A substrate holder, for a lithographic apparatus, having a main body, a plurality of support elements to support a substrate and a seal unit. The seal unit may include a first seal positioned outward of and surrounding the plurality of support elements. A position of a substrate contact region of an upper surface of the first seal may be arranged at a distance from the plurality of support elements sufficient enough such that during the loading/unloading of the substrate, a force applied to the first seal by the substrate is greater than a force applied to the plurality of support elements by the substrate. A profile of the contact region, in a cross section through the seal, may have a shape which is configured such that during the loading/unloading of the substrate, the substrate contacts the seal via at least two different points of the profile.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
2.
STOCHASTIC-AWARE SOURCE MASK OPTIMIZATION BASED ON EDGE PLACEMENT PROBABILITY DISTRIBUTION
A method for stochastic-aware source mask optimization is described. A probability distribution for edge placement which accounts for stochasticity is determined. Based on the probability distribution, the source configuration, mask configuration, or the combination thereof can be optimized for a lithography process. The probability distribution for edge placement can account for a distribution of stochastic effect on edge placement, including a stochastic edge placement error contribution. The probability distribution of edge placement can be compared to a profile to determine a simulated distribution of edge placement error. A cost function, which accounts for the probability distribution of edge placement, can be used to optimize the source configuration, the mask configuration, of the combination thereof.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
3.
APPARATUS FOR AND METHOD OF CONTROLLING DROPLET GENERATOR PERFORMANCE
Apparatus for and method of controlling formation of droplets used to generate EUV radiation. The droplet source includes a fluid exiting an nozzle and a sub-system having an electro-actuatable element producing a disturbance in the fluid. The droplet source produces a stream that breaks down into droplets that in turn coalesce into larger droplets as they progress towards the irradiation region. The electro-actuatable element is driven by a control signal having a sine wave component and a square wave component. Various parameters such as a phase difference between the sine wave component and the square wave component are measured and controlled to minimize the formation of noncoalesced satellite droplets in the stream.
H05G 2/00 - Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
A method of determining contamination of an optical sensor in a lithographic apparatus, the method including projecting patterned reflected EUV radiation towards the optical sensor and thereby forming an aerial image of a pattern, moving the optical sensor relative to the patterned reflected EUV radiation such that an intensity of EUV radiation measured by the optical sensor varies as a function of the position of the optical sensor, wherein the intensity measured by the optical sensor passes through a minimum, and using the measured intensity to measure contamination of the optical sensor.
G01N 21/94 - Investigating contamination, e.g. dust
G01N 21/88 - Investigating the presence of flaws, defects or contamination
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
G03F 9/00 - Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
Disclosed is a method of monitoring an exposure process, comprising: obtaining a set of first monitoring data relating to a performance of a monitoring action of the exposure process using at least one first reference structure, the at least one first reference structure being in use for the monitoring action during exposures; obtaining at least one set of second monitoring data relating to a performance of the monitoring action of the exposure process using at least one second reference structure, the at least one second reference structure not being in use for the monitoring action during exposures; comparing the set of first monitoring data to the at least one set of second monitoring data; and determining, based on the comparing, whether to change from the at least first reference structure to the at least one second reference structure for the monitoring action during further exposures
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
G03F 9/00 - Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
6.
FORMING A REFERENCE IRRADIANCE PATTERN ON A DETECTOR
Described herein is a method comprising: illuminating an optical element with a reference illumination, wherein the optical element is configured to produce, from the reference illumination, a plurality of reference irradiance beams incident on a detector to form a reference irradiance pattern on the detector, the reference irradiance pattern comprising a plurality of reference irradiance spots; and determining a position related parameter of the detector relative to the optical element based on the plurality of reference irradiance spots. A computer program product is also described. Additionally described herein is an apparatus comprising a processor configured to determine a position related parameter of a detector relative to an optical element based on a plurality of reference irradiance spots.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
H04N 23/54 - Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
Disclosed is a metrology apparatus and method. The method comprises: obtaining metrology data relating to a measurement obtained by illuminating a periodic structure with illumination and capturing the resultant scattered radiation from said periodic structure at a detection plane, said scattered radiation passing through at least one detection angularly resolved plane between said periodic structure and detection plane, wherein said illumination comprises an even plurality of monopoles arranged within an illumination angularly resolved plane in one or more coherence groups, wherein each coherence group comprises a respective at least one mutually coherent dipole of said even plurality of monopoles which are all mutually coherent and wherein zeroth order reflection corresponding to all but one monopole for each said one or more coherence groups is blocked or attenuated within said detection angularly resolved plane; non-iteratively reconstructing a field of said scattered radiation.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
8.
Lithographic apparatus, device manufacturing method, and method of correcting a mask
A lithographic apparatus includes a mask correction system configured to controllably and locally alter a property of a mask, for example transmissivity, transmissivity to a particular polarization state, birefringence and/or geometry. The mask correction system, in an embodiment, directs a beam of radiation onto a spot of the mask, the mask being scanned relative to the mask correction system. The mask correction system may include an arrangement to irradiate multiple spots on the mask substantially simultaneously.
G03B 27/52 - Projection printing apparatus, e.g. enlarger, copying camera Details
G03F 1/70 - Adapting basic layout or design of masks to lithographic process requirements, e.g. second iteration correction of mask patterns for imaging
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
A new (lithographic) method of forming a feature on a substrate (e.g. a wafer) comprises performing a plurality of sequential exposures, each of the plurality of exposures comprising forming an image of the feature in the vicinity of the substrate. A focal position of the image relative to the substrate is different for at least two of the plurality of exposures. There is a range of focal positions of the image relative to the substrate that is not used during any of the plurality of exposures and which lies between the focal positions of the image relative to the substrate for two of the plurality of exposures. The method according to the first aspect of the present disclosure is particularly advantageous for forming isolated features on a substrate such as isolated contacts and isolated spaces.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
A fuel droplet nozzle assembly comprises a first hollow body and a piezoelectric element. The first hollow body comprises an inlet and an outlet and a bore extending between the inlet and the outlet. In use, fuel (for example liquid tin) may be provided into the first hollow body via the inlet under pressure. The piezoelectric element surrounds and is in direct or indirect contact with the first hollow body. In use, the piezoelectric element may be configured to squeeze the first hollow body at an excitation frequency and can be used to generate sound waves in the first hollow body. The fuel droplet nozzle assembly may further comprise a second hollow body surrounding and in direct or indirect contact with the piezoelectric element. Additionally or alternatively, the first hollow body may be a composite body formed from at least: an outer support portion formed from metal; and an inner portion formed from a glass material.
The disclosure provides a device and method for measuring contamination. The device comprises: a layer of a non-conducting material; a layer of a semi-metal arranged on the layer of the non-conducting material; at least one set of electrodes, each electrode being in electrical contact to the layer of the semi-metal; and an electrical source of a voltage or current connected to the at least two electrodes. The semi-metal may be graphene. The non-conducting material may be hexagonal boron nitride. The method includes measuring a change in resistivity of the layer of the semi-metal using a voltage and/or a current source connected to the at least two electrodes.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
G01B 7/31 - Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapersMeasuring arrangements characterised by the use of electric or magnetic techniques for testing the alignment of axes for testing the alignment of axes
G01N 27/04 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
G03F 9/00 - Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
12.
HOLLOW-CORE PHOTONIC CRYSTAL FIBER BASED OPTICAL COMPONENT FOR BROADBAND RADIATION GENERATION
Optical components and methods of manufacture thereof. A first optical component has a hollow-core photonic crystal fiber includes internal capillaries for guiding radiation and an outer capillary sheathing the internal capillaries; and at least an output end section having a larger inner cross-sectional dimension over at least a portion of the output end section than an inner cross-sectional dimension of the outer capillary along a central portion of the hollow-core photonic crystal fiber prior to the output end section. A second optical component includes a hollow-core photonic crystal fiber and a sleeve arrangement.
C03B 37/15 - Re-forming fibres or filaments with heat application, e.g. for making optical fibres
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
G03F 9/00 - Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
13.
CONFIGURABLE RESONANT CHARGING SUPPLY AND METHOD FOR A PULSED POWER LASER PLATFORM
A resonant charging supply for a pulsed power supply system for a discharge laser, the configurable resonant charging circuit having one or more of a variable inductor, a programmable energy calculation circuit, a programmable voltage scaling and control circuit, a programmable current scaling and control circuit, and a programmable repetition rate limiter so that the resonant charging circuit is configurable to be able to work with any one of a number of laser platforms having differing operational parameters.
H03K 3/57 - Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
Disclosed is a method of determining at least one bonding parameter of interest relating to a feature on a substrate comprising: obtaining angularly resolved metrology data relating to a measurement of said feature following illumination of said feature with a radiation beam and detecting radiation scattered by said feature at an angularly resolved plane; obtaining at least one trained model being operable to relate said angularly resolved metrology data to said bonding parameter of interest; and using the trained model to derive the bonding parameter of interest based on the angularly resolved metrology data.
H01L 21/66 - Testing or measuring during manufacture or treatment
G01N 23/20 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by using diffraction of the radiation by the materials, e.g. for investigating crystal structureInvestigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materialsInvestigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by using reflection of the radiation by the materials
15.
MAINTAINING AN OPTICAL FOCUS OF AN OPTICAL ELEMENT FOR IMPROVING PERFORMANCE OF A METROLOGY SYSTEM
A system includes an optical element, a distance sensor, a controller, and an actuator. The optical element faces a wafer. The optical element is spaced apart from the wafer by a focus distance. The distance sensor can measure a distance to the wafer. The distance sensor can be positioned off axis with respect to an optical axis of the optical element. The controller can be coupled to the actuator and can be configured to generate a control signal to maintain the focus distance. The control signal can be generated based on the measured distance by the distance sensor. The actuator coupled to the optical element and configured to control a position of the optical element based on the control signal.
An interferometer system comprises: - first and second splitters to split first and second beams received from first and second input terminals in first measurement and reference beams and second measurement and reference beams - a second combiner to combine the second measurement and reference beams and to direct the combined beams to a second detector, - a coupling out device to direct the first measurement beam to a retro reflector, a coupling in device to receive the first measurement beam reflected by the retroreflector, - a first combiner to combine the first measurement beam received via a first measurement beam propagation path from the coupling in device and the first reference beam received from the second splitter via a first reference beam propagation path, and to direct the combined measurement beams to a first detector.
G01B 9/02015 - Interferometers characterised by the beam path configuration
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
09 - Scientific and electric apparatus and instruments
Goods & Services
Electric and electronic process control apparatus for the production of semiconductor components, including specifically particle emitters, light sources, detectors, controllers and holders for semiconductor wafers; computer hardware and software for inspection of semiconductor wafers.
18.
TRANSIENT DEFECT INSPECTION USING AN INSPECTION IMAGE
An improved method and system for transient defect inspection using an inspection image are disclosed. The method comprises acquiring a plurality of inspection images, generating an average image of the plurality of inspection images, detecting a first type defect in the average image, determining a mask area corresponding to the first type defect, and determining whether the plurality of inspection images have a second type defect in a non-masked area.
Systems, apparatuses, and methods are provided for manufacturing a thermally actuated cooling apparatus. An example method can include providing a cooling member. The cooling member can include a contact plate, fins extending from the contact plate in a first direction, and a protuberance extending from the contact plate in a second direction. Subsequently, the example method can include mounting the protuberance to a part of an extreme ultraviolet (EUV) radiation source. The contact plate can include a first coefficient of thermal expansion (CTE) that is greater than a second CTE of the part.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
A method of configuring a detector of a charged particle assessment system, the detector having an array of sensing elements configured to generate electrical signals in response to incident secondary particles or backscattered particles from a sample, the method comprising:
A method of configuring a detector of a charged particle assessment system, the detector having an array of sensing elements configured to generate electrical signals in response to incident secondary particles or backscattered particles from a sample, the method comprising:
selecting a first subset of the set of sensing elements for activation based on data derived from a predicted distribution of secondary particles or backscattered particles; and selecting a second subset of the set of sensing elements for deactivation based on the predicted distribution;
A method of configuring a detector of a charged particle assessment system, the detector having an array of sensing elements configured to generate electrical signals in response to incident secondary particles or backscattered particles from a sample, the method comprising:
selecting a first subset of the set of sensing elements for activation based on data derived from a predicted distribution of secondary particles or backscattered particles; and selecting a second subset of the set of sensing elements for deactivation based on the predicted distribution;
wherein the first subset has a different predicted ratio of incident secondary particles to incident backscattered particles than the second subset.
G01N 23/2251 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by measuring secondary emission from the material using electron or ion microprobes using incident electron beams, e.g. scanning electron microscopy [SEM]
In a lithographic process, product units such as semiconductor wafers are subjected to lithographic patterning operations and chemical and physical processing operations. Alignment data or other measurements are made at stages during the performance of the process to obtain object data representing positional deviation or other parameters measured at points spatially distributed across each unit. This object data is used to obtain diagnostic information by performing a multivariate analysis to decompose a set of vectors representing the units in the multidimensional space into one or more component vectors. Diagnostic information about the industrial process is extracted using the component vectors. The performance of the industrial process for subsequent product units can be controlled based on the extracted diagnostic information.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
G03F 9/00 - Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
G06F 16/26 - Visual data miningBrowsing structured data
Disclosed is a metrology method comprising: obtaining metrology data relating to a measurement obtained by illuminating a periodic structure comprising at least one pitch with partial coherent illumination comprising a wavelength and capturing the resultant scattered radiation from said periodic structure at a detection plane, said scattered radiation passing through at least one angularly resolved plane between said periodic structure and detection plane, said angularly resolved plane comprising at least one mask edge; non-iteratively reconstructing a field of said scattered radiation; using said reconstructed field to determine a parameter of interest of the structure; and in an initial step: selecting said wavelength and a maximum of said at least one pitch such that the wavelength- over-pitch ratio is greater than a first distance in said angularly resolved plane.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
23.
APPARATUS AND METHOD FOR SECURING A DIE FOR DIE BONDING
An apparatus and method for securing an at least partially transparent carrier to a chuck are provided, wherein the chuck and/or chucking mechanism is at least locally substantially transparent to radiation used to release one or more donor die from the carrier.
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H01L 21/683 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping
24.
LITHOGRAPHIC APPARATUS AND METHOD WITH FAST ALIGNMENT MEASUREMENTS USING DEFORMATION PREDICTION MODELS
A lithographic apparatus includes an illumination system, a substrate support structure including a sensor, and a computing system. The illumination system generates a beam of radiation to illuminate a pattern of a patterning device. The patterning device includes reference marks. The substrate support structure performs alignment operations of substrates during fabrication cycles. Each of the fabrication cycles comprises an exposure operation on a substrate and a substrate alignment operation. The sensor performs measurements of the reference marks for the substrate alignment operation of each of the fabrication cycles. The computing system forecasts a distortion of the patterning device using a distortion prediction model and one or more parameters of the beam. The computing system also prompts the sensor to waive one or more of the measurements. The computing system also adjusts the alignment operations using the forecasted distortion to offset the waived one or more of the measurements.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
G03F 9/00 - Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
25.
SYSTEMS AND METHODS OF ENERGY-BASED FILTERING AND DETECTION OF CHARGED PARTICLES
Systems and methods of imaging a sample using a charged-particle beam apparatus are disclosed. The charged-particle beam apparatus may comprise an energy discrimination device configured to filter incoming signal charged-particles having a plurality of ranges of energy levels. The energy discrimination device may include an electromagnetic charged-particle deflector configured to deflect a path of the incoming signal charged-particles based on an energy level of the incoming signal charged-particles; an aperture formed on an aperture plane, the aperture configured to allow a portion of the incoming signal charged-particles exiting the electromagnetic charged-particle deflector to pass through based on the deflection; and a control lens located upstream from the electromagnetic charged-particle deflector and configured to focus the incoming signal charged-particles on the aperture plane.
A pellicle membrane including emissive crystals in a matrix containing at least one element which forms a chemical bond with silicon having a bond dissociation energy of at least 447 kJ mol−1. A method of manufacturing such a pellicle membrane, a pellicle assembly including such a pellicle membrane and a lithographic apparatus including such a pellicle assembly or pellicle membrane. Also the use of molybdenum silicon sulphide, oxide, selenide, or fluoride in a pellicle membrane. The use of such a pellicle membrane, pellicle assembly or lithographic apparatus in a lithographic apparatus or method.
Methods, apparatuses, and software are disclosed for optimization of a source and/or mask as used in lithographic manufacturing and patterning processes. One method includes determining a first pupil having a central obscuration (CO), determining a diffraction order (DO) based on a target design and a mask model, determining a first diffraction pattern (DP) based on the DO and the first pupil, the first DP including overlapping regions of diffracted light, determining a second DP based on the DO and the first pupil, and determining an initial pupil based on the first DP and the second DP, the initial pupil including at least some of the overlapping regions.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
G03F 1/68 - Preparation processes not covered by groups
A calibration apparatus for a wavelength-tunable deep ultraviolet (DUV) light source includes a plasmonic device in a path of a light beam from a discharge chamber; and a calibration detector that receives the light beam exiting the plasmonic device. The calibration detector is configured to detect a fluence of the light beam.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
29.
DEFORMABLE OPTICAL COMPONENT ACTUATION AND MODULATION IN A METROLOGY SYSTEM
A metrology apparatus includes an optical component, a wafer, a sensor, and a processor. The optical component, which can actuate between multiple aberration modes, provides a wavefront correction to light incident on the optical component. Light reflected and/or transmitted by the optical component is scattered by a target on the wafer. The scattered light forms a measurement signal that is collected by a sensor. The processor uses the measurement signal to determine an aberration correction for the optical component.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
30.
AN ILLUMINATION AND DETECTION ARRANGEMENT AND A METHOD FOR A METROLOGY ARRANGEMENT
Disclosed is an illumination and detection arrangement for a lithographic or inspection apparatus, comprising: a plurality of individually configurable illumination sources located in an illumination plane, each being operable to emit illumination radiation; an objective lens defining an objective NA area and configured to receive the illumination radiation, focus it onto a structure in an object plane, and subsequently collect radiation scattered from the structure upon illumination; and at least one image sensor located in a detection plane and configured to detect at least one portion of the scattered radiation collected by the objective lens and record an image associated with the structure; wherein the at least one portion of the scattered radiation either is detected at or passes through the illumination plane.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
An apparatus for use in a metrology apparatus comprises: selection optics; and a plurality of beam-modifying modules. The selection optics is arranged to receive an input radiation beam and is configurable so as direct the radiation beam to any one of the plurality of beam-modifying modules. Each of the plurality of beam-modifying modules is arranged to control the same at least one attribute of the radiation beam (for example wavelength, polarization, size, shape etc.). The selection optics may be arranged to receive secondary radiation output by any one of the plurality of beam-modifying modules and may be configurable so as direct the secondary radiation received from any one of the plurality of beam-modifying modules to a common output. A timescale for switching between two configurations of any one of the beam-modifying module may be larger than a timescale for switching between two configurations of the selection optics.
An apparatus includes an illumination system, a projection system, and an inspection system. The illumination system illuminates a pattern of a patterning device. The projection system projects an image of the pattern onto a substrate. The inspection system includes a radiation source, an optical element, and a detector. The radiation source generates radiation. The optical element directs the radiation toward a target on the substrate. The detector includes a photosensitive device and a squarecore optical fiber. The photosensitive device receives at least a portion of radiation scattered by the target and generates a measurement signal based on the received portion of the radiation. The squarecore optical fiber is coupled to the photosensitive device, guides the portion of the radiation to the photosensitive device, and homogenizes the guided portion of the radiation such that an intensity cross-section of the received portion of the radiation at the photosensitive device is approximately uniform.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
A substrate including a target. The target including a plurality of sub-targets, the plurality of sub-targets including at least a first sub-target and second sub-target, each of the plurality of sub-targets including at least one subsegmented periodic structure having repetitions of a first region and a second region, wherein at least one of the first regions or second regions comprise subsegmented regions formed of periodic sub-features. The first sub-target includes subsegmentation characteristics for its subsegmented regions and the second sub-target comprises second subsegmentation characteristics for its subsegmented regions, the first subsegmentation characteristics and second subsegmentation characteristics being different in terms of at least one subsegmentation parameter.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
34.
SYSTEMS, METHODS, AND SOFTWARE FOR MULTILAYER METROLOGY
Methods, apparatuses, and software are disclosed for multilayer metrology. One method includes obtaining image data of an object with an SEM system, with the image data acquired at multiple landing energy levels. A composed image is generated by performing pixel-by-pixel image processing of the image data. A metrology characteristic is determined from the composed image and metrology is performed on a feature based on the metrology characteristic.
G01N 23/2251 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by measuring secondary emission from the material using electron or ion microprobes using incident electron beams, e.g. scanning electron microscopy [SEM]
An assembly for movably supporting a mirror comprises: a mirror; and one or more deformable members. A first end of the or each deformable member defines a support portion and a second end of the or each deformable member is attached (either directly or indirectly to the mirror (for example on a rear surface of the mirror). The or each deformable member comprises a first actuator and a second actuator, the first and second actuators being independently addressable. Actuation of the first actuator moves the mirror relative to the support portion in a first direction and actuation of the second actuator moves the mirror relative to the support portion in a second direction that is opposite to the first direction. In use, the support portion may be attached or fixed to a support and the first and second actuators can be used to move the mirror relative to said support.
G02B 26/08 - Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
36.
INTERFEROMETER SYSTEM WITHOUT WALK-OFF, METHOD FOR USING AN INTERFEROMETER SYSTEM
The present disclosure provides an interferometer system, comprising: an input terminal configured to receive an input beam from a source of radiation, a polarizing beam splitter which is configured to reflect a first portion of the input beam to follow a measurement path and to reflect a second portion of the input beam to follow a reference path, wherein the measurement path is directed towards a first optical reflector mounted on a movable measurement target and back to the beam splitter, then towards a translating reflector and back to the beam splitter, and wherein the reference path is directed towards the translating reflector and back to the beam splitter.
G01B 9/02018 - Multipass interferometers, e.g. double-pass
G01B 9/02061 - Reduction or prevention of effects of tilts or misalignment
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
37.
ILLUMINATION MODE SELECTOR AND ASSOCIATED OPTICAL METROLOGY TOOL
An illumination mode selector for use in an illumination branch of an optical metrology tool, and an associated optical metrology tool. The illumination mode selector includes a plurality of illumination apertures; and at least one polarization-changing optical element. Each of the illumination apertures and each of the at least one polarization-changing optical element are individually switchable into an illumination path of the optical metrology tool.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
G01N 21/95 - Investigating the presence of flaws, defects or contamination characterised by the material or shape of the object to be examined
Systems and methods (400; 700) of detecting a defect (638) in a sample (250) using a charged-particle beam apparatus are disclosed. A method (400; 700) for inspecting a sample (250) using a charged-particle beam apparatus includes causing a region of the sample (250) comprising a plurality of features (632) to be charged to a first polarity, causing the region to switch from the first polarity to a second polarity at a switching condition, the switching condition comprising a switching dosage of primary charged particles, forming an inspection image of the region from signal charged particles generated upon interaction of the switching dosage of primary charged particles with the plurality of features (632), and determining whether a feature (632) of the plurality of features (632) is defective based on a gray level value of the feature (632) in the inspection image.
G01N 23/2251 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by measuring secondary emission from the material using electron or ion microprobes using incident electron beams, e.g. scanning electron microscopy [SEM]
G01R 31/307 - Contactless testing using electron beams of integrated circuits
H01J 37/28 - Electron or ion microscopesElectron- or ion-diffraction tubes with scanning beams
G01N 33/00 - Investigating or analysing materials by specific methods not covered by groups
H01L 21/66 - Testing or measuring during manufacture or treatment
39.
SYSTEMS AND METHODS FOR GUIDED TEMPLATE MATCHING IN METROLOGY SYSTEMS
Systems and methods for guided template matching may include generating an image of a sample; per unit cell of the image, determining a size of a corresponding feature of the sample of the image; generating a template of each feature of the sample based on the determined size of the corresponding feature; matching the template to the corresponding feature of the image using a dynamic updating of the template with a range of adjustment factors; generating a final template based on the matching; and calculating a position of each feature based on the final template.
G06V 10/75 - Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video featuresCoarse-fine approaches, e.g. multi-scale approachesImage or video pattern matchingProximity measures in feature spaces using context analysisSelection of dictionaries
G06V 10/25 - Determination of region of interest [ROI] or a volume of interest [VOI]
G06V 10/26 - Segmentation of patterns in the image fieldCutting or merging of image elements to establish the pattern region, e.g. clustering-based techniquesDetection of occlusion
A method of spatially aligning a patterning device and a substrate, wherein the patterning device and the substrate are separated by an optical path comprising one or more moveable optical components is described, the method comprising: —performing a plurality of alignment measurements, wherein for each alignment measurement the moveable optical components are arranged in respective predetermined positions, —combining the alignment measurements, and—spatially aligning the patterning device and the substrate based on the combination of the alignment measurements.
G03F 9/00 - Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
A broadband radiation device, comprising: a pulse shaper configured to impose a temporal profile onto an input pump pulse so as to generate a temporally-modulated pump pulse, the temporally-modulated pump pulse having a different temporal profile than the input pump pulse; and a hollow-core photonic crystal fiber (HC-PCF) having a hollow core for confining in use a working medium under a pressure, the HC-PCF being operable to receive the temporally-modulated pump pulse; wherein the temporally-modulated pump pulse is configured to be spectrally broadened by a soliton self-compression process to form broadband output radiation while propagating through the hollow core of the HC-PCF; and said temporal profile is configured so as to configure a spectrum of the broadband output radiation to have target spectrum characteristics.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
G03F 9/00 - Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
42.
METHOD OF OPTIMIZING MAINTENANCE OF A LITHOGRAPHIC APPARATUS
A method of optimizing maintenance of a lithographic apparatus. The method including obtaining productivity data relating to a productivity of a lithographic apparatus and error metric data relating to the effect of a maintenance action on exposure performance. The productivity data and error metric data is used to determine such that a loss of productivity metric is reduced or minimized, one or both of: a number of layers to ramp down in production of integrated circuits prior to the maintenance action on the lithographic apparatus, the layers being lithographically exposed on each of a plurality of substrates using the lithographic apparatus; and/or a maintenance schedule metric relating to the frequency of performance of the maintenance action.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
An electron-optical projection device for projecting a plurality of charged particle beams towards a sample, the device comprising a stack of plates comprising beam directing elements configured to project the plurality of charged particle beams towards a sample location on the sample, wherein at least one plate of the stack comprises a planar optical member configured to direct stimulation light towards the sample location so that the stimulation light is coincident with the plurality of charged particle beams, desirably coincident with the paths of the plurality of charged particle beams towards the sample location, desirably in the at least one plate comprising an optical member is defined a plurality of apertures for respective paths of a plurality charged particle beams.
A collector mirror (21) for lithography has a mirror substrate body (22) comprising a mirror basic body (23) and at least one mirror holding section (25). The mirror basic body (23) has a mirror reflection surface (24) for illumination light (4). The mirror holding section (25) is integrally formed with the mirror basic body (23). The mirror substrate body (22) has at the mirror holding section (25) a holding section wall thickness (H) which differs from a further wall thickness (W) of the mirror substrate body (22). A collector mirror assembly includes a collector mirror basic body with a basic body reflection surface for illumination light and a supporting body to mount the basic mirror body. The mirror basic body is mounted floating relative to the supporting body. A collector mirror and a collector mirror assembly including a mirror supporting body result with an improved reproducibility of a position relationship between such collector mirror on the one hand and a light source and/or a mirror supporting body on the other.
G02B 7/182 - Mountings, adjusting means, or light-tight connections, for optical elements for prismsMountings, adjusting means, or light-tight connections, for optical elements for mirrors for mirrors
Some embodiments are related to a method of or apparatus for forming an image of a buried structure that includes: emitting primary charged particles from a source; receiving a plurality of secondary charged particles from a sample; and forming an image based on received secondary charged particles that have an energy within a first range.
Disclosed is a method of updating of a first model by training a second model, the first model relating to a first process range and trained using a first set of measurement signals relating to a first set of structures. The method comprises: obtaining a second set of measurement signals, the second set of measurement signals relating to a second set of structures comprising said first set of structures or a subset thereof; and training the second model using said second set of measurement signals and corresponding reference values for the parameter of interest as training data. The training comprises optimizing a cost function in terms of the second model while constraining the second model to infer values for the parameter of interest from the first set of measurement signals.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
47.
CHARGED-PARTICLE BEAM APPARATUS WITH LARGE FIELD-OF-VIEW AND METHODS THEREOF
Systems and methods of imaging a sample using a charged-particle beam apparatus are disclosed. The apparatus may include a charged-particle source configured to emit charged particles, an aperture plate configured to form a primary charged-particle beam along a primary optical axis from the emitted charged particles, a plurality of primary charged-particle beam deflectors configured to deflect the primary charged-particle beam to be incident on a surface of a sample to define a center of a field-of-view (FOV), and a controller including circuitry configured to apply a first excitation signal to a primary charged-particle beam deflector of the plurality of primary charged-particle beam deflectors to cause the primary charged-particle beam to scan a portion of the FOV of the sample, and apply a second excitation signal to cause the primary-charged particle beam deflector to compensate for an off-axis aberration of the primary charged-particle beam in the portion of the FOV.
A method for filtering false positives in a charged particle beam detector includes utilizing spatial information of detected charged particle landing events on the detector. A spatial distribution of detected charged particle landing events on the detector is compared to an expected distribution of landing events to determine the probability that the charged particle landing events are real.
A method of managing overlay impact caused by deformation of one or more encoder scales due to thermal impact of loading a reticle onto a reticle stage, the method comprising: obtaining data on a thermal profile of a reticle; simulating deformation of the one or more reticle stage encoder scales upon loading the reticle onto the reticle stage based on the thermal profile of the reticle to determine an impact the deformation will have on a patterning process; calculating, based on said simulation, a correction factor to correct the patterning process to manage the overlay impact, and applying correction factor to manage the overlay impact. Also provided is a method of imaging a substrate, a system, a device, and a non-transitory computer-readable medium configured to perform or execute such a method. Also disclosed is an apparatus for managing overlay impact as the use in a lithographic system, apparatus or method.
A method of measuring a tilt characteristic and a height characteristic in a charged particle system is disclosed. Time-division multiplexing may be employed to temporally separate measurements of a tilt characteristic and a height characteristic of a sample using one module. A first light beam may be reflected off a sample to measure a tilt characteristic and a second light beam may be reflected off a sample to measure a height characteristic. The first light beam may be triggered by an electrical signal associated with a falling edge of a clock signal and the second light beam may be triggered by an electrical signal associated with a rising edge of a clock signal.
A method of performing image position measurements. The method comprises performing an image position measurement in at least partial dependence upon an estimated image position and a measurement location uncertainty to determine a measured image position. The method comprises determining an image position error in at least partial dependence upon the measured image position 5 and the estimated image position. The method comprises determining an adapted measurement location uncertainty in at least partial dependence upon the image position error. The method comprises performing another image position measurement in at least partial dependence upon the adapted measurement location uncertainty.
An exposure apparatus comprising a substrate table and a projection system comprising: an optical element, an optical element support configured to support the optical element and a sensor configured to generate a signal indicative of an acceleration of the optical element support, a position control system configured to control a position of the target portion of the substrate, the position control system comprising: a dynamic sensitivity model defining the position of the optical element relative to the optical element support as a quasi static and dynamic function of the signal, and an optical sensitivity function defining a position error of the target portion as a function of an estimate of the position of the optical element relative to the optical element support.
Apparatus for and methods of combining multiple, i.e., two or more laser beams to reduce even to the point of elimination a transverse gap between the two or more beams caused, for example, by a space between a coating on a surface of the mirror and the edge of the mirror, or by optic geometry, is avoided.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
H01S 3/00 - Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
H01S 3/225 - Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
H01S 3/23 - Arrangement of two or more lasers not provided for in groups , e.g. tandem arrangement of separate active media
54.
SETUP AND CONTROL METHODS FOR A LITHOGRAPHIC PROCESS AND ASSOCIATED APPARATUSES
A method for performing a lithographic apparatus setup calibration and/or drift correction for a specific lithographic apparatus of a population of lithographic apparatuses to be used in a manufacturing process for manufacturing an integrated circuit extending across a plurality of layers on a substrate. The method includes determining a spatial error distribution of an apparatus parameter across spatial coordinates on the substrate for each lithographic apparatus of the population of lithographic apparatuses and/or each layer of the plurality of layers; determining a reference distribution by aggregating each of the spatial error distributions to optimize the reference distribution such that a spatial distribution of a parameter of interest of the manufacturing process is co-optimized across the population of lithographic apparatuses and/or plurality of layers; and using the reference distribution as a target distribution for the apparatus parameter for each lithographic apparatus and/or layer.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
55.
APPARATUS AND METHOD FOR DETERMINING AN ANGULAR REFLECTIVITY PROFILE
An apparatus comprising a multilayer structure configured to reflect electromagnetic radiation. The apparatus comprises a sensor configured to detect an angular distribution of the electromagnetic radiation after reflection from the multilayer structure. The apparatus comprises a processor configured to generate a first function at least partially based on the angular distribution of the electromagnetic radiation detected by the sensor. The processor is configured to compare the first function to a plurality of known functions associated with a plurality of known angular reflectivity profiles to identify a second function from the plurality of known functions that is most similar to the first function. The processor is configured to determine an angular reflectivity profile of the multilayer structure at least partially based on a known angular reflectivity profile that is associated with the second function.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
Described herein is a method of training a model configured to predict whether a feature associated with an imaged substrate will be defective after etching of the imaged substrate and determining etch conditions based on the trained model. The method includes obtaining, via a metrology tool, (i) an after development image of the imaged substrate at a given location, the after development image including a plurality of features, and (ii) an after etch image of the imaged substrate at the given location; and training, using the after development image and the after etch image, the model configured to determine defectiveness of a given feature of the plurality of features in the after development image. In an embodiment, the determining of defectiveness is based on comparing the given feature in the after development image with a corresponding etch feature in the after etch image.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
An extreme ultraviolet (EUV) system includes a vessel for generating radiation, a mirror, a gas flow assembly, and an exhaust. The system provides a first gas flow path in the vessel when the system is generating EUV radiation. The system provides a second gas flow path in the vessel when the system is not generating EUV radiation. The system can switch between the first gas flow path and the second gas flow path in a few milliseconds.
Existing lithography apparatuses use a reticle clamp to hold a reticle, and a chuck having actuators and position sensors, for a reticle stage. This requires substantial mass and infrastructure on reticle stage chucks. Advantageously, new reticle motion control systems and methods for a lithography apparatus are described. In contrast to existing lithography apparatuses, the new systems and methods utilize magnetically actuatable targets configured to be coupled to a reticle. Electromagnetic actuators are configured to apply magnetic forces to the magnetically actuatable targets for suspending the patterning device in space in a lithography apparatus, and actuating the magnetically actuatable targets to facilitate contactless precision movements of the reticle for semiconductor lithography.
A connection between an ion pump and a charged-particle beam apparatus includes a flexible conduit connecting the ion pump to the charged-particle beam apparatus. The flexible conduit may have a stiffness of less than 2E4 Newtons per meter. And the flexible conduit may be configured to maintain a vacuum level of less than 1E-6 Torr in the charged-particle beam apparatus.
Disclosed herein is a computer system configured to perform a method of determining operational data for a control system of a lithographic apparatus, the method comprising: determining initial operational data for use in performing exposure processes on a substrate; repeatedly changing the initial operational data and determining one or more performance metrics of the changed operational data so as to determine changes to the initial operational data that improve the one or more performance metrics; and using operational data with an applied change so as to improve one or more of the performance metrics; wherein: the operational data includes the route of the substrate for performing the exposure processes and the movement of the substrate along the route; and the applied change to the operational data includes a change to the route and/or a change to the acceleration of the substrate along part of the route.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
61.
CAPACITOR SYSTEM FOR A RADIATION SOURCE OF A LITHOGRAPHIC APPARATUS
A lithographic apparatus includes a projection system and an illumination system that includes an electrode and a set of capacitance structures. The electrode has an elongate shape. A length-wise strip of the electrode is defined from a first end of the elongate shape to a second end of the elongate shape. The length-wise strip includes electrical coupling positions including a first end coupling position proximal to the first end, a second end coupling position proximal to the second end, and a series of intermediary coupling positions between the first end coupling position and the second end coupling position. Each capacitance structure of the first set is coupled to a respective one of the electrical coupling positions. A capacitance value of a capacitance structure coupled to one of the intermediary coupling positions is less than a capacitance value of a capacitance structure coupled to the first end coupling position.
H01S 3/032 - Constructional details of gas laser discharge tubes for confinement of the discharge, e.g. by special features of the discharge constricting tube
H01S 3/038 - Electrodes, e.g. special shape, configuration or composition
H01J 7/46 - Structurally associated resonator having distributed inductance and capacitance
62.
MODULAR GAS PURIFICATION SYSTEM FOR RADIATION SOURCE
A radiation source includes a chamber and a gas purification apparatus. The chamber includes an irradiation region. The gas purification apparatus includes a gas pathway structure to direct an unpurified gas having contaminants. The gas pathway structure includes a first pathway section and a second pathway section. The first pathway section includes contaminant capture elements to capture the contaminant to produce purified gas. At least a portion of the contaminant capture elements are disposed along a plane that is substantially normal to a drift direction of the unpurified gas at the plane. The second pathway section includes gas cooling elements disposed downstream of the contaminant capture elements. The gas cooling elements cool the purified gas. An orientation of the second pathway structure is such that a drift direction of the purified gas is different from the drift direction of the unpurified gas.
A radiation source includes a matter delivery system, an illumination source, and a jet flow generator. The matter delivery system directs target material to a target region. The illumination source irradiates the target material at the target region to generate radiation as an output of the radiation source. The jet flow generator directs a jet flow of a gas to the target region. The jet flow generator includes a flow injector and a diffuser. The flow injector adjusts a velocity profile of the jet flow. The diffuser adjusts a spread of the jet flow.
Disclosed is a method of predicting an effect of a potential substrate table maintenance action relating to a substrate table of a lithographic apparatus. The method comprises obtaining per-layer substrate loading distortion status data relating to a distortion of a substrate or group of substrates resulting from loading the substrate onto said substrate table when exposing one or more layers; obtaining at least one per-layer sensitivity value describing a sensitivity of a substrate loading distortion induced error metric to said substrate loading distortion status data for one or more respective layers on said substrate; and determining the effect of a potential substrate table maintenance action on said substrate loading distortion induced error metric based on said per-layer substrate loading distortion status data and said at least one per-layer sensitivity value.
A clamping system is described. The clamping system includes a membrane that functions as an intermediate layer between a reticle (or a wafer) and a clamp in a lithography apparatus. This membrane can be replaced in the field if it experiences wear, for example, instead of having to replace permanent components of the clamp, which is far more difficult. Because the membrane's dimensions are similar to those of a typical reticle, the membrane can be replaced using an existing reticle handling system that is a part of the lithography apparatus. The membrane is relatively thin and compliant compared to the clamp and/or the reticle such that the membrane may be configured to first couple to the reticle and conform to a shape of the reticle, and then couple to the clamp. This way the membrane forms a known tunable interface configured for coupling the reticle to the clamp.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
66.
AUTOMATIC CORRECTION FOR HARDWARE-BASED SEM TOOL TIME OFFSET
A system and method for correction of image offsets in a multi-detector charged particle beam apparatus comprises a plurality of charged particle detectors and a hardware-based time offset correction system. The hardware-based time offset correction system is configured to correct a time difference among detection signals from the plurality of detectors based on a predetermined time offset. The predetermined time offset may be calibrated according to a calibration process.
A metrology method, and associated metrology apparatus, for determining one or more parameters of a periodic target on an object is disclosed. The periodic target is adjacent to a reference mark having a pitch equal to that of the periodic target. The method comprises projecting radiation onto the object such that a first portion of the radiation is incident on the periodic target and a second portion of the radiation is incident on the reference mark. The method further comprises measuring at least one interference pattern formed by contributions to a single diffraction order from both the first and second portions of radiation. The method further comprises determining the one or more parameters in dependence on the at least one interference pattern.
A lithographic apparatus is configured to perform a lithographic process. The lithographic apparatus comprises an illumination system configured to illuminate a reticle and a projection system configured to project an image of the reticle onto a substrate, wherein the illuminating and projection comprise the lithographic process. The lithographic apparatus further comprises a controller configured to reduce effects of non-uniformity of the reticle in the lithographic process. The controller is configured to determine a status of the reticle, identify a model from a plurality of models based on the status, and predict, using the identified model, a thermal deformation associated with the reticle.
The disclosure provides an electrical connector for high power in a low pressure environment, the connector comprising: a male connection part configured to be connected to a first power interface, a female connection part for receiving the male connection part and configured to be connected to a second power interface, a first conductive shield enclosing the male connection part and the female connection part, the first conductive shield being electrically connected to at least one of the male connection part and the female connection part, and an isolating part enclosing the first conductive shield.
H01R 13/53 - Bases or cases for heavy dutyBases or cases with means for preventing corona or arcing
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
H01R 43/26 - Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for engaging or disengaging the two parts of a coupling device
Systems and methods provide the ability to mitigate linear and/or offset coma present in an objective of a metrology tool. A method of reducing an effect of offset coma in a metrology apparatus includes rotating an objective lens element of the metrology apparatus until a best contrast for physically separated first and second portions of a metrology target is determined. A method of reducing an effect of linear coma in a metrology apparatus includes determining an amount of an axially symmetric coma aberration present in a lens system of the metrology device, and moving an optical element of the lens system in an axial z-direction to reduce the determined axially symmetric coma. A lens stop or other lens element may be moved in the z-direction to reduce coma. The two approaches may be combined.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
G03F 9/00 - Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
Disclosed is an imaging method comprising obtaining a set of primary deconvolution kernels or a set of impulse responses relating to an optical system used to capture said image; obtaining said image signal, said image signal being subject to one or more imaging effects including at least one or more non-isoplanatic imaging effects; performing a low-rank approximation on said set of primary deconvolution kernels or impulse responses to determine respectively a set of deconvolution modes or a set of impulse response modes, each deconvolution mode comprising a modal secondary deconvolution kernel and a modal weight function and each impulse response mode comprising a modal impulse response and a modal inverse weight function; obtaining at least approximated imaging effect-free object information related to said object by applying said modal secondary deconvolution kernels and modal weight functions or said modal impulse responses and modal inverse weight functions to said image signal.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
G01N 21/95 - Investigating the presence of flaws, defects or contamination characterised by the material or shape of the object to be examined
G06T 5/10 - Image enhancement or restoration using non-spatial domain filtering
Systems, non-transitory computer readable medium, and methods for determining one or more parameters used by an e-beam for an overlay measurement are disclosed. In some embodiments, the method comprises determining an acquisition time for the overlay measurement of a wafer stack based on a plurality of characteristics of the wafer stack and a plurality of backscattered electron (BSE) yields detected at a plurality of features on the wafer stack. The method also comprises determining the one or more parameters including a landing energy of the e-beam based on optimization of the acquisition time for the overlay measurement.
G01N 23/2251 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by measuring secondary emission from the material using electron or ion microprobes using incident electron beams, e.g. scanning electron microscopy [SEM]
H01J 37/28 - Electron or ion microscopesElectron- or ion-diffraction tubes with scanning beams
73.
METHOD OF FORECASTIG A DRIFT IN A PARAMETER OF INTEREST IN A SEMICONDUCTOR MANAUFACTURING PROCESS
Described is a method for predicting future evolution of a parameter of interest of a manufacturing process for manufacturing integrated circuits, the method comprising: obtaining metrology data relating to the parameter of interest; forecasting a first statistical characteristic of future values of the parameter of interest by applying a first parameter model to the metrology data and subsequently obtaining residuals data of the first parameter model; forecasting a second statistical characteristic of future values of the parameter of interest by applying a second parameter model to the residuals data of the first parameter model; and predicting the future evolution of the parameter of interest of the manufacturing process based on comparison of at least one of the first statistical characteristic and the second statistical characteristic to at least one reference value.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
G05B 13/04 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
74.
METHOD FOR CONTROLLING A MANUFACTURING APPARATUS AND ASSOCIATED APPARATUSES
Disclosed is a method for determining a correction for control of at least one manufacturing apparatus used in a manufacturing process for providing structures to at least one region on a substrate, said region comprising at least a first sub-region and a second sub-region in a common layer. The method comprises obtaining process error data relating to said manufacturing process when forming said first sub-region on a substrate, determining a first on-product error from said process error data, said on-product error relating to an error in formation of said first sub-region; and determining, from said on-product error, a correction for said manufacturing process when forming said second sub-region on said substrate.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
A colour selection module, for outputting radiation having a desired spectral bandwidth and central wavelength, comprises: a radiation input for receiving an input beam of radiation; a first dispersive arrangement for receiving the input beam of radiation from the radiation input and outputting a first dispersed beam of radiation; a second dispersive arrangement for receiving at least a portion of the first dispersed beam of radiation and outputting a second dispersed beam of radiation; a radiation output arrangement for receiving said second dispersed beam of radiation and outputting said second dispersed beam of radiation from the colour selection module, whereby rotation of the second dispersive arrangement changes a second direction of travel and a second spatial distribution of the second dispersed beam of radiation, and hence spectral bandwidth and central wavelength of said second dispersed beam of radiation received and output by the radiation output arrangement.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
Disclosed is a method of determining a correction for a measurement of at least one target on a substrate, the target comprising one or more parameter of interest sensitive sub-targets which are each sensitive to a parameter of interest and one or more parameter of interest insensitive sub-targets which are substantially less sensitive or insensitive to the parameter of interest, the method comprising. The method comprises obtaining a respective first measurement parameter value relating to each of said one or more parameter of interest sensitive sub-targets; obtaining a respective second measurement parameter value relating to each of said one or more parameter of interest insensitive sub-targets; and determining a correction for each said first measurement parameter value using said second measurement parameter values and/or detecting the presence of an effect likely to impact accuracy of first measurement parameter values from said second measurement parameter values.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
77.
WAFER EDGE INSPECTION OF CHARGED PARTICLE INSPECTION SYSTEM
An improved system is disclosed for wafer outer portion inspection in a charged particle beam system, such as a scanning electron microscope (SEM). The system uses multiple conductive rings around the wafer to correct an e-field distortion occurring at the wafer outer portion. The rings are applied with different complimentary voltages in order achieve a precise compensation of the e-field distortion.
H01J 37/02 - Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof Details
H01J 37/20 - Means for supporting or positioning the object or the materialMeans for adjusting diaphragms or lenses associated with the support
A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit forms plural and parallel images of one single electron source by deflecting plural beamlets of a parallel primary-electron beam therefrom, and one objective lens focuses the plural deflected beamlets onto a sample surface and forms plural probe spots thereon. A movable condenser lens is used to collimate the primary-electron beam and vary the currents of the plural probe spots, a pre-beamlet-forming means weakens the Coulomb effect of the primary-electron beam, and the source-conversion unit minimizes the sizes of the plural probe spots by minimizing and compensating the off-axis aberrations of the objective lens and condenser lens.
A method of calibrating analog-to-digital converters, ADCs, of a charged particle-optical device comprises: providing, for each of the ADCs, image data of charged particles detected from a sample output by the ADC; calculating, for each of the ADCs, at least one statistical value from a distribution of the image data output by the ADC; and changing at least one setting of at least one of the ADCs based on the calculated at least one statistical values so as to compensate for any mismatch between the at least one statistical value of the ADCs.
A method for determining an impact of a variation of a first pupil from a target pupil (for example a dipole) in a first direction within a two-dimensional field is disclosed. The method comprises carrying out the following for a plurality of positions within the field. First, reference and signal measurements are made of a quantity indicative of a position/orientation of an aerial image using a reference pupil and the first pupil. Second, a first error is determined as a difference between the reference measurement and the signal measurement. Third, the first error is corrected for a difference that is attributable to the difference between the reference pupil and the target pupil so as to form a second error. The second error quantifies the difference attributable to the variation of the first pupil from the target pupil across the field.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
A pellicle for EUV lithography includes a core layer having silicon and having at least one non-oxidised surface, and a cap layer at at least one major surface of the core layer. The cap layer includes carbon and/or boron. The cap layer may be removed before or during an exposure operation.
G03F 1/22 - Masks or mask blanks for imaging by radiation of 100 nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masksPreparation thereof
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
A target material generator includes a fluid flow path between reservoir system and a nozzle supply system, and a coupling assembly in the fluid flow path. The target material generator is a part of an extreme ultraviolet light source. The coupling assembly includes a first fitting coupled to a second fitting to thereby form a flow conduit along the fluid flow path, wherein a seal is formed between the first fitting and the second fitting, and a sleeve disposed along inner walls of the flow conduit and between the seal and the flow conduit such that a contaminant trap is formed between the sleeve and the seal.
A system and method for defect inspection using voltage contrast in a charged particle system are provided. Some embodiments of the system and method include positioning the stage at a first position to enable a first beam of the plurality of beams to scan a first surface area of the wafer at a first time to generate a first image associated with the first surface area; positioning the stage at a second position to enable a second beam of the plurality of beams to scan the first surface area at a second time to generate a second image associated with the first surface area; and comparing the first image with the second image to enable detecting whether a defect is identified in the first surface area of the wafer.
Disclosed herein is a method comprising: determining parameters of a recipe of charged particle beam inspection of a region on a sample, based on a second set of characteristics of the sample; inspecting the region using the recipe.
H01J 37/28 - Electron or ion microscopesElectron- or ion-diffraction tubes with scanning beams
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
85.
COOLING DEVICE FOR COOLING A POSITION-SENSITIVE COMPONENT OF A LITHOGRAPHY SYSTEM
A cooling device (200) for cooling a position-sensitive component (102) of a lithography system (1), comprising a cooling line (206) with a liquid chamber (218) for conducting a cooling liquid (112) to the position-sensitive component (102) and a gas chamber (220) for receiving a gas (222), and an elastic separating membrane (224) which is arranged inside the cooling line (206) and separates the gas chamber (220) from the liquid chamber (218).
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
There is provided a method of configuring a lithographic apparatus comprising illuminator optics for directing at least a portion of a radiation beam to an illumination region of a patterning device so as to impart a pattern to the radiation beam and form a patterned radiation beam, the method comprising: configuring the illuminator optics such that at least two different portions of the patterning device, differing at least in position along a scanning direction of said illumination region, receive radiation from different regions of the illuminator optics within a pupil plane associated with the illuminator optics.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
G02B 26/08 - Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
87.
ELECTRON ENERGY FLUCTUATION STABILIZING AND COMPENSATING METHODS AND TECHNIQUES FOR ELECTRON-BEAM SYSTEMS
A method of particle beam parameter variation compensation for image inspection and enhancement are disclosed. Embodiments of the disclosure may provide a charged-particle beam parameter variation compensation method to correct electron source and electron beamlet fluctuations. Some embodiments of the disclosure may provide a method of monitoring an electrical signal of an electron source in real-time for fluctuations outside a threshold value and applying an adjustment signal to a component of a charged-particle beam apparatus based on the monitored electrical signal. The fluctuations of an electron beamlet may result from fluctuations of the electron source. This real-time fluctuation data may be used to adjust an image to remove unwanted noise and enable improved inspection accuracy and associated improved accuracy of metrology measurements.
A method for determining a measurement recipe for measuring a parameter of interest from a compound structure on a substrate. The method includes obtaining first training data relating to measurements of reference targets, the targets including: parameter of interest targets, each parameter of interest target having an induced set value which is varied over the parameter of interest targets; and one or more isolated feature targets, each including repetitions of one or more features. Second training data is obtained, the second training data including compound structure measurement signals obtained from measurement of one or more instances of the compound structure. One or more machine learning models are trained using the first training data and second training data to infer a value for the parameter of interest from a measurement signal related to the compound structure corrected for a feature asymmetry contribution.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
An apparatus for adjusting the transmissivity of a pellicle membrane, the apparatus including an etching unit configured to etch material from the pellicle membrane, and a controller configured to control the etching unit to etch the pellicle membrane based on a predicted and/or observed wear pattern of the pellicle membrane. Also a method of adjusting the transmissivity of a pellicle membrane as well as a pellicle membrane, a pellicle assembly, and the use of the same.
G03F 1/62 - Pellicles or pellicle assemblies, e.g. having membrane on support framePreparation thereof
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
H01J 37/302 - Controlling tubes by external information, e.g. programme control
H01J 37/317 - Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. ion implantation
A lithographic apparatus includes a chamber that produces radiation. The chamber includes an internal wall having a surface facing into the chamber and a filter attached to the surface of the internal wall of the chamber. The filter includes a plurality of screens stacked on top of one another along a stacking direction that is perpendicular to the surface of the internal wall of the chamber on which the filter is disposed. The plurality of screens include a central region and an edge region surrounding the central region. A first separation between the central region and the surface of the internal wall of the chamber along the stacking direction is greater than a second separation between the edge region and the surface of the internal wall of the chamber along the stacking direction.
H01S 3/036 - Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering or replenishingMeans for circulating the gas, e.g. for equalising the pressure within the tube
H01S 3/104 - Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation in gas lasers
A lasing gas replenishment system for a discharge chamber in a deep ultraviolet radiation source in which an axial flow turbine is used to refresh lasing gas in the discharge chamber with a higher clearing ratio so that lasing gas in the discharge region may be replenished rapidly enough to support higher pulse repetition rates.
H01S 3/036 - Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering or replenishingMeans for circulating the gas, e.g. for equalising the pressure within the tube
92.
SYSTEM AND METHOD FOR OVERLAY METROLOGY WITH REDUCED COHERENCE AND SPECKLE CONTRAST
An infinite impulse response optical filter includes at least one N x N multimode optical coupler and one or more mode-scrambling loops. The at least one N x N multimode optical coupler has N input ports and N output ports. One of the N input ports is coupled to a laser source that generates a light beam. The at least one N x N multimode optical coupler splits the light beam into a plurality of sub-beams divided in an amplitude domain across the N output ports. One of the N output ports is coupled to a detection system. The one or more mode-scrambling loops includes a mode scrambler and couples one of the N output ports to one of the N input ports. The one or more mode-scrambling loops produce a temporal incoherence and a spatial incoherence that reduce a peak power and a speckle contrast of the light beam.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
A system includes an optical system, a reflective system, and a detection system. The optical system includes a lens element. The optical system generates a beam of radiation and directs the beam of radiation towards the reflective system. The reflective system directs the beam of radiation towards the lens element. The detection system receives scattered light from the lens element and directs the scattered light to an imaging sensor.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
G01N 21/94 - Investigating contamination, e.g. dust
94.
PASSIVE DUST TRAP, ILLUMINATION SYSTEM, AND LITHOGRAPHY SYSTEM
A system includes first and second sections. The first section includes an elongated plate including a squared edge, a tapered edge, a first surface, a second surface, and first and second extensions extending from the second surface. The second section includes first and second chambers with a dividing wall between the first and second chambers, the first chamber including a planar surface and the second chamber including a sloped surface disposed opposite the tapered edge. The system includes first and second end plates to secure the first section above the second section such that the dividing wall is interposed between the first and second extensions.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
A deep ultraviolet laser system includes a line narrowing module including a plurality of prisms such that an incoming laser beam from a laser first interacts with a first prism, then interacts with a second prism after the first prism. The second prism includes two different portions including a first portion designed to work with and enable higher bandwidths of the incoming laser beam and a second portion designed to work with and enable lower bandwidths of the incoming laser beam. The second prism is movable between a first position in which the laser beam interacts with the first portion and a second position in which the laser beam interacts with the first portion. The second prism is movable by translation using an activation mechanism controlled by a controller to vary a target bandwidth of the laser beam.
H01S 3/1055 - Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity one of the reflectors being constituted by a diffraction grating
96.
METHOD OF WAFER GROUNDING UTILIZING WAFER EDGE BACKSIDE COATING EXCLUSION AREA
Systems and methods are provided for grounding a wafer in a charged particle beam apparatus. The systems and methods include providing an exclusion area in a backside film on the wafer of sufficient size to allow an electrical connection between the wafer and an electrical contact of the charged particle beam apparatus. The systems and methods include contacting a pin body to a surface of the wafer, the wafer having a coating on the surface, and the pin body comprising a first tip and a second tip each extending from the pin body; wherein the contacting takes place at a first exclusion area of the coating by any one of the first tip, the second tip, or any combination thereof.
H01J 37/20 - Means for supporting or positioning the object or the materialMeans for adjusting diaphragms or lenses associated with the support
H01J 37/317 - Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. ion implantation
H01L 21/02 - Manufacture or treatment of semiconductor devices or of parts thereof
97.
METHODS RELATED TO AN AUTOENCODER MODEL OR SIMILAR FOR MANUFACTURING PROCESS PARAMETER ESTIMATION
A method for ordering and/or selection of latent elements for modeling low dimensional data within a latent space representation, the low dimensional data being a reduced dimensionality representation of input data as determined by a first model component of a model, comprising the steps of training said model and selecting one of said latent element selections based on said training, said training comprising: reducing a dimensionality of the input data to generate said low dimensional data in said latent space representation; training a second model component of said model for each of one or more latent element selections; and optimizing an approximation of the input data as output by said second model component for each said latent element selection, thereby ranking at least one of said plurality of latent elements in the latent space representation based on a contribution of each latent element to the input data.
A lithography system includes a light source. The light source generates radiation in a chamber, which includes a first electrode, a second electrode, and pre-ionization tube. A first surface of the first electrode and a first surface of the second electrode face inwards towards a discharge region. The pre-ionization tube can be adjacent to a second surface of either the first electrode or the second electrode. Altering the position of the pre-ionization tube can reduce acoustic effects in the chamber during discharge of the light source. The pre-ionization tube can be tilted by moving one end of the pre-ionization tube towards the discharge region.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
H01S 3/038 - Electrodes, e.g. special shape, configuration or composition
H01S 3/225 - Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
A light source for a lithography system includes an optical component and an aperture. The optical component includes a first side with first and second surfaces. The aperture is positioned on or adjacent to and parallel to the first surface of the first side of the prism. The aperture includes a first part and a second part. The first part of the aperture blocks light from entering the optical component, and can reflect a portion of an incoming beam towards a beam dump. The second part of the aperture allows a portion of a beam to enter and exit the first side of the optical component.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
A process for maintaining light sources includes obtaining one or more features of the light sources representing one or more operational aspects of the light sources stored over time; generating a decision tree, based on the one or more features, for classifying a given light source as either (1) no technical issue or (2) maintenance needed, the generating using the one or more features of the light sources to determine a split or splits for each of one or more levels by minimizing a hybrid cost function including a combination of (1) a first cost function minimized with increasing order (or orderliness) within resulting subsets and (2) one or more second cost functions minimized with increasing closeness to respective target parameters; applying the generated decision tree to a given light source; performing maintenance on the given light source when the given light source has been classified as maintenance needed.