A mobile reactor radiation shielding solution prevents activation of structural materials to reduce a radiation dosage risk to living organisms and accelerates timetables for transport. The shielding solution can include: in-vessel neutron shield, in-vessel shadow shield, transport shield, and module shadow shield. In-vessel neutron shield reduces and prevents the activation of the structural materials and significantly reduces the need for heavy shielding to shield against the gamma emissions from activated structural materials. In-vessel shadow shield provides neutron and gamma shielding between the reactor and a balance-of-plant (BOP) module and control system. In-vessel shadow shield is placed near the active nuclear core to minimize size of the shield while maximizing the protected arc to shield radiation workers while preparing the nuclear reactor for transport. Transport shield is used during transportation when living organisms come into proximity of the reactor. Module shadow shield shields reactor control components and BOP module during operation.
To reduce size and mass of a nuclear reactor system, an integrated in-vessel shield separates the role of a neutron reflector and a neutron shield. Nuclear reactor system includes a pressure vessel including an interior wall and a nuclear reactor core located within the interior wall of the pressure vessel. Nuclear reactor core includes a plurality of fuel elements and at least one moderator element. Nuclear reactor system includes a reflector located inside the pressure vessel that includes a plurality of reflector blocks laterally surrounding the plurality of fuel elements and the at least one moderator element. Nuclear reactor system includes the in-vessel shield located on the interior wall of the pressure vessel to surround the reflector blocks. In-vessel shield is formed of two or more neutron absorbing materials. The two more neutron absorbing materials include a near black neutron absorbing material and a gray neutron absorbing material.
G21C 13/02 - Pressure vesselsContainment vesselsContainment in general Details
G21C 7/24 - Selection of substances for use as neutron-absorbing material
C04B 35/563 - Shaped ceramic products characterised by their compositionCeramic compositionsProcessing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbides based on boron carbide
A nuclear reactor system includes a nuclear reactor core disposed in a pressure vessel. Nuclear reactor system further includes control drums disposed longitudinally within the pressure vessel and laterally surrounding fuel elements and at least one moderator element of the nuclear reactor core to control reactivity. Each of the control drums includes a reflector material and an absorber material. Nuclear reactor system further includes an automatic shutdown controller and an electrical drive mechanism coupled to rotatably control the control drum. Automatic shutdown controller includes a counterweight to impart a bias and an actuator. To automatically shut down the nuclear reactor core during a loss or interruption of electrical power from a power source to the electrical drive mechanism, the actuator is coupled to the counterweight and responsive to the bias to align the absorber material of one or more control drums to face inwards towards the nuclear reactor core.
G21C 9/027 - Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse by fast movement of a solid, e.g. pebbles
An enhanced architecture for a nuclear reactor core includes several technologies: (1) nuclear fuel tiles (S-Block); and (2) a high-temperature thermal insulator and tube liners with a low-temperature solid-phase moderator (U-Mod) to improve safety, reliability, heat transfer, efficiency, and compactness. In S-Block, nuclear fuel tiles include a fuel shape designed with an interlocking geometry pattern to optimize heat transfer between nuclear fuel tiles and into a fuel coolant and bring the fuel coolant in direct contact with the nuclear fuel tiles. Nuclear fuel tiles can be shaped with discontinuous nuclear fuel lateral facets and have fuel coolant passages formed therein to provide direct contact between the fuel coolant and the nuclear fuel tiles. In U-Mod, tube liners with low hydrogen diffusivity retain hydrogen in the low-temperature solid-phase moderator even at elevated temperatures and the high-temperature thermal insulator insulates the solid-phase moderator from the nuclear fuel tiles.
G21C 3/322 - Means to influence the coolant flow through or around the bundles
G21C 1/20 - Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being substantially not pressurised, e.g. swimming-pool reactor moderator and coolant being different or separated, e.g. sodium-graphite reactor coolant being pressurised moderator being liquid, e.g. pressure-tube reactor
G21C 15/08 - Arrangement or disposition of passages in which heat is transferred to the coolant, e.g. for coolant circulation through the supports of the fuel elements from moderating material
G21C 15/04 - Arrangement or disposition of passages in which heat is transferred to the coolant, e.g. for coolant circulation through the supports of the fuel elements from fissile or breeder material
5.
RADIATION SHIELDING FOR COMPACT AND TRANSPORTABLE NUCLEAR POWER SYSTEMS
A mobile reactor radiation shielding solution prevents activation of structural materials to reduce a radiation dosage risk to living organisms and accelerates timetables for transport. The shielding solution can include: in-vessel neutron shield, in-vessel shadow shield, transport shield, and module shadow shield. In-vessel neutron shield reduces and prevents the activation of the structural materials and significantly reduces the need for heavy shielding to shield against the gamma emissions from activated structural materials. In-vessel shadow shield provides neutron and gamma shielding between the reactor and a balance-of-plant (BOP) module and control system. In-vessel shadow shield is placed near the active nuclear core to minimize size of the shield while maximizing the protected arc to shield radiation workers while preparing the nuclear reactor for transport. Transport shield is used during transportation when living organisms come into proximity of the reactor. Module shadow shield shields reactor control components and BOP module during operation.
G21C 7/06 - Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
G21C 13/00 - Pressure vesselsContainment vesselsContainment in general
G21C 13/02 - Pressure vesselsContainment vesselsContainment in general Details
A nuclear reactor system includes a nuclear reactor core disposed in a pressure vessel. Nuclear reactor system further includes control drums disposed longitudinally within the pressure vessel and laterally surrounding fuel elements and at least one moderator element of the nuclear reactor core to control reactivity. Each of the control drums includes a reflector material and an absorber material. Nuclear reactor system further includes an automatic shutdown controller and an electrical drive mechanism coupled to rotatably control the control drum. Automatic shutdown controller includes a counterweight to impart a bias and an actuator. To automatically shut down the nuclear reactor core during a loss or interruption of electrical power from a power source to the electrical drive mechanism, the actuator is coupled to the counterweight and responsive to the bias to align the absorber material of one or more control drums to face inwards towards the nuclear reactor core.
An enhanced architecture for a nuclear reactor core includes several technologies: (1) nuclear fuel tiles (S-Block); and (2) a high-temperature thermal insulator and tube liners with a low-temperature solid-phase moderator (U-Mod) to improve safety, reliability, heat transfer, efficiency, and compactness. In S-Block, nuclear fuel tiles include a fuel shape designed with an interlocking geometry pattern to optimize heat transfer between nuclear fuel tiles and into a fuel coolant and bring the fuel coolant in direct contact with the nuclear fuel tiles. Nuclear fuel tiles can be shaped with discontinuous nuclear fuel lateral facets and have fuel coolant passages formed therein to provide direct contact between the fuel coolant and the nuclear fuel tiles. In U-Mod, tube liners with low hydrogen diffusivity retain hydrogen in the low-temperature solid- phase moderator even at elevated temperatures and the high-temperature thermal insulator insulates the solid-phase moderator from the nuclear fuel tiles.
B64D 27/22 - Aircraft characterised by the type or position of power plants using atomic energy
G21C 1/06 - Heterogeneous reactors, i.e. in which fuel and moderator are separated
G21C 1/12 - Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being highly pressurised, e.g. boiling-water reactor, integral-superheat reactor, pressurised-water reactor moderator and coolant being different or separated moderator being solid, e.g. Magnox reactor
G21C 5/22 - Moderator or core structureSelection of materials for use as moderator characterised by the provision of more than one active zone wherein one zone is a superheating zone
G21D 5/06 - Reactor and engine not structurally combined with engine working medium circulating through reactor core
To reduce size and mass of a nuclear reactor system, an integrated in-vessel separates the role of a neutron reflector and a neutron shield. Nuclear reactor system includes a pressure vessel including an interior wall and a nuclear reactor core located within the interior wall of the pressure vessel. Nuclear reactor core includes a plurality of fuel elements and at least one moderator element. Nuclear reactor system includes a reflector located inside the pressure vessel that includes a plurality of reflector blocks laterally surrounding the plurality of fuel elements and the at least one moderator element. Nuclear reactor system includes the in-vessel shield located on the interior wall of the pressure vessel to surround the reflector blocks. In-vessel shield is formed of two or more neutron absorbing materials. The two more neutron absorbing materials include a near black neutron absorbing material and a gray neutron absorbing material.
The present invention relates generally to electric power and process heat generation using a modular, compact, transportable, hardened nuclear generator rapidly deployable and retrievable, comprising power conversion and electric generation equipment fully integrated within a single pressure vessel housing a nuclear core. The resulting transportable nuclear generator does not require costly site-preparation, and can be transported fully operational. The transportable nuclear generator requires an emergency evacuation area substantially reduced with respect to other nuclear generators as it may be configured for operation with a melt-proof conductive ceramic core which allows decay heat removal even under total loss of coolant scenarios.
G21C 7/06 - Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
G21C 1/32 - Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core
G21C 7/08 - Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
G21C 9/033 - Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse by an absorbent fluid
G21C 13/02 - Pressure vesselsContainment vesselsContainment in general Details
G21D 5/02 - Reactor and engine structurally combined, e.g. portable
F28F 1/42 - Tubular elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
F28D 7/00 - Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
F28D 7/10 - Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
F22B 1/06 - Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being moltenUse of molten metal, e.g. zinc, as heat transfer medium
F22B 1/12 - Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being steam produced by an indirect cyclic process
F22B 37/00 - Component parts or details of steam boilers
G21C 19/00 - Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
G21C 7/28 - Control of nuclear reaction by displacement of the reflector or parts thereof
G21C 15/04 - Arrangement or disposition of passages in which heat is transferred to the coolant, e.g. for coolant circulation through the supports of the fuel elements from fissile or breeder material
G21C 3/30 - Assemblies of a number of fuel elements in the form of a rigid unit