An assembly for performing an additive manufacturing process includes a first material feed for dispensing a first material, a second material feed for dispensing a second material, a material combiner chamber, a first entry channel fluidly connecting the first material feed and the material combiner chamber, and a second entry channel fluidly connecting the second material feed and the material combiner chamber. The assembly further includes a pen tip for dispensing a material in the additive manufacturing process, the material comprising the first material and the second material, a valve having a rod, a first seal between the material combiner and the pen tip, and a first actuator for moving the rod back and forth along a longitudinal axis to open and close the first seal.
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
B29C 64/171 - Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects
B29C 48/16 - Articles comprising two or more components, e.g. co-extruded layers
B29C 48/25 - Component parts, details or accessoriesAuxiliary operations
B29C 64/00 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
An apparatus for use in 3D fabrication includes a heat sink, a melt tube extending through the heat sink, the melt tube having a first end and an opposite second end and adapted for melting filament or other material as the material is conveyed from the first end to the second end, a pen tip having an opening therein for ejecting melted material, the pen tip at the second end of the melt tube, and a pen tip holder for securely holding the pen tip during printing, the pen tip holder having a heater element associated therewith.
B33Y 30/00 - Apparatus for additive manufacturingDetails thereof or accessories therefor
B29C 48/285 - Feeding the extrusion material to the extruder
B29C 48/25 - Component parts, details or accessoriesAuxiliary operations
B29C 48/86 - Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
B29C 64/106 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
B29C 64/112 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
B29C 64/20 - Apparatus for additive manufacturingDetails thereof or accessories therefor
B29K 105/00 - Condition, form or state of moulded material
B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
An apparatus for use in 3D fabrication includes a heat sink, a melt tube extending through the heat sink, the melt tube having a first end and an opposite second end and adapted for melting filament or other material as the material is conveyed from the first end to the second end, a pen tip having an opening therein for ejecting melted material, the pen tip at the second end of the melt tube, and a pen tip holder for securely holding the pen tip during printing, the pen tip holder having a heater element associated therewith.
A method of building a three dimensional (3D) structure includes micro-dispensing a layer comprising a material using a syringe-based micro-dispensing tool, curing the layer, and repeating the steps of micro-dispensing and curing a plurality of times in order to build the three-dimensional structure. The material may be loaded with nano to micron sized particles, tubes, or strings.
A method of building a three dimensional (3D) structure includes micro-dispensing a layer comprising a material using a syringe-based micro-dispensing tool, curing the layer, and repeating the steps of micro-dispensing and curing a plurality of times in order to build the three-dimensional structure. The material may be loaded with nano to micron sized particles, tubes, or strings.
B29C 64/106 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
B29C 67/00 - Shaping techniques not covered by groups , or
B33Y 30/00 - Apparatus for additive manufacturingDetails thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
H05K 3/12 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using printing techniques to apply the conductive material
6.
Method for manufacturing 3D circuits from bare die or packaged IC chips by microdispensed interconnections
A method for manufacturing an electronic circuit in three-dimensional space provides for interconnecting electronic components within the circuit by directly writing conducting lines. The method may include observing a direct writing tool of a direct write system using a vision system, determining proper placement of the direct writing tool at least partially based on the step of observing, and directly writing conducting lines in three dimensions using the proper placement. The direct writing may be on a surface or in free space. The method may include stacking a plurality of chips to provide a stack having a top surface and edges extending away from the top and interconnecting connections of the chips by directly writing conducting lines along one of the edges.
B05D 5/12 - Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
B05D 3/00 - Pretreatment of surfaces to which liquids or other fluent materials are to be appliedAfter-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
C23C 16/52 - Controlling or regulating the coating process
H01L 23/00 - Details of semiconductor or other solid state devices
H01L 21/48 - Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the groups or
H01L 25/065 - Assemblies consisting of a plurality of individual semiconductor or other solid-state devices all the devices being of a type provided for in a single subclass of subclasses , , , , or , e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group
H05K 3/12 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using printing techniques to apply the conductive material
H05K 1/16 - Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
H05K 3/34 - Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
H01L 25/03 - Assemblies consisting of a plurality of individual semiconductor or other solid-state devices all the devices being of a type provided for in a single subclass of subclasses , , , , or , e.g. assemblies of rectifier diodes
7.
Method for manufacturing 3D circuits from bare die or packaged IC chips by microdispensed interconnections
A method for manufacturing an electronic circuit in three-dimensional space provides for interconnecting electronic components within the circuit by directly writing conducting lines. The method may include observing a direct writing tool of a direct write system using a vision system, determining proper placement of the direct writing tool at least partially based on the step of observing, and directly writing conducting lines in three dimensions using the proper placement. The direct writing may be on a surface or in free space. The method may include stacking a plurality of chips to provide a stack having a top surface and edges extending away from the top and interconnecting connections of the chips by directly writing conducting lines along one of the edges.
B05D 5/12 - Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
B05D 3/00 - Pretreatment of surfaces to which liquids or other fluent materials are to be appliedAfter-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
8.
DISPENSING PATTERNS INCLUDING LINES AND DOTS AT HIGH SPEEDS
A method for depositing a material on a substrate includes providing an apparatus with at least one material dispenser. The method further includes positioning the pen tip at a predetermined writing gap where the predetermined writing gap is a distance of more than 75 micrometers above the substrate. The method also provides for controlling velocity of the flow of material through the outlet and dispense speed based on dispensed line height and dispensed line width parameters. An apparatus for depositing a material on a substrate is also provided which may have one or more mechanical vibrators, a pen tip with a hydrophobic surface, or multiple nozzles and pen tips on a single pump.
B05D 1/26 - Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
9.
Dispensing patterns including lines and dots at high speeds
A method for depositing a material on a substrate includes providing an apparatus with at least one material dispenser. The method further includes positioning the pen tip at a predetermined writing gap where the predetermined writing gap is a distance of more than 75 micrometers above the substrate. The method also provides for controlling velocity of the flow of material through the outlet and dispense speed based on dispensed line height and dispensed line width parameters. An apparatus for depositing a material on a substrate is also provided which may have one or more mechanical vibrators, a pen tip with a hydrophobic surface, or multiple nozzles and pen tips on a single pump.
H05K 3/12 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using printing techniques to apply the conductive material
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components