A hybrid sensor device includes a substrate; a first sensing element configured to sense force; a second sensing element configured to sense at least one of light intensity, acoustic impedance, electrical conductivity, electrical permittivity, or temperature; signal processing circuitry configured to receive and process respective output signals of the first and second sensing elements; and decision logic circuitry configured to validate an intent of a user input based on the respective output signals of the first and second force sensors, wherein the first and second sensors, the signal processing circuitry, and the decision logic circuitry are integrated on the substrate.
G01L 1/16 - Measuring force or stress, in general using properties of piezoelectric devices
G01J 5/10 - Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
An example microelectromechanical system (MEMS) force sensor is described herein. The MEMS force sensor can include a sensor die configured to receive an applied force. The sensor die can include a first substrate and a second substrate, where a cavity is formed in the first substrate and where at least a portion of the second substrate defines a deformable membrane. The MEMS force sensor can also include an etch stop layer arranged between the first substrate and the second substrate, and a sensing element arranged on a surface of the second substrate. The sensing element can be configured to convert a strain on the surface of the membrane substrate to an analog electrical signal that is proportional to the strain.
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
B81B 3/00 - Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
B81C 1/00 - Manufacture or treatment of devices or systems in or on a substrate
G01L 1/26 - Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload
3.
Systems and methods for continuous mode force testing
Described herein is a method and system for testing a force or strain sensor in a continuous fashion. The method employs a sensor, a test fixture, a load cell, a mechanical actuator and tester hardware and software to simultaneously record signal outputs from the sensor and load cell as functions of time. The method provides time synchronization events for recording data streams between, for example, a linear ramp of the force on, or displacement of, the sensor and for extracting performance characteristics from the data in post-test processing.
MEMS force sensors for providing temperature coefficient of offset (TCO) compensation are described herein. An example MEMS force sensor can include a TCO compensation layer to minimize the TCO of the force sensor. The bottom side of the force sensor can be electrically and mechanically mounted on a package substrate while the TCO compensation layer is disposed on the top side of the sensor. It is shown the TCO can be reduced to zero with the appropriate combination of Young's modulus, thickness, and/or thermal coefficient of expansion (TCE) of the TCO compensation layer.
G01L 1/22 - Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluidsMeasuring force or stress, in general by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
G01L 1/16 - Measuring force or stress, in general using properties of piezoelectric devices
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
Described herein is a MEMS force sensor with stress concentration design. The stress concentration can be performed by providing slots, whether through or blind, and/or selective thinning of the substrate. The MEMS force sensor is in chip scale package with solder bumps or metal pillars and there are sensing elements formed on the sensor substrate at the stress concentrate area. The stress concentration can be realized through slots, selective thinning and a combination of both.
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
B81B 3/00 - Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
G01L 1/20 - Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluidsMeasuring force or stress, in general by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
6.
Wafer bonded piezoresistive and piezoelectric force sensor and related methods of manufacture
Described herein is a ruggedized microelectromechanical (“MEMS”) force sensor. The sensor employs piezoresistive or piezoelectric sensing elements for force sensing where the force is converted to strain and converted to electrical signal. In one aspect, both the piezoresistive and the piezoelectric sensing elements are formed on one substrate and later bonded to another substrate on which the integrated circuitry is formed. In another aspect, the piezoelectric sensing element is formed on one substrate and later bonded to another substrate on which both the piezoresistive sensing element and the integrated circuitry are formed.
G01L 1/16 - Measuring force or stress, in general using properties of piezoelectric devices
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
H10N 30/30 - Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
7.
Temperature coefficient of offset compensation for force sensor and strain gauge
MEMS force sensors for providing temperature coefficient of offset (TCO) compensation are described herein. An example MEMS force sensor can include a TCO compensation layer to minimize the TCO of the force sensor. The bottom side of the force sensor can be electrically and mechanically mounted on a package substrate while the TCO compensation layer is disposed on the top side of the sensor. It is shown the TCO can be reduced to zero with the appropriate combination of Young's modulus, thickness, and/or thermal coefficient of expansion (TCE) of the TCO compensation layer.
G01L 1/22 - Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluidsMeasuring force or stress, in general by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
G01L 1/16 - Measuring force or stress, in general using properties of piezoelectric devices
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
An example microelectromechanical system (MEMS) force sensor is described herein. The MEMS force sensor can include a sensor die configured to receive an applied force. The sensor die can include a first substrate and a second substrate, where a cavity is formed in the first substrate, and where at least a portion of the second substrate defines a deformable membrane. The MEMS force sensor can also include an etch stop layer arranged between the first substrate and the second substrate, and a sensing element arranged on a surface of the second substrate. The sensing element can be configured to convert a strain on the surface of the membrane substrate to an analog electrical signal that is proportional to the strain.
B81B 3/00 - Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
B81C 1/00 - Manufacture or treatment of devices or systems in or on a substrate
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
G01L 1/26 - Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload
9.
HYBRID SENSOR WITH VOTING LOGIC FOR INTENT VALIDATION
A hybrid sensor device includes a substrate; a first sensing element configured to sense force; a second sensing element configured to sense at least one of light intensity, acoustic impedance, electrical conductivity, electrical permittivity, or temperature; signal processing circuitry configured to receive and process respective output signals of the first and second sensing elements; and decision logic circuitry configured to validate an intent of a user input based on the respective output signals of the first and second force sensors, wherein the first and second sensors, the signal processing circuitry, and the decision logic circuitry are integrated on the substrate.
G06F 3/03 - Arrangements for converting the position or the displacement of a member into a coded form
G06F 3/023 - Arrangements for converting discrete items of information into a coded form, e.g. arrangements for interpreting keyboard generated codes as alphanumeric codes, operand codes or instruction codes
Described herein is a method and system for testing a force or strain sensor in a continuous fashion. The method employs a sensor, a test fixture, a load cell, a mechanical actuator and tester hardware and software to simultaneously record signal outputs from the sensor and load cell as functions of time. The method provides time synchronization events for recording data streams between, for example, a linear ramp of the force on, or displacement of, the sensor and for extracting performance characteristics from the data in post-test processing.
Described herein is a sensor in chip scale package form factor. For example, a non-vacuum packaged sensor chip described herein includes a substrate, and a sensing element arranged on the substrate. The sensing element is configured to change resistance with temperature. Additionally, the non-vacuum packaged sensor chip includes an absorbing layer configured to absorb middle infrared (“MIR”) radiation.
G01J 5/20 - Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
G01J 5/00 - Radiation pyrometry, e.g. infrared or optical thermometry
G01J 5/58 - Radiation pyrometry, e.g. infrared or optical thermometry using absorptionRadiation pyrometry, e.g. infrared or optical thermometry using extinction effect
Described herein is a MEMS force sensor with stress concentration design. The stress concentration can be performed by providing slots, whether through or blind, and/or selective thinning of the substrate. The MEMS force sensor is in chip scale package with solder bumps or metal pillars and there are sensing elements formed on the sensor substrate at the stress concentrate area. The stress concentration can be realized through slots, selective thinning and a combination of both.
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
B81B 3/00 - Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
13.
Temperature coefficient of offset compensation for force sensor and strain gauge
MEMS force sensors for providing temperature coefficient of offset (TCO) compensation are described herein. An example MEMS force sensor can include a TCO compensation layer to minimize the TCO of the force sensor. The bottom side of the force sensor can be electrically and mechanically mounted on a package substrate while the TCO compensation layer is disposed on the top side of the sensor. It is shown the TCO can be reduced to zero with the appropriate combination of Young's modulus, thickness, and/or thermal coefficient of expansion (TCE) of the TCO compensation layer.
G01L 1/22 - Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluidsMeasuring force or stress, in general by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
G01L 1/16 - Measuring force or stress, in general using properties of piezoelectric devices
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
An example microelectromechanical system (MEMS) force sensor is described herein. The MEMS force sensor can include a sensor die configured to receive an applied force. The sensor die can include a first substrate and a second substrate, where a cavity is formed in the first substrate, and where at least a portion of the second substrate defines a deformable membrane. The MEMS force sensor can also include an etch stop layer arranged between the first substrate and the second substrate, and a sensing element arranged on a surface of the second substrate. The sensing element can be configured to convert a strain on the surface of the membrane substrate to an analog electrical signal that is proportional to the strain.
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
B81B 3/00 - Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
B81C 1/00 - Manufacture or treatment of devices or systems in or on a substrate
G01L 1/26 - Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload
15.
Wafer bonded piezoresistive and piezoelectric force sensor and related methods of manufacture
Described herein is a ruggedized microelectromechanical (“MEMS”) force sensor. The sensor employs piezoresistive or piezoelectric sensing elements for force sensing where the force is converted to strain and converted to electrical signal. In one aspect, both the piezoresistive and the piezoelectric sensing elements are formed on one substrate and later bonded to another substrate on which the integrated circuitry is formed. In another aspect, the piezoelectric sensing element is formed on one substrate and later bonded to another substrate on which both the piezoresistive sensing element and the integrated circuitry are formed.
G01L 1/16 - Measuring force or stress, in general using properties of piezoelectric devices
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
H01L 41/113 - Piezo-electric or electrostrictive elements with mechanical input and electrical output
16.
SYSTEMS AND METHODS FOR CONTINUOUS MODE FORCE TESTING
Described herein is a method and system for testing a force or strain sensor in a continuous fashion. The method employs a sensor, a test fixture, a load cell, a mechanical actuator and tester hardware and software to simultaneously record signal outputs from the sensor and load cell as functions of time. The method provides time synchronization events for recording data streams between, for example, a linear ramp of the force on, or displacement of, the sensor and for extracting performance characteristics from the data in post-test processing.
Described herein is a sensor in chip scale package form factor. For example, a non-vacuum packaged sensor chip described herein includes a substrate, and a sensing element arranged on the substrate. The sensing element is configured to change resistance with temperature. Additionally, the non-vacuum packaged sensor chip includes an absorbing layer configured to absorb middle infrared ("MIR") radiation.
G01J 5/58 - Radiation pyrometry, e.g. infrared or optical thermometry using absorptionRadiation pyrometry, e.g. infrared or optical thermometry using extinction effect
Described herein is a force attenuator for a force sensor. The force attenuator can linearly attenuate the force applied on the force sensor and therefore significantly extend the maximum sensing range of the force sensor. The area ratio of the force attenuator to the force sensor determines the maximum load available in a linear fashion.
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
G01L 1/16 - Measuring force or stress, in general using properties of piezoelectric devices
G01L 1/26 - Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload
19.
Integrated systems with force or strain sensing and haptic feedback
Integrated systems for force or strain sensing and haptic feedback are described herein. An example force-haptic system can include a sensor chip configured to receive an applied force, where the sensor chip includes at least one sensing element and an integrated circuit. The force-haptic system can also include a haptic actuator configured to convert an electrical excitation signal into mechanical vibration. Further, the force-haptic system can include a circuit board, where the sensor chip and the haptic actuator are electrically and mechanically coupled to the circuit board. The integrated circuit can be configured to process an electrical signal received from the at least one sensing element and to output the electrical excitation signal.
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G01L 5/1627 - Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of strain gauges
H10N 30/20 - Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
B06B 1/06 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
Described herein is a MEMS force sensor with stress concentration design. The stress concentration can be performed by providing slots, whether through or blind, and/or selective thinning of the substrate. The MEMS force sensor is in chip scale package with solder bumps or metal pillars and there are sensing elements formed on the sensor substrate at the stress concentrate area. The stress concentration can be realized through slots, selective thinning and a combination of both.
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
B81B 3/00 - Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
21.
Microelectromechanical force sensor having a strain transfer layer arranged on the sensor die
Described herein is a ruggedized microelectromechanical (“MEMS”) force sensor including a sensor die and a strain transfer layer. The MEMS force sensor employs piezoresistive or piezoelectric strain gauges for strain sensing where the strain is transferred through the strain transfer layer, which is disposed on the top or bottom side of the sensor die. In the case of the top side strain transfer layer, the MEMS force sensor includes mechanical anchors. In the case of the bottom side strain transfer layer, the protection layer is added on the top side of the sensor die for bond wire protection.
G01L 1/22 - Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluidsMeasuring force or stress, in general by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
H01L 41/053 - Mounts, supports, enclosures or casings
H01L 41/113 - Piezo-electric or electrostrictive elements with mechanical input and electrical output
G01L 1/16 - Measuring force or stress, in general using properties of piezoelectric devices
B81B 3/00 - Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
22.
Integrated digital force sensors and related methods of manufacture
In one embodiment, a ruggedized wafer level microelectromechanical (“MEMS”) force sensor includes a base and a cap. The MEMS force sensor includes a flexible membrane and a sensing element. The sensing element is electrically connected to integrated complementary metal-oxide-semiconductor (“CMOS”) circuitry provided on the same substrate as the sensing element. The CMOS circuitry can be configured to amplify, digitize, calibrate, store, and/or communicate force values through electrical terminals to external circuitry.
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
B81B 7/02 - Microstructural systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
B81C 1/00 - Manufacture or treatment of devices or systems in or on a substrate
G01L 1/14 - Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
G01L 1/16 - Measuring force or stress, in general using properties of piezoelectric devices
23.
Integrated piezoresistive and piezoelectric fusion force sensor
Described herein is a ruggedized microelectromechanical (“MEMS”) force sensor including both piezoresistive and piezoelectric sensing elements and integrated with complementary metal-oxide-semiconductor (“CMOS”) circuitry on the same chip. The sensor employs piezoresistive strain gauges for static force and piezoelectric strain gauges for dynamic changes in force. Both piezoresistive and piezoelectric sensing elements are electrically connected to integrated circuits provided on the same substrate as the sensing elements. The integrated circuits can be configured to amplify, digitize, calibrate, store, and/or communicate force values electrical terminals to external circuitry.
G01L 1/16 - Measuring force or stress, in general using properties of piezoelectric devices
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
G01L 5/00 - Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
B81B 3/00 - Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
Described herein is a force attenuator for a force sensor. The force attenuator can linearly attenuate the force applied on the force sensor and therefore significantly extend the maximum sensing range of the force sensor. The area ratio of the force attenuator to the force sensor determines the maximum load available in a linear fashion.
G01L 1/16 - Measuring force or stress, in general using properties of piezoelectric devices
G01L 9/08 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elementsTransmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices
H01L 27/20 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including magnetostrictive components
H01L 41/08 - Piezo-electric or electrostrictive elements
H01L 41/113 - Piezo-electric or electrostrictive elements with mechanical input and electrical output
B81B 3/00 - Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
An example microelectromechanical system (MEMS) force sensor is described herein. The MEMS force sensor can include a sensor die configured to receive an applied force. The sensor die can include a first substrate and a second substrate, where a cavity is formed in the first substrate, and where at least a portion of the second substrate defines a deformable membrane. The MEMS force sensor can also include an etch stop layer arranged between the first substrate and the second substrate, and a sensing element arranged on a surface of the second substrate. The sensing element can be configured to convert a strain on the surface of the membrane substrate to an analog electrical signal that is proportional to the strain.
G01L 1/04 - Measuring force or stress, in general by measuring elastic deformation of gauges, e.g. of springs
G01L 1/10 - Measuring force or stress, in general by measuring variations of frequency of stressed vibrating elements, e.g. of stressed strings
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
G01L 9/08 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elementsTransmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices
26.
TEMPERATURE COEFFICIENT OF OFFSET COMPENSATION FOR FORCE SENSOR AND STRAIN GAUGE
MEMS force sensors for providing temperature coefficient of offset (TCO) compensation are described herein. An example MEMS force sensor can include a TCO compensation layer to minimize the TCO of the force sensor. The bottom side of the force sensor can be electrically and mechanically mounted on a package substrate while the TCO compensation layer is disposed on the top side of the sensor. It is shown the TCO can be reduced to zero with the appropriate combination of Young's modulus, thickness, and/or thermal coefficient of expansion (TCE) of the TCO compensation layer.
A multi-dimensional track pad is described that acts as human-machine interface (HMI). Inputs to the HMI can be made not only using the tradition two-dimensional (X-Y) inputs of a track pad, but also a third dimension, force, and even a fourth dimension, time. Tactile or audible feedback to the inputs can be provided. Methods of using the HMI to control a system are described as well as a track pad system that utilizes the HMI in communication with a processor.
G09G 5/00 - Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
B60K 35/00 - Instruments specially adapted for vehiclesArrangement of instruments in or on vehicles
G06F 3/041 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
B60K 37/06 - Arrangement of fittings on dashboard of controls, e.g. control knobs
G06F 3/0354 - Pointing devices displaced or positioned by the userAccessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
B60R 16/023 - Electric or fluid circuits specially adapted for vehicles and not otherwise provided forArrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric for transmission of signals between vehicle parts or subsystems
B60W 50/16 - Tactile feedback to the driver, e.g. vibration or force feedback to the driver on the steering wheel or the accelerator pedal
Integrated systems for force or strain sensing and haptic feedback are described herein. An example force-haptic system can include a sensor chip configured to receive an applied force, where the sensor chip includes at least one sensing element and an integrated circuit. The force-haptic system can also include a haptic actuator configured to convert an electrical excitation signal into mechanical vibration. Further, the force-haptic system can include a circuit board, where the sensor chip and the haptic actuator are electrically and mechanically coupled to the circuit board. The integrated circuit can be configured to process an electrical signal received from the at least one sensing element and to output the electrical excitation signal.
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
B06B 1/02 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy
B06B 1/06 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
Described herein is a ruggedized microelectromechanical ("MEMS") sensor including both fingerprint and force sensing elements and integrated with complementary metal-oxide-semiconductor ("CMOS") circuitry on the same chip. The sensor employs either piezoresistive or piezoelectric sensing elements for detecting force and also capacitive or ultrasonic sensing elements for detecting fingerprint patterns. Both force and fingerprint sensing elements are electrically connected to integrated circuits on the same chip. The integrated circuits can amplify, digitize, calibrate, store, and/or communicate force values and/or fingerprint patterns through output pads to external circuitry.
G06K 9/00 - Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
G01L 1/16 - Measuring force or stress, in general using properties of piezoelectric devices
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
G01L 1/20 - Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluidsMeasuring force or stress, in general by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
30.
A WAFER BONDED PIEZORESISTIVE AND PIEZOELECTRIC FORCE SENSOR AND RELATED METHODS OF MANUFACTURE
Described herein is a ruggedized microelectromechanical ("MEMS") force sensor. The sensor employs piezoresistive or piezoelectric sensing elements for force sensing where the force is converted to strain and converted to electrical signal. In one aspect, both the piezoresistive and the piezoelectric sensing elements are formed on one substrate and later bonded to another substrate on which the integrated circuitry is formed. In another aspect, the piezoelectric sensing element is formed on one substrate and later bonded to another substrate on which both the piezoresistive sensing element and the integrated circuitry are formed.
G01L 1/16 - Measuring force or stress, in general using properties of piezoelectric devices
G01L 1/14 - Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
G01L 1/22 - Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluidsMeasuring force or stress, in general by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
H01L 41/08 - Piezo-electric or electrostrictive elements
H01L 41/113 - Piezo-electric or electrostrictive elements with mechanical input and electrical output
Described herein is a ruggedized microelectromechanical ("MEMS") force sensor including a sensor die and a strain transfer layer. The MEMS force sensor employs piezoresistive or piezoelectric strain gauges for strain sensing where the strain is transferred through the strain transfer layer, which is disposed on the top or bottom side of the sensor die. In the case of the top side strain transfer layer, the MEMS force sensor includes mechanical anchors. In the case of the bottom side strain transfer layer, the protection layer is added on the top side of the sensor die for bond wire protection.
G01L 1/16 - Measuring force or stress, in general using properties of piezoelectric devices
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
H01L 41/053 - Mounts, supports, enclosures or casings
H01L 41/083 - Piezo-electric or electrostrictive elements having a stacked or multilayer structure
32.
INTEGRATED PIEZORESISTIVE AND PIEZOELECTRIC FUSION FORCE SENSOR
Described herein is a ruggedized microelectromechanical ("MEMS") force sensor including both piezoresistive and piezoelectric sensing elements and integrated with complementary metal-oxide-semiconductor ("CMOS") circuitry on the same chip. The sensor employs piezoresistive strain gauges for static force and piezoelectric strain gauges for dynamic changes in force. Both piezoresistive and piezoelectric sensing elements are electrically connected to integrated circuits provided on the same substrate as the sensing elements. The integrated circuits can be configured to amplify, digitize, calibrate, store, and/or communicate force values electrical terminals to external circuitry.
G01L 1/14 - Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
G01L 1/16 - Measuring force or stress, in general using properties of piezoelectric devices
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
G01L 1/22 - Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluidsMeasuring force or stress, in general by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
G01L 9/08 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elementsTransmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices
H01L 41/08 - Piezo-electric or electrostrictive elements
H01L 41/113 - Piezo-electric or electrostrictive elements with mechanical input and electrical output
33.
INTEGRATED DIGITAL FORCE SENSORS AND RELATED METHODS OF MANUFACTURE
Described herein is a ruggedized wafer level microelectromechanical ("MEMS") force sensor including a base and a cap. The MEMS force sensor includes a flexible membrane and a sensing element. The sensing element is electrically connected to integrated complementary metal-oxide-semiconductor ("CMOS") circuitry provided on the same substrate as the sensing element. The CMOS circuitry can be configured to amplify, digitize, calibrate, store, and/or communicate force values through electrical terminals to external circuitry.
G01L 1/14 - Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
G01L 1/16 - Measuring force or stress, in general using properties of piezoelectric devices
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
G01L 1/22 - Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluidsMeasuring force or stress, in general by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
H01L 41/08 - Piezo-electric or electrostrictive elements
H01L 41/113 - Piezo-electric or electrostrictive elements with mechanical input and electrical output
G01L 9/08 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elementsTransmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices
09 - Scientific and electric apparatus and instruments
Goods & Services
Sensor systems comprised of electromechanical force sensors and software for processing force sensor data for use with a user interface that facilitates interaction between a user and an electronic device, all sold as unit; Sensor systems comprised of electromechanical force sensors, data processing units, and software for processing force sensor data for use with a user interface that facilitates interaction between a user and an electronic device, all sold as a unit
09 - Scientific and electric apparatus and instruments
Goods & Services
Sensor systems comprised of electromechanical force sensors and software for processing force sensor data for use with a user interface that facilitates interaction between a user and an electronic device, all sold as a unit; Sensor systems comprised of electromechanical force sensors, data processing units, and software for processing force sensor data for use with a user interface that facilitates interaction between a user and an electronic device, all sold as a unit
An example force-sensitive electronic device is described herein. The device can include a device body, a touch surface bonded to the device body in a bonded region that is arranged along a peripheral edge of the touch surface, and a plurality of force sensors that are arranged between the device body and the touch surface. Each of the plurality of force sensors can be spaced apart from the bonded region.
An example force-sensitive electronic device is described herein. The device can include a device body, a touch surface bonded to the device body in a bonded region that is arranged along a peripheral edge of the touch surface, and a plurality of force sensors that are arranged between the device body and the touch surface. Each of the plurality of force sensors can be spaced apart from the bonded region.
An example actuator device for a force sensor is described herein. The device can include a device body, a force concentrator element, an overload protection element, one or more legs, and an attachment layer for attaching the device to a substrate. An example method for assembling a force sensing system is also described herein. Further, an example method for protecting a force sensor from excessive forces or displacement is described herein.
An example force sensitive touch panel device can include a device body; a touch surface for receiving a touch force; a sensor for sensing touch force that is arranged between the device body and the touch surface; and a membrane configured to mechanically isolate the device body and the touch surface. Additionally, the membrane can apply a preload force to the sensor.
An example MEMS force sensor is described herein. The MEMS force sensor can include a cap for receiving an applied force and a sensor bonded to the cap. A trench and a cavity can be formed in the sensor. The trench can be formed along at least a portion of a peripheral edge of the sensor. The cavity can define an outer wall and a flexible sensing element, and the outer wall can be arranged between the trench and the cavity. The cavity can be sealed between the cap and the sensor. The sensor can also include a sensor element formed on the flexible sensing element. The sensor element can change an electrical characteristic in response to deflection of the flexible sensing element.
G01L 25/00 - Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
G01L 1/26 - Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload
41.
RUGGEDIZED WAFER LEVEL MEMS FORCE SENSOR WITH A TOLERANCE TRENCH
An example MEMS force sensor is described herein. The MEMS force sensor can include a cap for receiving an applied force and a sensor bonded to the cap. A trench and a cavity can be formed in the sensor. The trench can be formed along at least a portion of a peripheral edge of the sensor. The cavity, which can be sealed between the cap and the sensor, can define an outer wall and a flexible sensing element, and the outer wall can be arranged between the trench and the cavity. The sensor can also include a sensor element formed on the flexible sensing element. The sensor element can change an electrical characteristic in response to deflection of the flexible sensing element.
B81B 3/00 - Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
G01L 1/16 - Measuring force or stress, in general using properties of piezoelectric devices
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
42.
Miniaturized and ruggedized wafer level MEMs force sensors
Described herein is a miniaturized and ruggedized wafer level MEMS force sensor composed of a base and a cap. The sensor employs multiple flexible membranes, a mechanical overload stop, a retaining wall, and piezoresistive strain gauges.
B81B 3/00 - Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
B81C 1/00 - Manufacture or treatment of devices or systems in or on a substrate
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
G01L 1/20 - Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluidsMeasuring force or stress, in general by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
An example force sensitive touch panel device can include a device body; a touch surface for receiving a touch force; a sensor for sensing touch force that is arranged between the device body and the touch surface; and a membrane configured to mechanically isolate the device body and the touch surface. Additionally, the membrane can apply a preload force to the sensor.
Described herein is a miniaturized and ruggedized wafer level MEMS force sensor composed of a base and a cap. The sensor employs multiple flexible membranes, a mechanical overload stop, a retaining wall, and piezoresistive strain gauges.
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
B81B 7/02 - Microstructural systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
45.
FORCE SENSOR MODULE FOR APPLYING A PRELOAD FORCE TO A FORCE SENSOR
An example force sensor module for a touch]sensitive electronic device can include a force sensor, a bias assembly and an opposing bias assembly that is coupled to the bias assembly. The bias assembly can have a top wall and a plurality of side walls extending from the top wall. The top and side walls can define a chamber. The force sensor can be arranged between the bias assembly and the opposing bias assembly within the chamber. Additionally, the bias and opposing bias assemblies can be configured to apply a preload force to the force sensor, which is approximately equal to a spring force exerted between the bias and opposing bias assemblies.
A multi-dimensional track pad is described that acts as human-machine interface (HMI). Inputs to the HMI can be made not only using the tradition two-dimensional (X-Y) inputs of a track pad, but also a third dimension, force, and even a fourth dimension, time. Tactile or audible feedback to the inputs can be provided. Methods of using the HMI to control a system are described as well as a track pad system that utilizes the HMI in communication with a processor.
G06F 3/0354 - Pointing devices displaced or positioned by the userAccessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
B60K 35/00 - Instruments specially adapted for vehiclesArrangement of instruments in or on vehicles
G06F 3/041 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
B60R 16/023 - Electric or fluid circuits specially adapted for vehicles and not otherwise provided forArrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric for transmission of signals between vehicle parts or subsystems
B60W 50/16 - Tactile feedback to the driver, e.g. vibration or force feedback to the driver on the steering wheel or the accelerator pedal
A multi-dimensional track pad is described that acts as human-machine interface (HMI). Inputs to the HMI can be made not only using the tradition two-dimensional (X-Y) inputs of a track pad, but also a third dimension, force, and even a fourth dimension, time. Tactile or audible feedback to the inputs can be provided. Methods of using the HMI to control a system are described as well as a track pad system that utilizes the HMI in communication with a processor.
A microelectromechanical (“MEMS”) load sensor device for measuring a force applied by a human user is described herein. In one aspect, the load sensor device has a contact surface in communication with a touch surface which communicates forces originating on the touch surface to a deformable membrane, on which load sensor elements are arranged, such that the load sensor device produces a signal proportional to forces imparted by a human user along the touch surface. In another aspect, the load sensor device has an overload protection ring to protect the load sensor device from excessive forces. In another aspect, the load sensor device has embedded logic circuitry to allow a microcontroller to individually address load sensor devices organized into an array. In another aspect, the load sensor device has electrical and mechanical connectors such as solder bumps designed to minimize cost of final component manufacturing.
G01L 1/22 - Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluidsMeasuring force or stress, in general by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
B81B 3/00 - Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
B81C 1/00 - Manufacture or treatment of devices or systems in or on a substrate
G01L 1/14 - Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
G01L 1/26 - Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload
G01L 5/16 - Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
A composite wafer level MEMS force dies including a spacer coupled to a sensor is described herein. The sensor (12) includes at least one flexible sensing element (14), such as a beam or diaphragm, which have one or more sensor elements formed thereon. Bonding pads connected to the sensor elements are placed on the outer periphery of the sensor. The spacer (11), which protects the flexible sensing element (14) and the wire bonding pads, is bonded to the sensor. For the beam version, the bond is implemented at the outer edges of the die. For the diaphragm version, the bond is implemented in the center of the die. An interior gap (25) between the spacer and the sensor allows the flexible sensing element to deflect. The gap (25) can also be used to limit the amount of deflection of the flexible sensing element in order to provide overload protection.
G01L 1/04 - Measuring force or stress, in general by measuring elastic deformation of gauges, e.g. of springs
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
G01L 5/00 - Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
G01L 5/16 - Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
Described herein are ruggedized wafer level MEMS force dies composed of a platform and a silicon sensor. The silicon sensor employs multiple flexible sensing elements containing Piezoresistive strain gages and wire bonds.
H01L 21/306 - Chemical or electrical treatment, e.g. electrolytic etching
B81B 3/00 - Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
B81C 1/00 - Manufacture or treatment of devices or systems in or on a substrate
G01L 1/04 - Measuring force or stress, in general by measuring elastic deformation of gauges, e.g. of springs
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
G01L 5/00 - Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
G01L 5/16 - Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
A composite wafer level MEMS force dies including a spacer coupled to a sensor is described herein. The sensor includes at least one flexible sensing element, such as a beam or diaphragm, which have one or more sensor elements formed thereon. Bonding pads connected to the sensor elements are placed on the outer periphery of the sensor. The spacer, which protects the flexible sensing element and the wire bonding pads, is bonded to the sensor. For the beam version, the bond is implemented at the outer edges of the die. For the diaphragm version, the bond is implemented in the center of the die. An interior gap between the spacer and the sensor allows the flexible sensing element to deflect. The gap can also be used to limit the amount of deflection of the flexible sensing element in order to provide overload protection.
H01L 21/306 - Chemical or electrical treatment, e.g. electrolytic etching
B81B 3/00 - Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
B81C 1/00 - Manufacture or treatment of devices or systems in or on a substrate
G01L 1/04 - Measuring force or stress, in general by measuring elastic deformation of gauges, e.g. of springs
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
G01L 5/00 - Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
G01L 5/16 - Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
52.
FORCE SENSITIVE INTERFACE DEVICE AND METHODS OF USING SAME
An interface device for measuring forces applied to the interface device. The interface device has a flexible contact surface suspended above a rigid substrate. The interface device has at least one sensor in communication with the contact surface. The interface device has processing circuitry for receiving signals from the sensors and substantially instantaneously producing an output signal corresponding to the location and force applied in multiple locations across the contact surface.