A process and a device are described for producing high purity and high temperature steam from non-pure water which may be used in a variety of industrial processes that involve high temperature heat applications. The process and device may be used with technologies that generate steam using a variety of heat sources, such as, for example industrial furnaces, petrochemical plants, and emissions from incinerators. Of particular interest is the application in a thermochemical hydrogen production cycle such as the Cu-Cl Cycle. Non-pure water is used as the feedstock in the thermochemical hydrogen production cycle, with no need to adopt additional and conventional water pre-treatment and purification processes. The non-pure water may be selected from brackish water, saline water, seawater, used water, effluent treated water, tailings water, and other forms of water that is generally believed to be unusable as a direct feedstock of industrial processes. The direct usage of this water can significantly reduce water supply costs.
C01B 3/06 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
C02F 1/04 - Treatment of water, waste water, or sewage by heating by distillation or evaporation
F22B 1/06 - Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being moltenUse of molten metal, e.g. zinc, as heat transfer medium
F22B 1/18 - Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
F22B 7/02 - Steam boilers of furnace-tube type, i.e. the combustion of fuel being performed inside one or more furnace tubes built-in in the boiler body without auxiliary water tubes
F28D 7/10 - Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
2.
UPGRADING WASTE HEAT WITH HEAT PUMPS FOR THERMOCHEMICAL HYDROGEN PRODUCTION
This invention relates to hydrogen production using combined heat pumps and a thermochemical cycle. Low grade waste heat can be upgraded to higher temperatures via salt/ammonia and/or MgO/vapour chemical heat pumps, which release heat at successively higher temperatures through exothermic reactions, or vapour compression heat pumps that upgrade thermal energy with phase change fluids. Using this new approach, low grade heat or waste heat from nuclear or other industrial sources can be transformed to a useful energy supply for thermochemical hydrogen production.
C01B 3/06 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
C01B 3/08 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
C25C 1/12 - Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper