A system includes a fluid conduit, a fluid chamber in communication with the fluid conduit, a rheology sensor in communication with the fluid chamber, and an electric temperature controller in communication with the fluid chamber. The fluid chamber is cooled or heated in response to a first control signal from the electric temperature controller.
E21B 49/08 - Obtaining fluid samples or testing fluids, in boreholes or wells
E21B 43/12 - Methods or apparatus for controlling the flow of the obtained fluid to or in wells
E21B 47/12 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
E21B 36/04 - Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters
E21B 36/00 - Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
The present disclosure relates to compositions and methods for prevent the formation of and disperse aggregates and other poorly soluble materials in hydrocarbon fluids. The compositions include an asphaltene dispersant prepared from the reaction of a polyethyleneimine (PEI) dendrimer and one or more derivatizing reagents wherein the polyethylene dendrimer has a weight average molecular weight of greater than or equal to 9 kDa. The methods include emplacing in a wellbore a composition comprising an asphaltene inhibitor, wherein the asphaltene inhibitor is a compound prepared from the reaction of a polyethyleneimine dendrimer and one or more derivatizing reagents wherein the polyethylene dendrimer has a weight average molecular weight of greater than or equal to 9 kDa.
C09K 8/524 - Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning organic depositions, e.g. paraffins or asphaltenes
C09K 8/536 - Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning characterised by their form or by the form of their components, e.g. encapsulated material
E21B 37/06 - Methods or apparatus for cleaning boreholes or wells using chemical means for preventing or limiting the deposition of paraffins or like substances
3.
ENVIRONMENTALLY FRIENDLY FLOW IMPROVERS WITH IMPROVED FORMULATION STABILITY AT LOW TEMPERATURES
A method of treating petroleum fluids may include adding a flow improver composition to the petroleum fluids, the flow improver composition, comprising: a solvent; and a dendrimer-based flow improver, wherein at least a portion of the surface sites of the dendrimer are chemically modified with saturated and unsaturated fatty acids.
A wellbore fluid may include an oleaginous continuous phase; a non-oleaginous discontinuous phase; an emulsifier stabilizing the non-oleaginous phase within the oleaginous phase; a low density material selected and in an amount to result in a specific gravity of the wellbore fluid that is less than 0.83; and at least one rheology modifier selected to suspend the low density material within the wellbore fluid.
C23F 11/10 - Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
Compositions may include a corrosion inhibitor blend including: a kinetic corrosion inhibitor and a thermodynamic corrosion inhibitor, wherein the kinetic corrosion inhibitor has a rate of film formation that is at least 1.5 times greater than the respective rate of film formation of a thermodynamic corrosion inhibitor on a metal surface. Methods may include contacting a metal surface with a corrosion inhibitor composition, wherein the corrosion inhibitor composition includes: a kinetic corrosion inhibitor and a thermodynamic corrosion inhibitor, wherein the kinetic corrosion inhibitor has a rate of film formation that is at least 1.5x greater than the respective rate of film formation of a thermodynamic corrosion inhibitor on a metal surface.
A wellbore fluid may include an aqueous base fluid, a plurality of latex particles and a coalescing agent present in the fluid in an amount effective to have an effect on decreasing the activation temperature of the latex. A method may include emplacing a wellbore fluid into a wellbore through an earthen formation, the wellbore fluid may include an aqueous base fluid, a plurality of latex particles and a coalescing agent present in the fluid in an amount effective to have an effect on decreasing the activation temperature of the latex.
A production chemical composition may include a polyether polyol; and one or more corrosion inhibitors and/or one or more scale inhibitors. A method may include injecting a composition of a polyether polyol; and one or more corrosion inhibitors and/or scale inhibitors into a production stream, which may be, for example, downhole or subsea. The polyol polyether may include, for example, ethylenedioxy(dimethanol).
C23F 11/10 - Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
A method of breaking an emulsion may include contacting an emulsion with a demulsifier, where the demulsifier is a dendrimer functionalized with a carboxylic acid derivative and separating the emulsion into two distinct phases. A method of producing crude oil may include extracting a hydrocarbon fluid from a subterranean formation; adding a demulsifier to the hydrocarbon fluid, where the demulsifier is a dendrimer functionalized with a carboxylic acid derivative; and separating the crude oil emulsion into two distinct phases.
A system includes a fluid conduit, a fluid chamber in communication with the fluid conduit, a rheology sensor in communication with the fluid chamber, and an electric temperature controller in communication with the fluid chamber. The fluid chamber is cooled in response to a first control signal from the electric temperature controller.
G01N 25/16 - Investigating or analysing materials by the use of thermal means by investigating thermal coefficient of expansion
G01N 9/36 - Analysing materials by measuring the density or specific gravity, e.g. determining quantity of moisture
E21B 47/103 - Locating fluid leaks, intrusions or movements using thermal measurements
E21B 49/02 - Testing the nature of borehole wallsFormation testingMethods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by mechanically taking samples of the soil
11.
COMPOSITIONS TO STABILIZE ASPHALTENES IN PETROLEUM FLUIDS
Compositions may include those of the formula: (I) wherein R1 is an alkyl chain having a carbon number in the range of greater than 40 to 200, R2 is a multiester, R3 is hydrogen, an ion, or an alkyl chain having a carbon number in the range of 1 to 200, m is an integer selected from 0 to 4, and n is an integer selected from the range of 0 to 4, wherein the sum of m and n is 1 or greater. Compositions may include a reaction product of a polyisobutylene-substituted succinic anhydride and a hydroxy- functional dendrimer, wherein the molar ratio of polyisobutylene-substituted succinic anhydride to hydroxy-functional dendrimer is within the range of 10: 1 to 30: 1.
Methods may include emplacing into a hydrocarbon production stream a composition containing an asphaltene inhibitor, wherein the asphaltene inhibitor includes the formula (I) wherein R1 is an alkyl chain having a carbon number in the range of greater than 40 to 200, R2 is a multiester group, R3 is hydrogen, an ion, or an alkyl chain having a carbon number in the range of 1 to 200, m is an integer selected from 0 to 4, and n is an integer selected from the range of 0 to 4, wherein the sum of m and n is 1 or greater. Methods may also include emplacing in a wellbore a composition containing an asphaltene inhibitor, wherein the asphaltene inhibitor comprises esters of the formula (I) wherein R1 is an alkyl chain having a carbon number in the range of greater than 40 to 200; R2 is a multiester group; is hydrogen, an ion, or an alkyl chain having a carbon number in the range of 1 to 200; m is an integer selected from 0 to 4; and n is an integer selected from the range of 0 to 4, wherein the sum of m and n is 1 or greater.
An assembly includes at least one container, an injection medium supply, at least one flow line extending from the injection medium supply to an interior portion of the at least one container; and a pressure transducer coupled to each of the at least one flow line.
G01F 23/16 - Indicating, recording, or alarm devices being actuated by mechanical or fluid means, e.g. using gas, mercury, or a diaphragm as transmitting element, or by a column of liquid
B01D 33/03 - Filters with filtering elements which move during the filtering operation with translationally moving filtering elements, e.g. pistons with vibrating filter elements
A method of performing an oilfield treatment that includes delivering to an oilfield fluid a host-guest complex, wherein the host-guest complex is formed from a solution of host molecule mixed with a guest molecule having opposing solubility from the host molecule; wherein the host molecule is present in the solution in an amount of at least 2 x 10-6 M.
C10G 1/00 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
A system for cleaning a tank includes four tanks. The first tank stores a processed liquid. The second tank is in fluid communication with the first tank. The second tank includes a separator that separates particles from a dirty liquid to produce the processed liquid. The processed liquid is transferred from the second tank into the first tank. The third tank is in fluid communication with the second tank. The particles are transferred from the second tank to the third tank. The fourth tank stores a clean liquid. The clean liquid has fewer particles per unit volume than the processed liquid. The first tank, the second tank, the third tank, and the fourth tank are positioned on a mobile unit.
As disclosed herein, an oil-based fluid includes an oleaginous continuous phase, a non-oleaginous discontinuous phase, and a plurality of psyllium seed husks.
C09K 8/506 - Compositions based on water or polar solvents containing organic compounds
C09K 8/516 - Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls characterised by their form or by the form of their components, e.g. encapsulated material
18.
MICROSPHERE COMPOSITIONS AND METHODS FOR PRODUCTION IN OIL-BASED DRILLING FLUIDS
A method includes admixing an aqueous polysaccharide solution into an oleaginous base fluid, and adding a divalent ion source to produce one or more polysaccharide microspheres.
Accretion inhibiting wellbore fluid compositions a ay contain a multiester, a sorbitan ester surfactant, and a base fluid, wherein the composition is in the form of a metastable emulsion. Methods may include emplacing a wellbore fluid into a wellbore, the wellbore fluid containing a multiester, and a sorbitan ester surfactant, wherein the wellbore fluid forms a metastable emulsion.
A wellbore strengthening composition may include a base fluid and at least one polymer functionalized with electrochemically activated groups. A method of treating a wellbore may include emplacing, in at least a selected region of the wellbore, a wellbore strengthening composition including a base fluid and at least one polymer functionalized with electrochemically activated groups. The method may also include emplacing a downhole tool capable of generating a voltage potential in the wellbore and applying a voltage potential in the wellbore with the downhole tool.
E21B 33/138 - Plastering the borehole wallInjecting into the formation
E21B 21/00 - Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
C09K 8/44 - Compositions for cementing, e.g. for cementing casings into boreholesCompositions for plugging, e.g. for killing wells containing organic binders only
Wellbore strengthening compositions may include a base fluid; and a solid gum rosin additive, wherein the solid gum rosin additive has an average particle size of 1 μm to 15 mm. Methods may include emplacing a wellbore fluid containing a solid gum rosin additive into a wellbore, wherein the solid gum rosin additive has an average particle size of 1 μm to 15 mm.
C09K 8/508 - Compositions based on water or polar solvents containing organic compounds macromolecular compounds
C09K 8/514 - Compositions based on water or polar solvents containing organic compounds macromolecular compounds of natural origin, e.g. polysaccharides, cellulose
C09K 8/516 - Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls characterised by their form or by the form of their components, e.g. encapsulated material
A wellbore strengthening composition may include a base fluid and at least one polymer functionalized with electrochemically activated groups. A method of treating a wellbore may include emplacing, in at least a selected region of the wellbore, a wellbore strengthening composition including a base fluid and at least one polymer functionalized with electrochemically activated groups. The method may also include emplacing a downhole tool capable of generating a voltage potential in the wellbore and applying a voltage potential in the wellbore with the downhole tool.
C09K 8/42 - Compositions for cementing, e.g. for cementing casings into boreholesCompositions for plugging, e.g. for killing wells
C09K 8/44 - Compositions for cementing, e.g. for cementing casings into boreholesCompositions for plugging, e.g. for killing wells containing organic binders only
An assembly includes at least one container, an injection medium supply, at least one flow line extending from the injection medium supply to an interior portion of the at least one container; and a pressure transducer coupled to each of the at least one flow line.
G01F 23/02 - Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by gauge glasses or other apparatus involving a window or transparent tube for directly observing the level to be measured or the level of a liquid column in free communication with the main body of the liquid
G01F 23/14 - Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
24.
Compact flotation unit having multiple vanes disposed around a cylinder used for waste collection
An apparatus, such as a compact flotation unit, may include a tank having a fluid inlet. A cylinder may be disposed within the tank and have an open end. A first guide vane may be disposed about the cylinder, with the first guide vane having a portion axially aligned with the fluid inlet. A second guide vane may be disposed about the cylinder adjacent the open end thereof and may include a first end and a second end, with the first end of the second guide vane being axially offset from the second end of the second guide vane.
B04C 5/103 - Bodies or members, e.g. bulkheads, guides, in the vortex chamber
B04C 5/13 - Construction of the overflow ducting, e.g. diffusing or spiral exits formed as a vortex finder and extending into the vortex chamberDischarge from vortex finder otherwise than at the top of the cycloneDevices for controlling the overflow
A method of optimizing a hydrogen sulfide scavenger blend that includes selecting a hydrogen sulfide scavenger blend comprising at least two hydrogen sulfide scavengers; determining a scavenging capacity for the blend; modifying at least one blend parameter based on the determined scavenging capacity; redetermining the scavenging capacity for the modified blend; and selecting an optimized blend from the blend and the modified blend is disclosed.
B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
C10L 3/10 - Working-up natural gas or synthetic natural gas
G01N 33/00 - Investigating or analysing materials by specific methods not covered by groups
26.
Water treatment system for treating water from oil production streams
A water treatment system includes an inlet line, a tank in fluid communication with the inlet line to receive therefrom a fluid flow comprising hydrocarbons and water. The tank includes components configured to separate the fluid flow into a hydrocarbon flow and a water flow, with the water flow including a residual amount of hydrocarbons. A first outlet line is in fluid communication with the tank to discharge therefrom the water flow. A second outlet line is in fluid communication with the tank to discharge therefrom the hydrocarbon flow. A sensor is associated with one of the inlet line, the first outlet line, and the second outlet line, and a valve is associated with the second outlet line. In addition, a controller is configured to determine a property of at least one of the fluid flow, the hydrocarbon flow, and the water flow using the sensor, and to control the valve based upon the property so as to reduce the residual amount of hydrocarbons in the water flow.
C02F 103/36 - Nature of the water, waste water, sewage or sludge to be treated from the chemical industry not provided for in groups from the manufacture of organic compounds
C02F 1/20 - Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
A composition may include a branched polymer to encapsulate a guest molecule to be released under oilfield conditions. The guest molecule may include a production chemical, such as a scale or corrosion inhibitor. The branched polymer may be substituted with fatty acids. The branched polymer may also function as both an ecapsulator as well as a production chemical in certain applications.
C09K 8/03 - Specific additives for general use in well-drilling compositions
B01D 17/00 - Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
C09K 8/536 - Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning characterised by their form or by the form of their components, e.g. encapsulated material
C08G 83/00 - Macromolecular compounds not provided for in groups
28.
METHODS OF INHIBITING SALT PRECIPITATION AND CORROSION
Inhibiting precipitation of salt from an aqueous solution by providing an aqueous solution of salt dissolved therein, and contacting the aqueous solution with an amount of an organic dinitrile compound at a concentration sufficient to inhibit precipitation of crystallized salt from the aqueous solution under a set of conditions. The method of may be useful in a subterranean formation drilling operation, a subterranean formation treatment operation or a squeeze treatment. The organic dinitrile compound may be present in the aqueous solution at less than about 2000 ppm, or an amount greater than about 100 ppm. In some embodiments, the organic dinitrile compound is admixed with a corrosion inhibitor.
An automatic drilling fluid property analyzer including a housing having an inlet and an outlet; at least one valve disposed proximate the inlet and configured to open and close to provide a sample of fluid into the housing; an electronic control module configured to send a signal to the at least one valve; a probe assembly operatively coupled to the electronic control module, the probe assembly including an electrode probe having two electrodes and a probe gap therebetween; a viscometer sleeve disposed in the housing; a bob disposed in the sleeve, wherein an annulus is formed between the viscometer sleeve and the bob, and wherein at least one of the viscometer sleeve and the bob is configured to rotate, a motor operatively coupled to at least one of the viscometer sleeve and the bob; and a torque measuring device operatively coupled to the viscometer sleeve and the bob.
G01N 11/10 - Investigating flow properties of materials, e.g. viscosity or plasticityAnalysing materials by determining flow properties by moving a body within the material
E21B 21/01 - Arrangements for handling drilling fluids or cuttings outside the borehole, e.g. mud boxes
G01N 23/223 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
G01N 11/14 - Investigating flow properties of materials, e.g. viscosity or plasticityAnalysing materials by determining flow properties by moving a body within the material by using rotary bodies, e.g. vane
30.
Method and apparatus for measuring particle size distribution in drilling fluid
A method for measuring particle size distribution in a fluid material, involving inserting a laser beam instrument directly in the fluid flow line, wherein the laser beam instrument focuses a laser beam on a window directly coupled with the fluid flow line, wherein the fluid flow line comprises a fluid having a plurality of particles of different sizes, measuring a diameter of at least one particle in the fluid flow line by reflectance of the at least one particle as the at least one particle passes through the focused laser beam, and determining a duration of reflection of the at least one particle, and obtaining a count of particles in each of a pre-set range group of particle sizes, wherein the count of particles is used to determine particle size distribution in the fluid flow line.
An apparatus, such as a compact flotation unit, may include a tank having a fluid inlet. A cylinder may be disposed within the tank and have an open end. A first guide vane may be disposed about the cylinder, with the first guide vane having a portion axially aligned with the fluid inlet. A second guide vane may be disposed about the cylinder adjacent the open end thereof and may include a first end and a second end, with the first end of the second guide vane being axially offset from the second end of the second guide vane.
A number of variations may include a product including a fluid additive including at least one asphaltene dispersant/inhibitor including a branched dendritic core and at least one carboxylic acid moiety.
C07C 67/08 - Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
C07C 69/675 - Esters of carboxylic acids having esterified carboxyl groups bound to acyclic carbon atoms and having any of the groups OH, O-metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids of saturated hydroxy-carboxylic acids
C07C 69/84 - Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring
C10L 10/04 - Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
C10L 10/08 - Use of additives to fuels or fires for particular purposes for improving lubricityUse of additives to fuels or fires for particular purposes for reducing wear
C08G 83/00 - Macromolecular compounds not provided for in groups
C09K 8/524 - Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning organic depositions, e.g. paraffins or asphaltenes
C10L 1/198 - Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
33.
FLUID ADDITIVE AND METHOD OF MAKING AND USING THE SAME
A number of variations may include a product including a fluid additive including at least one asphaltene dispersant/inhibitor including a branched dendritic core and at least one carboxylic acid moiety.
An elongate apparatus is disclosed and comprises a material passage and one or more fluid passages. The material passage receives material therethrough. The one or more fluid passages are in fluid communication with the material passage. The material passage and the one or more fluid passages extend substantially parallel throughout the apparatus. A method comprises transferring material in a material passage and further comprises injecting a fluid into the material passage via one or more injection points located along a length of the material passage.
PRAD RESEARCH AND DEVELOPMENT LIMITED (Virgin Islands (British))
SCHLUMBERGER TECHNOLOGY CORPORATION (USA)
SCHLUMBERGER NORGE AS (Norway)
Inventor
Rabe, Karsten
Asdahl, Steinar
Abstract
A water treatment system includes an inlet line, a tank in fluid communication with the inlet line to receive therefrom a fluid flow comprising hydrocarbons and water. The tank includes components configured to separate the fluid flow into a hydrocarbon flow and a water flow, with the water flow including a residual amount of hydrocarbons. A first outlet line is in fluid communication with the tank to discharge therefrom the water flow. A second outlet line is in fluid communication with the tank to discharge therefrom the hydrocarbon flow. A sensor is associated with one of the inlet line, the first outlet line, and the second outlet line, and a valve is associated with the second outlet line. In addition, a controller is configured to determine a property of at least one of the fluid flow, the hydrocarbon flow, and the water flow using the sensor, and to control the valve based upon the property so as to reduce the residual amount of hydrocarbons in the water flow.
Disclosed herein is a fluid flow improver comprising a branched dendritic core comprising a first quaternary carbon center bonded to four second carbon atoms, wherein at least three of the four second carbon atoms are individually bonded to one or more chain extender ligands to produce the branched dendritic core, wherein the branched dendritic core has greater than or equal to about 16 terminal hydroxyl groups, and wherein at least one of the terminal hydroxyl groups is esterified with at least one carboxylic acid moiety comprising from 6 to 30 carbon atoms. Methods of inhibiting deposition of paraffin and reducing pour point temperature of a hydrocarbon fluid are also disclosed.
A method includes determining particle size distribution (PSD) in a fluid flow line based on a range of sizes for at least one particle in the fluid flow line and duration of reflection of a laser beam from the at least one particle. The laser beam is focused from a laser beam instrument in direct contact with the fluid low line.
A kinetic gas hydrate inhibitor is provided as a polyester polymer with a plurality of amino or ammonium groups pendent directly from the backbone. A composition containing concentrated kinetic inhibitor is injected into gas wells, or into other systems involving transporting liquid gas mixtures through a conduit. Use of the kinetic inhibitor prevents formation of gas hydrates under conditions of temperature and pressure where they would otherwise occur.
A kinetic gas hydrate inhibitor is provided as a polyester polymer with a plurality of amino or ammonium groups pendent directly from the backbone. A composition containing concentrated kinetic inhibitor is injected into gas wells, or into other systems involving transporting liquid gas mixtures through a conduit. Use of the kinetic inhibitor prevents formation of gas hydrates under conditions of temperature and pressure where they would otherwise occur.
An x-ray fluorescence apparatus for measuring properties of a sample fluid, the apparatus comprising a housing having an inlet and an outlet; a test chamber disposed within the housing, the test chamber comprising an injection port in fluid communication with the inlet; a slide disposed within the test chamber, the slide comprising a sample cavity; and a test port; an x-ray fluorescence spectrometer disposed within the housing, and at least one motor operatively coupled to the slide of the test chamber. Also, a method of testing a fluid, the method comprising injecting a fluid through an injection port of a test chamber into a sample cavity of a slide; moving the slide laterally within the test chamber to an intermediate position; moving the slide laterally within the test chamber to a test position; and actuating an x-ray fluorescence spectrometer to sample the fluid within the sample cavity when the slide is in the test position.
G01N 23/22 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by measuring secondary emission from the material
G01N 23/223 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
A flotation unit for purifying water, comprising at least a separator tank, a supply duct to a tank inlet, outlets for gas, oil and water from the tank, and a gas injector located in the supply duct, said gas injector comprising a venturi section having an inner diameter and a cross-sectional area smaller than a cross-sectional area of the supply duct, an ejector arranged in the venturi section and having an outer side facing an inside surface of the venturi section, an inner side facing a longitudinal center axis of the venturi section, a downstream side, and a upstream side, the ejector comprising an annular gas distribution chamber and a plurality of gas outlets arranged along a side of the ejector and connected to the gas distribution chamber, and a gas inlet for supplying gas to the gas distribution chamber, wherein the ejector has an outer diameter which is smaller than the inner diameter of the venturi section.
A well fluid test device includes a cell body having a first end port disposed on an upper end of the cell body, a second end port disposed on a lower end of the cell body, a first lateral port disposed on a side of the cell body, and a second lateral port disposed on a side of the cell body, and a filter medium disposed in the cell body, wherein the first and second lateral ports are disposed above the filter medium. A method of evaluating a fluid includes injecting a fluid into a well fluid test device, the well fluid test device having a filter medium, heating the fluid in the well fluid test device, establishing a pressure differential across the filter medium, establishing a filter cake on the filter medium, and maintaining at least one of a temperature and a pressure in the well fluid test device.
E21B 49/00 - Testing the nature of borehole wallsFormation testingMethods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
43.
Separator tank for separating oil and gas from water
A separator tank (1) for separating oil and gas from water, and comprising an essentially cylindrical vertical tank casing (3) with a plurality of separator tank units (2). The separator tank units (2, 2′, 2″) are arranged on top of one another within a central area in an inner annular enclosure (4) that divides the separator tank into an annular outer area (5) and the central area. The flow paths of fluids to inlets (7) in the separator tank units (2) and from at least one second outlet (9) in the separator tank units are arranged at least in the annular outer area.
A separator tank (1) for separating oil and gas from water, and comprising separator tank units (2, 2′, 2″) arranged on top of one another within an annular enclosure (4). An inlet pipe (14) is connected with the inlet for fluid in a first of the at least two separator tank units. A second outlet (9) in the first separator tank unit (2) is connected with the inlet (7) for fluid in a second of the at least two separator tank units (2′). A pressure control device controls the pressure downstream of the first outlets for oil and gas (8) so that the pressure at the first outlets (8) is lower than the pressure at the water outlet (26) on the separator tank.
A flotation unit for purifying water, comprising at least a separator tank, a supply duct to a tank inlet, outlets for gas, oil and water from the tank, and a gas injector located in the supply duct, said gas injector comprising a venturi section having an inner diameter and a cross-sectional area smaller than a cross-sectional area of the supply duct, an ejector arranged in the venturi section and having an outer side facing an inside surface of the venturi section, an inner side facing a longitudinal centre axis of the venturi section, a downstream side, and a upstream side, the ejector comprising an annular gas distribution chamber and a plurality of gas outlets arranged along a side of the ejector and connected to the gas distribution chamber, and a gas inlet for supplying gas to the gas distribution chamber, wherein the ejector has an outer diameter which is smaller than the inner diameter of the venturi section.
A water injection system that includes a primary water injection line; an injection fluid supply tank; a high pressure injection pump in fluid communication with the injection fluid supply and primary water injection line for pumping injection fluid in injection fluid supply tank through the primary water injection line; a polymer gel supply tank; and a high pressure chemical injection pump in fluid communication with the polymer gel supply tank and the water injection line configured to pump polymer gel having a viscosity of at least about 50,000 cP (at 20° C. measured using a Bohlin Rheometer CSR 50, cone and plate measuring system CP 4°/40 mm, single shear rate 1/s) in the polymer gel supply tank into the water injection line for mixture with injection fluid is disclosed.
E21B 21/06 - Arrangements for treating drilling fluids outside the borehole
C09K 8/588 - Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers
B01F 3/12 - Mixing, e.g. dispersing, emulsifying, according to the phases to be mixed liquids with solids
C02F 1/68 - Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
F17D 1/17 - Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity by mixing with another liquid
An automatic drilling fluid property analyzer including a housing having an inlet and an outlet; at least one valve disposed proximate the inlet and configured to open and close to provide a sample of fluid into the housing; an electronic control module configured to send a signal to the at least one valve; a probe assembly operatively coupled to the electronic control module, the probe assembly including an electrode probe having two electrodes and a probe gap therebetween; a viscometer sleeve disposed in the housing; a bob disposed in the sleeve, wherein an annulus is formed between the viscometer sleeve and the bob, and wherein at least one of the viscometer sleeve and the bob is configured to rotate, a motor operatively coupled to at least one of the viscometer sleeve and the bob; and a torque measuring device operatively coupled to the viscometer sleeve and the bob.
An automatic drilling fluid property analyzer including a housing having an inlet and an outlet; at least one valve disposed proximate the inlet and configured to open and close to provide a sample of fluid into the housing; an electronic control module configured to send a signal to the at least one valve; a probe assembly operatively coupled to the electronic control module, the probe assembly including an electrode probe having two electrodes and a probe gap therebetween; a viscometer sleeve disposed in the housing; a bob disposed in the sleeve, wherein an annulus is formed between the viscometer sleeve and the bob, and wherein at least one of the viscometer sleeve and the bob is configured to rotate, a motor operatively coupled to at least one of the viscometer sleeve and the bob; and a torque measuring device operatively coupled to the viscometer sleeve and the bob.
An x-ray fluorescence apparatus for measuring properties of a sample fluid, the apparatus comprising a housing having an inlet and an outlet; a test chamber disposed within the housing, the test chamber comprising an injection port in fluid communication with the inlet; a slide disposed within the test chamber, the slide comprising a sample cavity; and a test port; an x-ray fluorescence spectrometer disposed within the housing, and at least one motor operatively coupled to the slide of the test chamber. Also, a method of testing a fluid, the method comprising injecting a fluid through an injection port of a test chamber into a sample cavity of a slide; moving the slide laterally within the test chamber to an intermediate position; moving the slide laterally within the test chamber to a test position; and actuating an x-ray fluorescence spectrometer to sample the fluid within the sample cavity when the slide is in the test position.
G01N 23/223 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
G01V 5/08 - Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
An automatic drilling fluid property analyzer including a housing having an inlet and an outlet; at least one valve disposed proximate the inlet and configured to open and close to provide a sample of fluid into the housing; an electronic control module configured to send a signal to the at least one valve; a probe assembly operatively coupled to the electronic control module, the probe assembly including an electrode probe having two electrodes and a probe gap therebetween; a viscometer sleeve disposed in the housing; a bob disposed in the sleeve, wherein an annulus is formed between the viscometer sleeve and the bob, and wherein at least one of the viscometer sleeve and the bob is configured to rotate, a motor operatively coupled to at least one of the viscometer sleeve and the bob; and a torque measuring device operatively coupled to the viscometer sleeve and the bob.
An x-ray fluorescence apparatus for measuring properties of a sample fluid, the apparatus comprising a housing having an inlet and an outlet; a test chamber disposed within the housing, the test chamber comprising an injection port in fluid communication with the inlet; a slide disposed within the test chamber, the slide comprising a sample cavity; and a test port; an x-ray fluorescence spectrometer disposed within the housing, and at least one motor operatively coupled to the slide of the test chamber. Also, a method of testing a fluid, the method comprising injecting a fluid through an injection port of a test chamber into a sample cavity of a slide; moving the slide laterally within the test chamber to an intermediate position; moving the slide laterally within the test chamber to a test position; and actuating an x-ray fluorescence spectrometer to sample the fluid within the sample cavity when the slide is in the test position.
G01N 23/223 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
G01V 5/08 - Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
52.
Method and apparatus for measuring particle size distribution in drilling fluid
A method for measuring particle size distribution in a fluid material, involving inserting a laser beam instrument directly in the fluid flow line, wherein the laser beam instrument focuses a laser beam on a window directly coupled with the fluid flow line, wherein the fluid flow line comprises a fluid having a plurality of particles of different sizes, measuring a diameter of at least one particle in the fluid flow line by reflectance of the at least one particle as the at least one particle passes through the focused laser beam, and determining a duration of reflection of the at least one particle, and obtaining a count of particles in each of a pre-set range group of particle sizes, wherein the count of particles is used to determine particle size distribution in the fluid flow line.
A method of transferring proppant materials, wherein the method includes providing a first pressurized container (102) containing proppant materials on a first vessel (106). The method also includes connecting the first pressurized container (102) on the first vessel (106) to a second container (102) on a second vessel (114) and transferring pneumatically, proppant materials from the first pressurized container (102) on the first vessel (106) to the second container (102) on the second vessel (114). Also, a method of transferring proppant materials, the method including removing a wellbore fluid comprising excess proppant materials from a well, and screening the excess proppant materials from the wellbore fluid. The method also includes transferring the excess proppant materials to a first pressurized container (102) and transferring pneumatically, the excess proppant materials from the first pressurized container to a second pressurized container.
E21B 21/06 - Arrangements for treating drilling fluids outside the borehole
B65G 53/12 - Gas pressure systems operating without fluidisation of the materials with pneumatic injection of the materials by the propelling gas the gas flow acting directly on the materials in a reservoir
B63B 27/00 - Arrangement of ship-based loading or unloading equipment for cargo or passengers
54.
Method of predicting/optimizing hydrogen sulfide scavenging capacity and reduction of scale formation
A method of optimizing a hydrogen sulfide scavenger blend that includes selecting a hydrogen sulfide scavenger blend comprising at least two hydrogen sulfide scavengers; determining a scavenging capacity for the blend; modifying at least one blend parameter based on the determined scavenging capacity; redetermining the scavenging capacity for the modified blend; and selecting an optimized blend from the blend and the modified blend is disclosed.
A multiple process service vessel including a first module configured to mix drilling fluids and a second module configured to remediate drilling waste, wherein the first and second modules are located at least partially below the deck of the vessel. A method of processing drilling components, the method including transferring a first drilling fluid component from a pressurized vessel on a multiple process service vessel to a mixing unit at a first location; mixing the first drilling fluid component with a second drilling fluid component in the mixing unit to produce a drilling fluid; transferring the drilling fluid to a second pressurized vessel; moving the multiple process service vessel to a second location; and transferring the drilling fluid from the second pressurized vessel to a drilling location.
A method of drilling is disclosed and includes pumping a wellbore fluid into a wellbore through an earth formation, wherein the wellbore fluid comprises a base fluid and a surface active agent capable of altering wettability of fines located in the earth formation, and allowing filtration of at least a portion of the wellbore fluid into the earth formation.
A method of treating a liquid or gas to reduce the level of H2S therein, comprising introducing into the fluid a triazine scavenger compound and an amine oxide. The liquid or gas may be petroleum, petroleum product, natural gas, liquefied petroleum gas or other type of oil fraction or refined oil. The triazine scavenger may be e.g. 1, 3, 5-tri (2-hydroxyethyl) -hexahydro-1, 3, 5-triazine. The amine oxide can form a compatible aqueous mixture with the triazine. It usually accords with the formula R1R2R3N-O in which R1 is a lipophilic group with a long chain structure having from 6 to 24 carbons, and R2 and R3 are Ci-4 optionally substituted hydrocarbon groups, e.g. methyl or hydroxyethyl. It enhances the scavenging effect of the triazine.
E21B 43/00 - Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
C07C 7/148 - Purification, separation or stabilisation of hydrocarbonsUse of additives by treatment giving rise to a chemical modification of at least one compound
A system for mixing fluids for oilfield applications, the system including a first storage vessel (101) configured to hold a first material and a first mixing device (108) in fluid communication with the first storage vessel. The system also including a second mixing device (115) in fluid communication with the first mixing device and a second storage vessel (102) in fluid communication with the second mixing device, wherein the second storage vessel is configured to hold a second material. Additionally, the system including a pump (109) in fluid communication with at least the second storage vessel and the first mixing device, wherein the pump is configured to provide a flow of the second material from the second storage vessel to the first mixing device, and wherein the first mixing device is configured to mix the first material and the second material to produce a wellbore fluid.
A separator tank (1) for separating oil and gas from water, and comprising an essentially cylindrical vertical tank casing (3) with a plurality of separator tank units (2). The separator tank units (2, 2', 2") are arranged on top of one another within a central area in an inner annular enclosure (4) that divides the separator tank into an annular outer area (5) and the central area. The flow paths of fluids to inlets (7) in the separator tank units (2) and from at least one second outlet (9) in the separator tank units are arranged at least in the annular outer area
A separator tank (1) for separating oil and gas from water, and comprising separator tank units (2, 2', 2") arranged on top of one another within an annular enclosure (4). An inlet pipe (14) is connected with the inlet for fluid in a first of the at least two separator tank units. A second outlet (9) in the first separator tank unit (2) is connected with the inlet (7) for fluid in a second of the at least two separator tank units (2'). A pressure control device controls the pressure downstream of the first outlets for oil and gas (8) so that the pressure at the first outlets (8) is lower than the pressure at the water outlet (26) on the separator tank.
A separator tank (1) for separating oil and gas from water comprises an essentially cylindrical vertical tank with at least one separator tank unit. The separator tank unit has an inlet for fluid (2) and a first inner annular wall (5) a first conical portion (9) and a first central opening (8). A second inner annular wall (15) is positioned at a distance from the first inner annular wall and has a second conical portion (19) and a second central opening (18). A first flow opening (10) is provided at an end of said first inner annular wall (5) a nd a second flow opening (20) is provided at an end of second inner annular wall (15).
A system for monitoring fluids at a drilling location, the system including a viscometer (210) having a heating cup and a pump (211) in clued communication with the heating cup, wherein the pump is configured to provide a flow of fluid from a fluid line inlet to the heating cup. The system also including a cleaning fluid tank (214) including communication with the heating cup, wherein the pump is configured to provide a flow of cleaning fluid from the cleaning fluid tank to the heating cup, and a system controller (217) configured to provide instructions to the pump for controlling the flow of cleaning fluid from the cleaning fluid tanks to the heating cup.
G01N 15/08 - Investigating permeability, pore volume, or surface area of porous materials
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
The present invention relates to compounds for controlling gas hydrate formation of the formula (I) and (II) and plugging of gas hydrate forming fluids wherein R1 is selected from the group consisting of H, acetyl and carbonyl derivative; R2 is H, -OR3 or -NR4R5, where: R3 is H, C1-6-alkyl or carbonyl derivative, R4, R5 are selected from the group consisting of H, C1-18-alkyl, alkanol, alkoxy, cyclic/aromatic or alkylene. The invention further comprises compositions and method of producing the compounds of formula (I) and (II), method for controlling gas hydrate formation and plugging of gas hydrate forming fluids, and use of compounds of formula (I) and (II).
C07C 235/06 - Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
C09K 8/52 - Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
A method for cleaning a reactor, the method including circulating a fluid inside the reactor, pumping the fluid from the reactor into an inlet of a tank cleaner, and removing solids from the fluid to produce a clean fluid. The method further includes transferring the clean fluid to the reactor and transferring pneumatically the removed solids to a pressurized vessel. Also, a method for transferring spent granular material, the method including providing a vacuum system disposed at a hydrocarbon production site to remove spent material from a reactor, transferring the spent material through the vacuum system into a pressurized vessel, and conveying pneumatically the spent material from the pressurized vessel to a second pressurized vessel.
B08B 9/053 - Cleaning the internal surfacesRemoval of blockages using cleaning devices introduced into and moved along the pipes moved along the pipes by a fluid, e.g. by fluid pressure or by suction
B08B 9/057 - Cleaning the internal surfacesRemoval of blockages using cleaning devices introduced into and moved along the pipes moved along the pipes by a fluid, e.g. by fluid pressure or by suction the cleaning devices being entrained discrete elements, e.g. balls, grinding elements, brushes
B08B 9/032 - Cleaning the internal surfacesRemoval of blockages by the mechanical action of a moving fluid, e.g. by flushing
A magnet fixing device in a cleaning tool (1) for use in a borehole where the cleaning tool (1) is externally provided with at least one projection (8) and at least two recesses (6) and where at least one magnet (12) is disposed in the projection (8), as the magnetic field from the at least one magnet (12) is active in that it is arranged to at least attract a magnet sensitive material (20) into a recess (6) or hold the material (20) in the recess (6), and where the magnet (12) runs through the projection (8), whereby the one magnet (12) pole is active in a first recess (6) while the other magnet (12) pole is active in a second recess (6).
A method for measuring particle size distribution in a fluid material, involving inserting a laser beam instrument directly in the fluid flow line, wherein the laser beam instrument focuses a laser beam on a window directly coupled with the fluid flow line, wherein the fluid flow line comprises a fluid having a plurality of particles of different sizes, measuring a diameter of at least one particle in the fluid flow line by reflectance of the at least one particle as the at least one particle passes through the focused laser beam, and determining a duration of reflection of the at least one particle, and obtaining a count of particles in each of a pre-set range group of particle sizes, wherein the count of particles is used to determine particle size distribution in the fluid flow line.
A water injection system that includes a primary water injection line; an injection fluid supply tank; a high pressure injection pump in fluid communication with the injection fluid supply and primary water injection line for pumping injection fluid in injection fluid supply tank through the primary water injection line; a polymer gel supply tank; and a high pressure chemical injection pump in fluid communication with the polymer gel supply tank and the water injection line configured to pump polymer gel having a viscosity of at least about 50,000 cP (at 20°C measured using a Bohlin Rheometer CSR 50, cone and plate measuring system CP 4°/ 40 mm, single shear rate 1/s) in the polymer gel supply tank into the water injection line for mixture with injection fluid is disclosed.
C09K 8/588 - Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers
E21B 21/01 - Arrangements for handling drilling fluids or cuttings outside the borehole, e.g. mud boxes
E21B 21/06 - Arrangements for treating drilling fluids outside the borehole
F17D 1/16 - Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity
68.
POLYMER GELS AS FLOW IMPROVERS IN WATER INJECTION SYSTEMS
A water injection system that includes a primary water injection line; an injection fluid supply tank; a high pressure injection pump in fluid communication with the injection fluid supply and primary water injection line for pumping injection fluid in injection fluid supply tank through the primary water injection line; a polymer gel supply tank; and a high pressure chemical injection pump in fluid communication with the polymer gel supply tank and the water injection line configured to pump polymer gel having a viscosity of at least about 50,000 cP (at 20°C measured using a Bohlin Rheometer CSR 50, cone and plate measuring system CP 4°/ 40 mm, single shear rate 1/s) in the polymer gel supply tank into the water injection line for mixture with injection fluid is disclosed.
B01F 3/12 - Mixing, e.g. dispersing, emulsifying, according to the phases to be mixed liquids with solids
C09K 8/588 - Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers
F17D 1/16 - Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity
A method of transferring proppant materials, wherein the method includes providing a first pressurized container (102) containing proppant materials on a first vessel (106). The method also includes connecting the first pressurized container (102) on the fist vessel (106) to a second container (102) on a second vessel (114) and transferring pneumatically, proppant materials from the first pressurized container (102) on the first vessel (106) to the second container (102) on the second vessel (114). Also, a method of transferring proppant materials, the method including removing a wellbore fluid comprising excess proppant materials from a well, and screening the excess proppant materials from the wellbore fluid. The method also includes transferring the excess proppant materials to a first pressurized container (102) and transferring pneumatically, the excess proppant materials from the first pressurized container to a second pressurized container.
B65G 53/12 - Gas pressure systems operating without fluidisation of the materials with pneumatic injection of the materials by the propelling gas the gas flow acting directly on the materials in a reservoir
B63B 27/24 - Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
70.
COMPOSITIONS AND METHODS FOR MITIGATING OR PREVENTING EMULSION FORMATION IN HYDROCARBON BODIES
The present invention relates broadly to the mitigation of emulsions, particularly sodium carboxylate emulsions, in hydrocarbon bodies. In particular, the invention relates to compositions useful for mitigating emulsions such as sodium carboxylate emulsions in hydrocarbon reservoirs, such as crude oil reservoirs. The composition for mitigating or preventing the formation of an emulsion between naphthenic acid and metal cations in a hydrocarbon body, including at least one alkoxylated amine and at least one acid and/or alcohol. The invention further relates to methods of mitigating such emulsions utilising the compositions of the invention. The invention also relates to methods and compositions for completion of oil wells.
A method ofimproving the cold flow properties of a paraffin-containing fluid that includes admixing an effective amount ofapolymer comprising cyclic amide and long chain alkyl functionality is disclosed.
C08F 26/06 - Homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
C10M 149/10 - Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a nitrogen-containing hetero ring
72.
SYSTEM AND METHOD OF ANALYZING FLUIDS AT A DRILLING LOCATION
A system for monitoring fluids at a drilling location, the system including a viscometer (210) having a heating cup and a pump (211) in clued communication with the heating cup, wherein the pump is configured to provide a flow of fluid from a fluid line inlet to the heating cup. The system also including a cleaning fluid tank (214) including communication with the heating cup, wherein the pump is configured to provide a flow of cleaning fluid from the cleaning fluid tank to the heating cup, and a system controller (217) configured to provide instructions to the pump for controlling the flow of cleaning fluid from the cleaning fluid tanks to the heating cup.
The invention comprises a sealing body (15) separating device) which can be used to separate fluids in risers used in offshore oil production from drilling vessels at the sea surface. The invention is characterized in that the sealing body (15) can be placed in position above the wellhead (13) using several appropriate methods and, in an especially preferred application, by utilizing an installation tool (27) which is not sealing against the inner wall of the riser and which contains a suitable positioning means (28), and that the body (15) which forms a seal against the inner wall of the riser separates fluids during the replacement of drilling fluid with water and of water with drilling fluid. The body (15) can be displaced using hydraulic force upwards in the longitudinal direction of the riser in that fluid is pumped at a relatively high pressure down the externally located smaller pipes (9, 10, 11) of the riser. The body can be used while the drilling vessel (1) heaves relative to the seabed (3), and it is independent of the drilling vessel's drawers for the drill string (21) while the fluid is being replaced.