer whose holding device moves along a guide track while transducer on the end of the holing device oscillates about a known position during ultrasound transmission and receiving. In this embodiment, most refractive eye components including zonules and their connection points can be imaged.
The present invention relates to ultrasonic imaging of biological materials such as the cornea and the lens of the eye and in particular relates to innovative methods for obtaining accurate images with an ultrasonic arc scanning apparatus, such as a range finding and centering algorithms for aligning the scanning apparatus. Embodiments of the present invention are directed to methods of rapidly obtaining ultrasonic images of the eye using a set of procedural options that can be automated by a positioning mechanism that can be controlled by software.
Embodiments of the present invention are directed to various aspects of imaging systems, including permeable and impermeable barriers separating liquid compartments, one of which contains the object to be imaged and the other an ultrasonic transducer, a fluidic bearing between a transducer carriage and guide supporting the carriage, a linear motor for the carriage, and a location sensing device for the carriage.
Embodiments of the present invention are directed to various aspects of imaging systems, including permeable and impermeable barriers separating liquid compartments, one of which contains the object to be imaged and the other an ultrasonic transducer, a fluidic bearing between a transducer carriage and guide supporting the carriage, a linear motor for the carriage, and a location sensing device for the carriage.