Embodiments of the invention include a treatment device and corresponding treatment method for laser wound healing, the device and method making use of the simultaneous action of multiple laser types and laser wavelengths which are applied at human tissue. The treatment device generally includes a laser system and a hand-piece which is coupled to the laser system. The hand-piece is designed so that one or multiple laser beams are applied at relatively small spot and at a relatively high power level, and are surrounded by a relatively large spot of another laser beam with a relatively low power level. In a preferred implementation, the hand-piece is adapted to facilitate the emission of first and second laser beams together with a third laser beam which is delivered at a different spatial profile in comparison to the first and second laser beams.
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
Embodiments of the invention provide a laser system including a laser station including at least one laser, at least one processor, and at least one non-transitory computer-readable storage medium in data communication with the at least one processor. The at least one non-transitory computer-readable storage medium includes program instructions executable by the at least one processor, and enabling or operating an exchange of data between the at least one laser station and at least one remote network. The laser system includes at least one GUI display configured and arranged to display operating parameters or functions of the at least one laser and/or any of the data exchanged between the laser station and at least one remote network. The program instructions include instructions that direct the processor to update the at least one GUI display with a plurality of user-selectable graphics arranged around the periphery or circumference of a central display.
G06F 3/04817 - Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance using icons
G06F 3/0482 - Interaction with lists of selectable items, e.g. menus
G06F 3/04847 - Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
Embodiments of the invention include a treatment device and corresponding treatment method for laser wound healing, the device and method making use of the simultaneous action of multiple laser types and laser wavelengths which are applied at human tissue. The treatment device generally includes a laser system and a hand-piece which is coupled to the laser system. The hand-piece is designed so that one or multiple laser beams are applied at relatively small spot and at a relatively high power level, and are surrounded by a relatively large spot of another laser beam with a relatively low power level. In a preferred implementation, the hand-piece is adapted to facilitate the emission of first and second laser beams together with a third laser beam which is delivered at a different spatial profile in comparison to the first and second laser beams.
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
Embodiments of the invention provide a dental network including a portable dental laser station controllable within a remote access system. The dental laser station can include a dental laser, and a dental handpiece assembly coupled to or including the at least one dental laser. Some embodiments include a processor and a non-transitory computer-readable storage medium including a dental laser management process to exchange dentistry-related parameters between the dental laser station or components and a remote network. Some embodiments include a handpiece assembly structured so that any beam size on the output window or surface is greater than any beam size exiting at the input window or surface. Some embodiments include a laser power supply combination with at least one high voltage (HV) power supply, a coupled or integrated simmer supply, a direct current (DC) supply, and at least one laser configured with a power supply.
Embodiments of the invention provide a laser system including a laser station including at least one laser, at least one processor, and at least one non-transitory computer-readable storage medium in data communication with the at least one processor. The at least one non-transitory computer-readable storage medium includes program instructions executable by the at least one processor, and enabling or operating an exchange of data between the at least one laser station and at least one remote network. The laser system includes at least one GUI display configured and arranged to display operating parameters or functions of the at least one laser and/or any of the data exchanged between the laser station and at least one remote network. The program instructions include instructions that direct the processor to update the at least one GUI display with a plurality of user-selectable graphics arranged around the periphery or circumference of a central display.
G06F 3/04817 - Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance using icons
G06F 3/0482 - Interaction with lists of selectable items, e.g. menus
G06F 3/04847 - Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
7.
Dental laser unit with communication link to assistance center
A medical treatment apparatus includes a power and control (PAC) device. The PAC device provides electrical power through a cable to a laser handpiece assembly to electrically power a laser source within the handpiece assembly. The PAC device controls operation of the handpiece assembly and detects an identification of the handpiece assembly. The PAC device also monitors data relating to operation of the handpiece assembly. The PAC device uploads, through a communication network to a user assistance center remote from the PAC device, the handpiece assembly identification and the monitored data.
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
A61G 15/00 - Operating chairsDental chairsAccessories specially adapted therefor, e.g. work stands
41 - Education, entertainment, sporting and cultural services
44 - Medical, veterinary, hygienic and cosmetic services; agriculture, horticulture and forestry services
Goods & Services
Education services, namely, providing classes, seminars, conferences and workshops in the field of new developments in dental technology and services Dental care services
9.
APPARATUSES AND METHODS FOR TREATING PERIIMPLANTITIS USING UVC
The disclosure is directed to systems and methods for treatment of periimplantitis using ultraviolet light. In some embodiments, the ultraviolet light is ultraviolet c light with a wavelength between 100 and 280 nanometers. In some embodiments, the ultraviolet c light makes the surface of the implant hydrophilic and more receptive to cell protein attachment. In some embodiments, an apparatus for treating periimplantitis using ultraviolet light includes a handpiece with a flexible neck and a rotatable tip at the end of the flexible neck. In some embodiments, the handpiece includes a contra angle dental handpiece or a straight dental handpiece which can couple to and direct ultraviolet light from either an end firing tip or a side firing tip. In some embodiments, the handpiece is sized to enable UVC light to be directed to an exposed area of an implant facing toward one or more posterior portions of the oral cavity.
Embodiments of the invention provide a system of controlling a dental laser system. The system can include a dental laser and a control system for controlling certain functions of the dental laser. A graphical user interface can be used to provide input to the control system. The graphical user interface can include a first display and an second display with selectable segments, and a menu navigation portion located adjacent the second display. Treatment categories, procedures or laser control options can be selected using the interface, and the interface can be updated based on data from the station.
G16H 20/40 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
G06F 3/0482 - Interaction with lists of selectable items, e.g. menus
G06F 3/04847 - Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
G06F 3/04842 - Selection of displayed objects or displayed text elements
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
Embodiments of the invention provide a laser system including a laser station including at least one laser, at least one processor, and at least one non-transitory computer-readable storage medium in data communication with the at least one processor. The at least one non-transitory computer-readable storage medium includes program instructions executable by the at least one processor, and enabling or operating an exchange of data between the at least one laser station and at least one remote network. The laser system includes at least one GUI display configured and arranged to display operating parameters or functions of the at least one laser and/or any of the data exchanged between the laser station and at least one remote network. The program instructions include instructions that direct the processor to update the at least one GUI display with a plurality of user-selectable graphics arranged around the periphery or circumference of a central display.
G06F 3/04817 - Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance using icons
G06F 3/04847 - Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
G06F 3/0482 - Interaction with lists of selectable items, e.g. menus
12.
Pre-initiated optical fibers and methods of making thereof
Embodiments of the invention include a method of initiating an optical fiber of a tip assembly to form a finished tip assembly. In some embodiments, at least a portion of a distal portion of the optical fiber is coated with an energy absorbing initiating material. In some embodiments, the initiating material is an enamel material including a mixture of brass (copper and zinc) flakes or aluminum flakes in a solution of organic solvents. After the initiating material dries, a diode laser is fired through the optical fiber. The laser energy is at least partially absorbed in the initiating material and ignites the organic solvents. This combustion melts the material of the optical fiber, and impregnates the optical fiber with the metal flakes of the initiating material. The resulting initiated optical fiber is thus permanently modified so that the energy applied through the fiber is partially absorbed and converted to heat.
C03C 25/60 - Surface treatment of fibres or filaments made from glass, minerals or slags by diffusing ions or metals into the surface
A61B 18/22 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibreHand-pieces therefor
Some embodiments include a dental laser system with a controller coupled to an electromagnetic energy source, where the controller's graphical user interface enables a user to provide input to control operating parameters of the electromagnetic energy source. In some embodiments, the graphical user interface can render a controller enabling user control of a plurality dental laser system parameters with a single action or input. In some embodiments, the user's interaction with a graphical portion of the controller sufficient to control more than one operational parameter of the dental laser system without a requirement for the user to provide an additional or substantially simultaneous interaction with any other controller or portion of the graphical user interface. Further, the graphical content has a graphic indicative of a mode, an operational status, and/or an operational parameter of the dental laser system that is displayed, updated, or animated by the controller.
G06F 3/04847 - Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
A61B 18/22 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibreHand-pieces therefor
G06F 3/04817 - Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance using icons
G06F 3/04845 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range for image manipulation, e.g. dragging, rotation, expansion or change of colour
G06F 3/0482 - Interaction with lists of selectable items, e.g. menus
G06F 3/0488 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
A61C 1/05 - Dental machines for boring or cutting characterised by the drive of the dental tools with turbine drive
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
14.
Dental laser unit with communication link to assistance center
A medical treatment apparatus includes a power and control (PAC) device. The PAC device provides electrical power through a cable to a laser handpiece assembly to electrically power a laser source within the handpiece assembly. The PAC device controls operation of the handpiece assembly and detects an identification of the handpiece assembly. The PAC device also monitors data relating to operation of the handpiece assembly. The PAC device uploads, through a communication network to a user assistance center remote from the PAC device, the handpiece assembly identification and the monitored data.
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A61G 15/00 - Operating chairsDental chairsAccessories specially adapted therefor, e.g. work stands
Embodiments of the invention include a compact, lightweight, hand-held laser treatment device that combines the emissions of two separate laser energy sources into a common optical pathway for improved therapeutic effect. In some embodiments, the device includes a housing having separate first and second laser sources disposed within the interior thereof. In some embodiments, the laser energy emissions from the two internal laser sources can be individually or concurrently transmitted to a delivery tip of the device via a laser transmission path also defined within the interior of the housing. In some embodiments, the structural and functional features of the first and second laser sources, in concert with the unique architecture of the laser transmission path, can be configured to provide efficacy and efficiency in the operation of the device within the spatial constraints of the lightweight, hand-held housing thereof.
A61B 18/22 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibreHand-pieces therefor
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
A61N 5/067 - Radiation therapy using light using laser light
16.
Display screen including a dental laser graphical user interface
An assembly with a handpiece assembly configured to receive electromagnetic energy and fluid, and to selectively deliver the electromagnetic energy and/or the fluid to a target surface. The handpiece assembly includes a handpiece housing and a plurality of fluid lines extending through the handpiece housing. The plurality of fluid lines can transfer fluid from a proximal end of the handpiece assembly to a distal end of the handpiece assembly. A spray mixer can be positioned at the distal end that is coupled to fluid lines of the plurality of fluid lines. An air input port can be positioned at the proximal end that is configured to be coupled to an auxiliary air hose, and an air delivery channel can be coupled to the air input port, and can supply air to a tip of an exchangeable applicator that can be coupled to the distal end of the handpiece housing.
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
A61B 17/00 - Surgical instruments, devices or methods
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A61B 18/22 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibreHand-pieces therefor
Embodiments of the invention provide a dental network including a portable dental laser station controllable within a remote access system. The dental laser station can include a dental laser, and a dental handpiece assembly coupled to or including the at least one dental laser. Some embodiments include a processor and a non-transitory computer-readable storage medium including a dental laser management process to exchange dentistry-related parameters between the dental laser station or components and a remote network. Some embodiments include a handpiece assembly structured so that any beam size on the output window or surface is greater than any beam size exiting at the input window or surface. Some embodiments include a laser power supply combination with at least one high voltage (HV) power supply, a coupled or integrated simmer supply, a direct current (DC) supply, and at least one laser configured with a power supply.
Embodiments of the invention provide a system of controlling a dental laser system. The system can include a dental laser and a control system for controlling certain functions of the dental laser. A graphical user interface can be used to provide input to the control system. The graphical user interface can include a first display and an second display with selectable segments, and a menu navigation portion located adjacent the second display. Treatment categories, procedures or laser control options can be selected using the interface, and the interface can be updated based on data from the station.
G16H 20/40 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
G06F 3/0482 - Interaction with lists of selectable items, e.g. menus
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
21.
Display screen including a dental laser graphical user interface
Embodiments of the invention include a method of initiating an optical fiber. In some embodiments, a distal portion of the optical fiber is coated with an energy absorbing material. In some embodiments, the material includes a metal flakes or powder dispersed in a solution of organic solvents. After the material dries, laser energy is fired through the optical fiber. The laser energy can be absorbed in the material and ignites the organic solvents. This combustion melts the material of the optical fiber, and impregnates the optical fiber with the metal flakes or powder of the material. The resulting optical fiber is thus permanently modified so that the energy applied through the fiber is partially absorbed and converted to heat.
G02B 6/00 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings
A61B 18/22 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibreHand-pieces therefor
G02B 6/38 - Mechanical coupling means having fibre to fibre mating means
Embodiments of the invention include a treatment device and corresponding treatment method for laser wound healing, the device and method making use of the simultaneous action of multiple laser types and laser wavelengths which are applied at human tissue. The treatment device generally includes a laser system and a hand-piece which is coupled to the laser system. The hand-piece is designed so that one or multiple laser beams are applied at relatively small spot and at a relatively high power level, and are surrounded by a relatively large spot of another laser beam with a relatively low power level. In a preferred implementation, the hand-piece is adapted to facilitate the emission of first and second laser beams together with a third laser beam which is delivered at a different spatial profile in comparison to the first and second laser beams.
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
Provided is a surgical handpiece for providing an electromagnetic cutting blade. The handpiece, comprises a body portion having an input end and an output end, a plurality of optical fibers for receiving laser energy having a wavelength within a predetermined wavelength range, wherein the optical fibers are received in the body portion at the input end and extend to the output end, and an optical fiber transition region within the body portion for arranging the plurality of optical fibers into a predetermine cutting shape at the output end, wherein laser energy transmitted from the arranged optical fibers at the output end interact with water molecules near the surgical target to generate micro-explosions that result in a cutting effect.
A61B 18/22 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibreHand-pieces therefor
A61B 18/26 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibreHand-pieces therefor for producing a shock wave, e.g. laser lithotripsy
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
41 - Education, entertainment, sporting and cultural services
Goods & Services
Educational services, namely, conducting classes, seminars, workshops and conferences in the field of dentistry, and distributing course materials online in connection therewith; providing continuing professional education courses in the field of dentistry; providing a website featuring dental procedures for educational purposes; Education services, namely, providing tutoring in the field of digital dentistry; Providing continuing dental education courses
09 - Scientific and electric apparatus and instruments
41 - Education, entertainment, sporting and cultural services
Goods & Services
downloadable educational course materials in the field of dentistry Educational services, namely, conducting classes, seminars, workshops and conferences in the field of dentistry, and distributing course materials online in connection therewith; providing continuing professional education courses in the field of dentistry; providing a website featuring dental procedures for educational purposes; Education services, namely, providing tutoring in the field of digital dentistry; Providing continuing dental education courses
28.
Display screen including a dental laser graphical user interface
Embodiments of the invention provide a system of controlling a dental laser system. The system can include a dental laser and a control system for controlling certain functions of the dental laser. A graphical user interface can be used to provide input to the control system. The graphical user interface can include a central display and an outer display with selectable segments, and a menu navigation portion located adjacent the outer display. Treatment categories, procedures or laser control options can be selected using the interface, and the interface can be updated based on data from the station.
G06F 3/0482 - Interaction with lists of selectable items, e.g. menus
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
G16H 20/40 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
Some embodiments include a dental laser system with a controller coupled to an electromagnetic energy source, where the controller's graphical user interface enables a user to provide input to control operating parameters of the electromagnetic energy source. In some embodiments, the graphical user interface can render a controller enabling user control of a plurality dental laser system parameters with a single action or input. In some embodiments, the user's interaction with a graphical portion of the controller sufficient to control more than one operational parameter of the dental laser system without a requirement for the user to provide an additional or substantially simultaneous interaction with any other controller or portion of the graphical user interface. Further, the graphical content has a graphic indicative of a mode, an operational status, and/or an operational parameter of the dental laser system that is displayed, updated, or animated by the controller.
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
A61B 18/22 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibreHand-pieces therefor
G06F 3/0481 - Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
G06F 3/0482 - Interaction with lists of selectable items, e.g. menus
G06F 3/0488 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
A61C 1/05 - Dental machines for boring or cutting characterised by the drive of the dental tools with turbine drive
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
A computer-implemented method for controlling an electromagnetic energy source is disclosed. Instructions are executed on a processor to display on a computer-human interface display device a user interface region. The user interface region includes a pie-graph. An input is received via the user interface region, where the input is an interaction with the pie-graph that changes one of the radius or a sector of the plurality of the sectors. A power output of one or more of the electromagnetic energy sources is adjusted based on the input.
G06F 3/048 - Interaction techniques based on graphical user interfaces [GUI]
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
G06F 3/0481 - Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
G06F 3/0488 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
Dental instruments for use in oral, joint, skin, nerve and muscle therapies and treatments, namely, oral irrigators, handpieces, dental devices used in root canal procedures in the nature of root canal therapy instruments used to shave the inside of a root canal and dental root files used in root canal dental procedures; electromagnetic energy emitting devices for dental and medical use in the nature of lasers for dental and medical use, and parts therefor; components of and accessories for lasers for dental and medical use, namely, handpieces, fibers, and laser tips [ ; electronic aesthetic skin treatment devices using light emitting diodes, namely, infrared, red, orange, yellow, green, and blue wavelengths for generating light rays; electronic light therapy apparatus for the skin; lasers for medical purposes; lasers for medical use; lasers for surgical and medical use; lasers for the cosmetic treatment of the face and skin; light emitting devices, namely, lamps and LED devices for treatment of a variety of skin conditions; light emitting diode (LED) apparatus for lighting, incorporated into medical instruments ]
A computer-implemented method for controlling a plurality of electromagnetic energy sources is disclosed. Instructions are executed on a processor to display on a computer-human interface display device a user interface region. The user interface region includes a pie-graph configured to display a total output power of the plurality of the electromagnetic energy sources. The pie-graph includes a radius that indicates the total output power and a plurality of sectors that indicate percentages of the total output power contributed by each of the plurality of the electromagnetic energy sources. An input is received via the user interface region, where the input is an interaction with the pie-graph that changes one of the radius or a sector of the plurality of the sectors. A power output of one or more of the electromagnetic energy sources is adjusted based on the input.
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
G06F 3/0481 - Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
G06F 3/0488 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
Embodiments of the invention provide a method of controlling a dental laser system. The method can include providing a dental laser station and a controller for controlling certain functions of the station. A graphical user interface can be used to provide input to the controller. The graphical user interface can include a control wheel with selectable segments and a menu navigation portion located adjacent the control wheel. Treatment categories, procedures or laser control options can be selected using the interface, and the interface can be updated based on data from the station.
G06F 3/00 - Input arrangements for transferring data to be processed into a form capable of being handled by the computerOutput arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
G06F 3/0482 - Interaction with lists of selectable items, e.g. menus
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
Embodiments of the invention include a method of initiating an optical fiber of a tip assembly to form a finished tip assembly. In some embodiments, at least a portion of a distal portion of the optical fiber is coated with an energy absorbing initiating material. In some embodiments, the initiating material is an enamel material including a mixture of brass (copper and zinc) flakes or aluminum flakes in a solution of organic solvents. After the initiating material dries, a diode laser is fired through the optical fiber. The laser energy is at least partially absorbed in the initiating material and ignites the organic solvents. This combustion melts the material of the optical fiber, and impregnates the optical fiber with the metal flakes of the initiating material. The resulting initiated optical fiber is thus permanently modified so that the energy applied through the fiber is partially absorbed and converted to heat.
B05D 3/06 - Pretreatment of surfaces to which liquids or other fluent materials are to be appliedAfter-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
A61B 18/22 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibreHand-pieces therefor
C23C 20/04 - Coating with metallic material with metals
C23C 18/18 - Pretreatment of the material to be coated
C23C 18/14 - Decomposition by irradiation, e.g. photolysis, particle radiation
G02B 6/00 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings
Embodiments of the invention include a treatment device and corresponding treatment method for laser wound healing, the device and method making use of the simultaneous action of multiple laser types and laser wavelengths which are applied at human tissue. The treatment device generally includes a laser system and a hand-piece which is coupled to the laser system. The hand-piece is designed so that one or multiple laser beams are applied at relatively small spot and at a relatively high power level, and are surrounded by a relatively large spot of another laser beam with a relatively low power level. In a preferred implementation, the hand-piece is adapted to facilitate the emission of first and second laser beams together with a third laser beam which is delivered at a different spatial profile in comparison to the first and second laser beams.
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
A medical treatment apparatus includes a power and control (PAC) device. The PAC device provides electrical power through a cable to a laser handpiece assembly to electrically power a laser source within the handpiece assembly. The PAC device controls operation of the handpiece assembly and detects an identification of the handpiece assembly. The PAC device also monitors data relating to operation of the handpiece assembly. The PAC device uploads, through a communication network to a user assistance center remote from the PAC device, the handpiece assembly identification and the monitored data.
A handpiece tip includes an optical waveguide with a proximal input end for receiving electromagnetic energy and a distal output end for emitting electromagnetic energy. The tip has an eyeball engagement surface with a concave contour, and has an oppositely facing eyelid engagement surface with a convex contour. The distal output end of the waveguide is located at the eyelid engagement surface.
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
A61B 18/22 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibreHand-pieces therefor
A handpiece assembly for laser treating a target surface and a laser system are disclosed. A handpiece assembly for laser treating a target surface includes a cable connector that is detachably coupled to a power supply and control module. The cable connector is configured to receive power and control signals from the power supply and control module. The handpiece assembly includes a laser module configured to receive the power and control signals from the cable connector and to generate electromagnetic energy based on the received power and control signals. The laser module is a replaceable module that is detachably coupled to the cable connector and a handpiece. The replaceable module allows a particular laser module to be removed from the handpiece assembly and replaced with another laser module. The handpiece assembly further includes the handpiece configured to receive the electromagnetic energy from the laser module and to direct the electromagnetic energy to the target surface.
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
A61C 19/08 - Implements for therapeutic treatment combined with anaesthetising implements
A61C 1/08 - Machine parts specially adapted for dentistry
A61B 18/22 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibreHand-pieces therefor
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A61N 5/067 - Radiation therapy using light using laser light
B23K 103/00 - Materials to be soldered, welded or cut
A61B 17/00 - Surgical instruments, devices or methods
A61B 90/98 - Identification means for patients or instruments, e.g. tags using electromagnetic means, e.g. transponders
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
A computer-implemented method for controlling a plurality of electromagnetic energy sources is disclosed. Instructions are executed on a processor to display on a computer-human interface display device a user interface region. The user interface region includes a pie-graph configured to display a total output power of the plurality of the electromagnetic energy sources. The pie-graph includes a radius that indicates the total output power and a plurality of sectors that indicate percentages of the total output power contributed by each of the plurality of the electromagnetic energy sources. An input is received via the user interface region, where the input is an interaction with the pie-graph that changes one of the radius or a sector of the plurality of the sectors. A power output of one or more of the electromagnetic energy sources is adjusted based on the input.
G06F 3/0487 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
Provided is a surgical handpiece for providing an electromagnetic cutting blade. The handpiece, comprises a body portion having an input end and an output end, a plurality of optical fibers for receiving laser energy having a wavelength within a predetermined wavelength range, wherein the optical fibers are received in the body portion at the input end and extend to the output end, and an optical fiber transition region within the body portion for arranging the plurality of optical fibers into a predetermine cutting shape at the output end, wherein laser energy transmitted from the arranged optical fibers at the output end interact with water molecules near the surgical target to generate micro-explosions that result in a cutting effect.
A61B 18/22 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibreHand-pieces therefor
A61B 18/26 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibreHand-pieces therefor for producing a shock wave, e.g. laser lithotripsy
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
47.
Initiation sequences for ramping-up pulse power in a medical laser having high-intensity leading subpulses
A gradual ramp-up of output power in a medical laser prevents rapid temperature rise at a fiber tip of a laser handpiece when residual contamination from a prior medical procedure remains on the fiber tip after an extended cooling period. The gradual ramp-up eliminates effects of an acoustic shock wave resulting from the rapid temperature rise to prevent damage to fiber and optical components in the laser device.
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
Dental instruments for use in oral, joint, skin, nerve and muscle therapies and treatments, namely, [ oral irrigators, ] handpieces, dental devices used in root canal procedures in the nature of root canal therapy instruments used to shave the inside of a root canal and dental root files used in root canal dental procedures; electromagnetic energy emitting devices for dental and medical use in the nature of lasers for dental and medical use, and parts therefor; components of and accessories for lasers for dental and medical use, namely, handpieces, fibers, and laser tips; electronic aesthetic skin treatment devices using light emitting diodes, namely, infrared, red, orange, yellow, green, and blue wavelengths for generating light rays; electronic light therapy apparatus for the skin; lasers for medical purposes; lasers for medical use; lasers for surgical and medical use; lasers for the cosmetic treatment of the face and skin; [ light emitting devices, namely, lamps and LED devices for treatment of a variety of skin conditions; ] light emitting diode (LED) apparatus for lighting, incorporated into medical instruments
49.
Handpiece finger switch for actuation of handheld medical instrumentation
A handpiece for a medical instrumentation device is formed with manually deformable ribs on an outer sleeve. The ribs align with conductive surfaces inside the handpiece that make contact with an internal flexible electronic circuit to activate the device when force is applied to the ribs. Removing the force deactivates the device.
A high power source of electro-magnetic radiation having a multi-purpose housing is disclosed. The multi-purpose housing includes an interior filled with a material forming at least a light source and further comprising a reflector which can envelope a laser rod surrounded by light sources for providing light excitation to the laser rod. A material defining outer surfaces of the light sources extends out to and defines outer surfaces of the reflector. A high-reflectivity coating is disposed over an outer surface of the reflector, as is a protective coating. Also disposed over an outer surface of the reflector can be an optional heat sink, with cooling being performed by an optional arrangement of forced-air traveling over the heat sink. The light sources may be light source pumps, and the high-reflectivity coating may be formed to envelop the reflector.
An apparatus having an excitation source that includes at least one laser diode and also having a handpiece with a disposable, bendable tip cannula is disclosed.
A61B 18/18 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
52.
Electromagnetic energy distributions for electromagnetically induced mechanical cutting
Output optical energy pulses including relatively high energy magnitudes at the beginning of each pulse are disclosed. As a result of the relatively high energy magnitudes which lead each pulse, the leading edge of each pulse includes a relatively large slope. This slope is preferably greater than or equal to 5. Additionally, the full-width half-max value of the output optical energy distributions are between 0.025 and 250 microseconds and, more preferably, are about 70 microseconds. A flashlamp is used to drive the laser system, and a current is used to drive the flashlamp. A flashlamp current generating circuit includes a solid core inductor which has an inductance of 50 microhenries and a capacitor which has a capacitance of 50 microfarads.
Dental instruments for use in oral and joint therapeutic treatment of skin, nerve and muscle tissues; dental instruments, namely, oral irrigators, dental devices for root canal procedures in the nature of root canal therapy instruments used to shave the inside of a root canal and dental root files used in root canal dental procedures, dental handpieces, electromagnetic energy emitting devices for dental and medical use in the nature of lasers for dental and medical use and structural component parts therefor; electronic aesthetic skin treatment devices using light emitting diodes, namely, infrared, red, orange, yellow, green, and blue wavelengths for generating light rays; electronic light therapy apparatus for the skin; electronic stimulator for oral and joint treatment of skin, nerve and muscle tissues; lasers for medical purposes; lasers for medical use; lasers for surgical and medical use; lasers for the cosmetic treatment of the face and skin; light emitting devices, namely, lamps and LED devices for treatment of a variety of skin conditions; light emitting diode (LED) apparatus for lighting, incorporated into medical instruments; medical and surgical laparoscopes; medical apparatus and instruments for use in surgery
Dental instruments for use in oral and joint therapeutic treatment of skin, nerve and muscle tissues; dental instruments, namely, oral irrigators, dental devices for root canal procedures in the nature of root canal therapy instruments used to shave the inside of a root canal and dental root files used in root canal dental procedures, dental hand pieces, electromagnetic energy emitting devices for dental and medical use in the nature of lasers for dental and medical use and structural component parts therefor; electronic aesthetic skin treatment devices using light emitting diodes, namely, infrared, red, orange, yellow, green, and blue wavelengths for generating light rays; electronic light therapy apparatus for the skin; electronic stimulator for oral and joint treatment of skin, nerve and muscle tissues; lasers for medical purposes; lasers for medical use; lasers for surgical and medical use; lasers for the cosmetic treatment of the face and skin; light emitting devices, namely, lamps and LED devices for treatment of a variety of skin conditions; light emitting diode (LED) apparatus for lighting, incorporated into medical instruments; medical and surgical laparoscopes; medical apparatus and instruments for use in surgery
An apparatus having an excitation source that includes at least one laser diode and also having a handpiece with a disposable, bendable tip cannula is disclosed.
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
A non-contact laser handpiece contains optical components modified to provide a high-density uniform laser beam at a distance from the handpiece that minimizes effects of back reflection.
A61B 18/18 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
57.
Satellite-platformed electromagnetic energy treatment device
A satellite platform facilitates the dividing of a laser system into functional modules, and operates to provide one or more of the functional modules directly into (e.g., closer toward) a user's operational space. In a typical implementation, the satellite platform pairs two or more of the functional modules into a combination and places it in the user's operational space. The two or more functional modules can be two of the major components of the laser-system user interface, namely, the handpiece and the control panel. The combination is provided by way of the satellite platform directly into the user's operational space, while part, all, or a majority of, the laser system may remain away from the use's operational space (e.g., on the wall, on the counter-top or at the walk-way). A particular embodiment of the satellite platform takes the form of an articulated arm similar to that used for components in conventional dental chairs.
A61B 18/18 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
Architectures and techniques for treating conditions of the eye, such as presbyopia, utilize sources of treatment energy, such as electromagnetic energy emitting devices, to implement non-corneal manipulations. According to these devices and methods, the sources of treatment energy are activated to direct energy onto parts of the eye, such as the conjunctiva and sclera, to treat presbyopia. The treatments can affect at least one property of the eye and enhance an accommodation of the eye.
A61B 19/00 - Instruments, implements or accessories for surgery or diagnosis not covered by any of the groups A61B 1/00-A61B 18/00, e.g. for stereotaxis, sterile operation, luxation treatment, wound edge protectors(protective face masks A41D 13/11; surgeons' or patients' gowns or dresses A41D 13/12; devices for carrying-off, for treatment of, or for carrying-over, body liquids A61M 1/00)
59.
Probes and biofluids for treating and removing deposits from tissue surfaces
An endodontic probe is used to perform disinfection procedures on target tissues within root canal passages and tubules. The endodontic probe can include an electromagnetic radiation emitting fiber optic tip having a distal end and a radiation emitting region disposed proximally of the distal end. According to one aspect, the endodontic probe can include a porous structure that encompasses a region of the fiber optic tip excluding the radiation emitting region and that is loaded with biologically-active particles, cleaning particles, biologically-active agents, or cleaning agents for delivery from the porous structure onto the target tissues. Another aspect can include provision of the endodontic probe with an adjustable channel-depth indicator, which encompasses a region of the fiber optic tip besides the radiation emitting region and which is movable in proximal and distal directions along a surface of the fiber optic tip to facilitate the provision of depth-of-insertion information to users of the endodontic probe.
Architectures and techniques for treating conditions of the eye, such as presbyopia, utilize sources of treatment energy, such as electromagnetic energy emitting devices, to implement non-corneal and other manipulations. According to these devices and methods, the sources of treatment energy are activated to direct energy onto parts of the eye, such as the conjunctiva and sclera, to treat presbyopia. The treatments can affect at least one property of the eye and enhance an accommodation of the eye.
A61B 19/00 - Instruments, implements or accessories for surgery or diagnosis not covered by any of the groups A61B 1/00-A61B 18/00, e.g. for stereotaxis, sterile operation, luxation treatment, wound edge protectors(protective face masks A41D 13/11; surgeons' or patients' gowns or dresses A41D 13/12; devices for carrying-off, for treatment of, or for carrying-over, body liquids A61M 1/00)
A61B 18/18 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
61.
Electromagnetic energy distributions for electromagnetically induced mechanical cutting
Output optical energy pulses including relatively high energy magnitudes at the beginning of each pulse are disclosed. As a result of the relatively high energy magnitudes which lead each pulse, the leading edge of each pulse includes a relatively large slope. This slope is preferably greater than or equal to 5. Additionally, the full-width half-max value of the output optical energy distributions are between 0.025 and 250 microseconds and, more preferably, are about 70 microseconds. A flashlamp is used to drive the laser system, and a current is used to drive the flashlamp. A flashlamp current generating circuit includes a solid core inductor which has an inductance of 50 microhenries and a capacitor which has a capacitance of 50 microfarads.
H01S 3/10 - Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
H01S 3/13 - Stabilisation of laser output parameters, e.g. frequency or amplitude
A61B 18/18 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
62.
Fluid controllable laser endodontic cleaning and disinfecting system
An endodontic probe is used to perform disinfection procedures on target tissues within root canal passages and tubules. The endodontic probe can include an electromagnetic radiation emitting fiber optic tip having a distal end and a radiation emitting region disposed proximally of the distal end. According to one aspect, the endodontic probe can include a porous structure that encompasses a region of the fiber optic tip excluding the radiation emitting region and that is loaded with biologically-active particles, cleaning particles, biologically-active agents, or cleaning agents for delivery from the porous structure onto the target tissues. Another aspect can include provision of the endodontic probe with an adjustable channel-depth indicator, which encompasses a region of the fiber optic tip besides the radiation emitting region and which is movable in proximal and distal directions along a surface of the fiber optic tip to facilitate the provision of depth-of-insertion information to users of the endodontic probe.
A laser handpiece is disclosed, including a shaped fiber optic tip having a side-firing output end with a double bevel-cut shape. The shaped fiber optic tip can be configured to side-fire laser energy in a direction away from a laser handpiece and toward sidewalls of a treatment or target site.
A61B 18/18 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
41 - Education, entertainment, sporting and cultural services
Goods & Services
Educational services, namely, conducting classes, seminars, workshops and conferences in the field of dentistry, and distributing course materials in the form of educational DVDs, online educational courses, books and other materials in connection therewith; providing continuing professional education courses in the field of dentistry
41 - Education, entertainment, sporting and cultural services
Goods & Services
Educational services, namely, conducting classes, seminars, workshops and conferences in the field of dentistry, and distributing course materials in the form of educational DVDs, online educational courses, books and other materials in connection therewith; providing continuing professional education courses in the field of dentistry
67.
Target-close electromagnetic energy emitting device
An apparatus having an excitation source that includes at least one laser diode and also having a handpiece with a disposable, bendable tip cannula is disclosed.
A61B 18/18 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
An apparatus having an excitation source that includes at least one laser diode and also having a handpiece with a disposable, bendable tip cannula is disclosed.
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
An apparatus having an excitation source that includes at least one laser diode and also having a handpiece with a disposable, bendable tip cannula is disclosed.
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
H01S 5/062 - Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
70.
Electromagnetic energy distributions for electromagnetically induced mechanical cutting
Output optical energy pulses including relatively high energy magnitudes at the beginning of each pulse are disclosed. As a result of the relatively high energy magnitudes which lead each pulse, the leading edge of each pulse includes a relatively large slope. This slope is preferably greater than or equal to 5. Additionally, the full-width half-max value of the output optical energy distributions are between 0.025 and 250 microseconds and, more preferably, are about 70 microseconds. A flashlamp is used to drive the laser system, and a current is used to drive the flashlamp. A flashlamp current generating circuit includes a solid core inductor which has an inductance of 50 microhenries and a capacitor which has a capacitance of 50 microfarads.
H01S 3/10 - Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
A61B 18/18 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
Architectures and techniques for treating conditions of the eye, such as presbyopia, utilize sources of treatment energy, such as electromagnetic energy emitting devices, to implement non-corneal manipulations. According to these devices and methods, the sources of treatment energy are activated to direct energy onto parts of the eye, such as the conjunctiva and sclera, to treat presbyopia. The treatments can affect at least one property of the eye and enhance an accommodation of the eye.
A61B 19/00 - Instruments, implements or accessories for surgery or diagnosis not covered by any of the groups A61B 1/00-A61B 18/00, e.g. for stereotaxis, sterile operation, luxation treatment, wound edge protectors(protective face masks A41D 13/11; surgeons' or patients' gowns or dresses A41D 13/12; devices for carrying-off, for treatment of, or for carrying-over, body liquids A61M 1/00)
72.
Contra-angle rotating handpiece having tactile-feedback tip ferrule
An illumination device is described containing optical fibers that transmit electromagnetic energy from a source to a target. Additional optical fibers return reflected electromagnetic energy from the target. High-level electromagnetic energy can be used for cutting, reforming, or treating a surface. Low-level electromagnetic energy illuminates the surface.
A61B 1/07 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
A61B 18/22 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibreHand-pieces therefor
A laser handpiece is disclosed, including a shaped fiber optic tip having a side-firing output end with a double bevel-cut shape. The shaped fiber optic tip can be configured to side-fire laser energy in a direction away from a laser handpiece and toward sidewalls of a treatment or target site.
A61B 18/18 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
A device for imparting therapeutic doses to living tissue is disclosed. The device includes a planar carrier including or structured to adjustably accommodate a multitude of electrodes. Positions of the electrodes may be altered by a user during a treatment procedure involving the impartation of therapeutic doses to the living tissue.
electromagnetic energy emitting devices for medical use, namely, lasers for medical use, disposable electromagnetic energy emitting medical components, namely, disposable laser and light emitting tips, and parts and components therefore
Mouthpieces having activated textured surfaces that can be implemented using repetitive movement mechanisms and energy (e.g., electromagnetic radiation) emitting sources are disclosed. The mouthpieces may be used to provide detection, treatment and management of conditions including tooth discoloration and periodontal disease. Implementations can include a low-profile mouthpiece or a mouthpiece covering only front sides of the upper and lower teeth. Other combinations may include full-mouth implementations suitable for simultaneously covering part or all of a patient's upper and lower rows of teeth. The activated textured surfaces may include a surface topography consisting of bristles.
A laser device is disclosed that directs light to a tooth and analyzes scattered light reflected from the tooth. The device measures a time delay between excitation and reflections of light. Reflected light is analyzed to determine a presence and extent of dental caries on the tooth.
lasers for medical and dental use, water cooling assemblies for use with aforesaid goods, cutters using electromagnetic energy and/or fluids for cutting and/or ablating medical and dental materials, and parts and components therefore, root canal shaping apparatus for endodontic procedures, and parts and components therefore, [ root canal hand files and other endodontic products, namely, irrigation and washing devices, reamers, filling compounds, endodontic storage and sterilization apparatus, and parts and components therefor, gutta percha, paper points, and surgical implants, namely, natural and synthetic compounds that are compatible with living tissue for dental use ]
82.
PRE-INITIATED OPTICAL FIBERS FOR MEDICAL APPLICATIONS
Embodiments of the invention include a method of initiating an optical fiber of a tip assembly to form a finished tip assembly. In some embodiments, at least a portion of a distal portion of the optical fiber is coated with an energy absorbing initiating material. In some embodiments, the initiating material is an enamel material including a mixture of brass (copper and zinc) flakes or aluminum flakes in a solution of organic solvents. After the initiating material dries, a diode laser is fired through the optical fiber. The laser energy is at least partially absorbed in the initiating material and ignites the organic solvents. This combustion melts the material of the optical fiber, and impregnates the optical fiber with the metal flakes of the initiating material. The resulting initiated optical fiber is thus permanently modified so that the energy applied through the fiber is partially absorbed and converted to heat.
Embodiments of the invention provide a method of controlling a dental laser system. The method can include providing a dental laser station and a controller for controlling certain functions of the station. A graphical user interface can be used to provide input to the controller. The graphical user interface can include a control wheel with selectable segments and a menu navigation portion located adjacent the control wheel. Treatment categories, procedures or laser control options can be selected using the interface, and the interface can be updated based on data from the station.
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
A satellite platform facilitates the dividing of a laser system into functional modules, and provides one or more of the functional module (e.g. articulated arm, handpiece, control panel) in a user's operational space while part, or a majority of the laser system may remain away from the user's operational space (e.g., on the wall, on the counter-top or at the walk-way).
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
A61B 18/22 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibreHand-pieces therefor
A medical laser device (600) that generates a laser beam controllable with presets (695) as to pulse duration, pulse repetition rate, power, and energy per pulse. The device also provides presets with respect to water and air outputs. Parametric values for power, pulse duration, pulse repetition rate, and energy per pulse as well as for water and air settings maybe programmed by the end user and stored as presets.
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
H01S 3/09 - Processes or apparatus for excitation, e.g. pumping
H01S 3/092 - Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
H01S 3/10 - Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
86.
SATELLITE-PLATFORMED ELECTROMAGNETIC ENERGY TREATMENT DEVICE
A satellite platform facilitates the dividing of a laser system into functional modules, and provides one or more of the functional module (e.g. articulated arm, handpiece, control panel) in a user's operational space while part, or a majority of the laser system may remain away from the user's operational space (e.g., on the wall, on the counter-top or at the walk-way).
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
A61B 18/22 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibreHand-pieces therefor
87.
HIGH POWER RADIATION SOURCE WITH ACTIVE-MEDIA HOUSING
A high power source of electro-magnetic radiation having a multi-purpose housing is disclosed. The multi-purpose housing includes an interior filled with a material forming at least a light source and further comprising a reflector which can envelope a laser rod surrounded by light sources for providing light excitation to the laser rod. A material defining outer surfaces of the light sources extends out to and defines outer surfaces of the reflector. A high-reflectivity coating is disposed over an outer surface of the reflector, as is a protective coating. Also disposed over an outer surface of the reflector can be an optional heat sink, with cooling being performed by an optional arrangement of forced-air traveling over the heat sink. The light sources may be light source pumps, and the high-reflectivity coating may be formed to envelop the reflector.
A gradual ramp-up of output power in a medical laser prevents rapid temperature rise at a fiber tip of a laser handpiece when residual contamination from a prior medical procedure remains on the fiber tip after an extended cooling period. The gradual ramp-up eliminates effects of an acoustic shock wave resulting from the rapid temperature rise to prevent damage to fiber and optical components in the laser device.
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
H01S 3/10 - Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
A fluid conditioning system is adapted to condition the fluid used in medical and dental cutting, irrigating, evacuating, cleaning, and drilling operations. The fluid may be conditioned by adding flavors, antiseptics and/or tooth whitening agents such as peroxide, medications, and pigments. In addition to the direct benefits obtained from introduction of these agents, the laser cutting properties may be varied from the selective introduction of the various agents.
A61B 17/16 - Instruments for performing osteoclasisDrills or chisels for bonesTrepans
A61B 17/22 - Implements for squeezing-off ulcers or the like on inner organs of the bodyImplements for scraping-out cavities of body organs, e.g. bonesSurgical instruments, devices or methods for invasive removal or destruction of calculus using mechanical vibrationsSurgical instruments, devices or methods for removing obstructions in blood vessels, not otherwise provided for
A61B 18/22 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibreHand-pieces therefor
Systems and methods are provided for cleaning or disinfecting a target region. A fluid including a plurality of gas bubbles is placed into an interaction zone. The interaction zone is a volume that extends into the target region or that is adjacent to the target region. The fluid in the interaction zone is exposed to electromagnetic radiation, where the electromagnetic radiation has a wavelength that is substantially absorbed by the fluid. The fluid in the interaction zone substantially absorbs the electromagnetic radiation to create an acoustic shock wave and a pressure wave. The acoustic shock wave and the pressure wave cause a movement of the fluid and cavitation effects that are configured to clean or disinfect the target region.
A61B 18/26 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibreHand-pieces therefor for producing a shock wave, e.g. laser lithotripsy
A61C 5/40 - Implements for surgical treatment of the roots or nerves of the teethNerve needlesMethods or instruments for medication of the roots
A computer-implemented method for controlling a plurality of electromagnetic energy sources is disclosed. Instructions are executed on a processor to display on a computer-human interface display device a user interface region. The user interface region includes a pie-graph configured to display a total output power of the plurality of the electromagnetic energy sources. The pie-graph includes a radius that indicates the total output power and a plurality of sectors that indicate percentages of the total output power contributed by each of the plurality of the electromagnetic energy sources. An input is received via the user interface region, where the input is an interaction with the pie-graph that changes one of the radius or a sector of the plurality of the sectors. A power output of one or more of the electromagnetic energy sources is adjusted based on the input.
Embodiments of the invention include a treatment device and corresponding treatment method for laser wound healing, the device and method making use of the simultaneous action of multiple laser types and laser wavelengths which are applied at human tissue. The treatment device generally includes a laser system and a hand-piece which is coupled to the laser system. The hand-piece is designed so that one or multiple laser beams are applied at relatively small spot and at a relatively high power level, and are surrounded by a relatively large spot of another laser beam with a relatively low power level. In a preferred implementation, the hand-piece is adapted to facilitate the emission of first and second laser beams together with a third laser beam which is delivered at a different spatial profile in comparison to the first and second laser beams.
Embodiments of the invention include a compact, lightweight, hand-held laser treatment device that combines the emissions of two separate laser energy sources into a common optical pathway for improved therapeutic effect. In some embodiments, the device includes a housing having separate first and second laser sources disposed within the interior thereof. In some embodiments, the laser energy emissions from the two internal laser sources can be individually or concurrently transmitted to a delivery tip of the device via a laser transmission path also defined within the interior of the housing. In some embodiments, the structural and functional features of the first and second laser sources, in concert with the unique architecture of the laser transmission path, can be configured to provide efficacy and efficiency in the operation of the device within the spatial constraints of the lightweight, hand-held housing thereof.
H01S 3/10 - Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating