Multiple redundant harmonic drive motors on a rotor head actuate the angle of attack of rotor blades at the rotor blade roots, providing collective control that, in combination with a system for providing cyclic control on the rotor blades, eliminates the need for a swashplate, thereby advantageously reducing the weight and maintenance cost of a helicopter, increasing its reliability, and reducing its vulnerability to ballistic attack.
B64C 11/06 - Blade mountings for variable-pitch blades
B64C 27/68 - Transmitting means, e.g. interrelated with initiating means or means acting on blades using electrical energy, e.g. having electrical power amplification
2.
Galvanic vestibular stimulation (GVS) systems, devices and methods
The present invention is directed to systems, devices and methods for stimulating perceived motion, and more particularly to stimulating perceived motion in three axes. The invention is further directed to stimulating such perceived motion when accompanied by visual stimuli. The invention is further directed to utilizing as few as two distinct pairs of electrodes to administer electrical stimulation to generate the perceived motion. The invention is further directed to systems, devices and methods to minimize side effects while utilizing electrical currents create the perceived motion.
The present invention relates to a sensor suite comprising at least one sensor. More particularly, the present invention relates to a sensor suite for measuring absolute and/or relative position, location and orientation of an object on or in which the sensor suite is employed. The present invention further relates to improved, novel sensor types for use in the sensor suite. More particularly, the present invention relates to an improved, novel magnetometer that is self-calibrating and scalable. Still more particularly, the present invention relates to such a magnetometer that is miniaturized. Further embodiments of the present invention relate to systems and methods for providing location and guidance, and more particularly for providing location and guidance in environments where global position systems (GPS) are unavailable or unreliable (GPS denied and/or degraded environments).
Methods involve using a guided munition (e.g., a mortar round or a grenade) that utilizes deployable flow effectors, activatable flow effectors and/or active flow control devices to extend the range and enhance the precision of traditional unguided munitions without increasing the charge needed for launch. Sensors such as accelerometers, magnetometers, IR sensors, rate gyros, and motor controller sensors feed signals into a controller which then actuates or deploys the flow effectors/flow control devices to achieve the enhanced characteristics.
Inertial measurement units (IMUs) and methods with adaptations to eliminate or minimize sensor error, offset, or bias shift are presented. More particularly, the IMUs and methods for gun-fired projectiles herein are particularly adapted to accurately measure forces and to prevent or minimize the error, offset, or bias shift associated with events exhibiting high g shock, and/or high levels of vibration, and/or rotation. Even more particularly, the IMUs and methods herein utilize novel IMU packaging adapted to prevent or minimize sensor error, offset, or bias shift, and recalibration adaptations and methods adapted to correct or reset the error, offset, or bias shift from such an event. The IMUs are adapted to provide accurate measurements prior to, during and after such event, and to provide continuous accurate measurements during flight of gun-fired projectiles.
G01B 11/25 - Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. moiré fringes, on the object
F42B 15/01 - Arrangements thereon for guidance or control
G01C 21/16 - Navigation; Navigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
The present invention is directed to a physiological recording device and, more particularly, to a physiological recording device that can be used without skin preparation or the use of electrolytic gels. The invention is further directed to an encouragement ring which stabilizes and helps situate the physiological recording device on a subject's skin to help provide a better electrical signal, increase surface area, and reduce and minimize noise and artifacts during the process of recording or monitoring a physiological signal. The invention is still further directed to surface features on a surface of the physiological recording device with a size and shape that will not substantially bend or break, which limits the depth of application of the recording device, and/or anchors the recording device during normal application. The invention is even further directed to a method for manufacturing a physiological recording device, and minimizing cost of manufacture.
Hat, helmet, and other headgear apparatus includes dry electrophysiological electrodes and, optionally, other physiological and/or environmental sensors to measure signals such as ECG from the head of a subject. Methods of use of such apparatus to provide fitness, health, or other measured or derived, estimated, or predicted metrics are also disclosed.
A61B 5/1455 - Measuring characteristics of blood in vivo, e.g. gas concentration, pH-value using optical sensors, e.g. spectral photometrical oximeters
A61B 5/18 - Devices for psychotechnics; Testing reaction times for vehicle drivers
A61B 3/113 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions for determining or recording eye movement
A61B 5/0245 - Measuring pulse rate or heart rate using sensing means generating electric signals
A61B 5/08 - Measuring devices for evaluating the respiratory organs
A61B 5/11 - Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
A61B 5/145 - Measuring characteristics of blood in vivo, e.g. gas concentration, pH-value
A closed, self-contained ballistic apogee detection module for use in a projectile, such as a rocket, mortar round, or artillery round, fuses data from multiple built-in sensors, such as an accelerometer, a magnetometer, and a gyroscope, and processes the data using a microprocessor through a custom quaternion extended Kalman filter to provide accurate state and orientation information about the projectile so as to accurately predict apogee. The module outputs a signal indicating apogee detection or prediction which they projectile uses to initiate fuze arming, targeting control, airbody transformation, maneuvering, flow effector deployment or activation, payload exposure or deployment, and/or other mission activity. Because the system and method of the invention does not rely on external environmental data to detect apogee, it need not use a pressure sensor and can be completely sealed in and closed without requiring access to air from outside the projectile for barometric readings.
The present invention relates to projectiles and munitions, and more specifically to such in flight. More particularly the present invention relates to projectiles and munitions in flight equipped with one or more image sensors adapted for acquiring image data of the environment surrounding the projection or munition in flight. The present invention further relates to systems and methods for correcting or stabilizing motion effects and artifacts present in the image data related to the movement or motion of the projectile or munition in flight, including spin or rotation of the projectile or munition.
A wearable device for comprehensive bio-monitoring of physiologic metrics to determine metabolic, pulmonary and cardiac function and oxygen saturation measurements from breathing mask apparatuses. The device non-invasively monitors the physiologic profile of the subject, and is capable of detecting physiologic changes, predicting onset of symptoms, and alerting the wearer or another person or system. In some embodiments, the device comprises both a wearable sensor suite and a portable gas composition and flow analysis system. In preferred embodiments, it comprises a miniaturized non-invasive sensor suite for detecting physiologic changes to detect dangerous breathing or other health conditions. The acquired physiologic profile is used to generate alarms or warnings based on detectable physiological changes, to adjust gas delivery to the subject, alter mission profiles, or to transfer control of the craft or other duties away from a debilitated subject. The device is compact, portable, vehicle independent and non-encumbering to the subject.
A projectile incorporates one or more spoiler-tabbed spinning disks to effect flow around the projectile and thus impart steering forces and/or moments. The spoiler tabs may be deployed only during steering phases of travel thus minimizing the drag penalty associated with steering systems. The disks are driven by motors and informed and controlled by sensors and electronic control systems. The spoiler tabs protrude through the surface of the projectile only for certain angles of spin of the spinning disk. For spin-stabilized projectiles, the disks spin at substantially the same rate as the projectile, but the disks may function in fin-stabilized projectiles as well. Any number of such spinning flow effector disks may be incorporated in a projectile, with the manner of functional coordination differing slightly for even and odd numbers of disks.
B64C 13/00 - Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
F42B 10/00 - Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
F42B 10/14 - Stabilising arrangements using fins spread or deployed after launch, e.g. after leaving the barrel
12.
Head-mounted physiological signal monitoring system, devices and methods
Eyewear apparatus includes dry electrophysiological electrodes and, optionally, other physiological and/or environmental sensors to measure signals such as EOG and ECG from the head of a subject. Methods of use of such apparatus to provide fitness, health, or other measured or derived, estimated, or predicted metrics are also disclosed.
A61B 5/1455 - Measuring characteristics of blood in vivo, e.g. gas concentration, pH-value using optical sensors, e.g. spectral photometrical oximeters
A42B 1/242 - Means for mounting detecting, signalling or lighting devices
A42B 3/04 - Parts, details or accessories of helmets
A61B 5/0205 - Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
A61B 5/18 - Devices for psychotechnics; Testing reaction times for vehicle drivers
A61B 5/0245 - Measuring pulse rate or heart rate using sensing means generating electric signals
A61B 5/08 - Measuring devices for evaluating the respiratory organs
A61B 3/113 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions for determining or recording eye movement
A61B 5/11 - Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
Systems and methods for providing location and guidance are herein described, and more particularly for providing location and guidance in environments where global position systems (GPS) are unavailable or unreliable (GPS denied and/or degraded environments). The systems and methods herein utilize inertial measurement units (IMUs) to provide such location and guidance. More particularly, the systems and methods herein utilize a series of low-accuracy or low-resolution IMUs, in combination, to provide high-accuracy or high-resolution location and guidance results.
G01C 21/16 - Navigation; Navigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
F42B 15/01 - Arrangements thereon for guidance or control
Presented herein are systems and methods using inertial measurement units (IMUs) for providing location and guidance, and more particularly for providing location and guidance in environments where global position systems (GPS) are unavailable or unreliable (GPS denied and/or degraded environments), and for such location and guidance being provided to projectiles, munitions, or rounds that are released, fired, or deployed from vehicles or weapons systems. More particularly, this disclosure relates to the use of a series of low-accuracy or low-resolution IMUs, in combination, to provide high-accuracy or high-resolution location and guidance results. This further relates to an electronics-control system for handing off control of the measurement and guidance of a body in flight between groups or subgroups of IMUs to alternate between high dynamic range/lower resolution and lower dynamic range/higher resolution measurement and guidance as the environment dictates.
G01C 25/00 - Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
G01C 21/16 - Navigation; Navigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
F42B 15/01 - Arrangements thereon for guidance or control
The present invention is a wearable device for comprehensive bio-monitoring of physiologic metrics to determine metabolic, pulmonary and cardiac function and oxygen saturation measurements from breathing mask apparatuses. The device non-invasively monitors the physiologic profile of the subject, and is capable of detecting physiologic changes, predicting onset of symptoms, and alerting the wearer or another person or system. In some embodiments, the device comprises both a wearable sensor suite and a portable gas composition and flow analysis system. In preferred embodiments, it comprises a miniaturized non-invasive sensor suite for detecting physiologic changes to detect dangerous breathing or other health conditions. The system utilizes advanced fast-response sensors with improved efficiency and lifespan, and provides rapid analysis for substantially real-time monitoring of the subject's present condition to predict, mitigate and/or prevent the onset of dangerous conditions.
The present invention relates to a sensor suite comprising at least one sensor. More particularly, the present invention relates to a sensor suite for measuring absolute and/or relative position, location and orientation of an object on or in which the sensor suite is employed. The present invention further relates to improved, novel sensor types for use in the sensor suite. More particularly, the present invention relates to an improved, novel magnetometer that is self-calibrating and scalable. Still more particularly, the present invention relates to such a magnetometer that is miniaturized. Further embodiments of the present invention relate to systems and methods for providing location and guidance, and more particularly for providing location and guidance in environments where global position systems (GPS) are unavailable or unreliable (GPS denied and/or degraded environments).
Inertial measurement units (IMUs) and methods with adaptations to eliminate or minimize sensor error, offset, or bias shift. More particularly, such IMUs and methods for gun-fired projectiles and particularly adapted to accurately measure forces and to prevent or minimize the error, offset, or bias shift associated with events exhibiting high g shock, and/or high levels of vibration, and/or rotation. Even more particularly, such IMUs and methods utilizing novel IMU packaging adapted to prevent or minimize sensor error, offset, or bias shift, and recalibration adaptations and methods adapted to correct or reset the error, offset, or bias shift from such an event. Ultimately relates to IMUs that are adapted to provide accurate measurements prior to, during and after such event, and to provide continuous accurate measurements during flight of gun-fired projectiles.
G01C 25/00 - Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
G01C 21/16 - Navigation; Navigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
F42B 15/01 - Arrangements thereon for guidance or control
Earphone apparatus includes dry electrophysiological electrodes and, optionally, other physiological and/or environmental sensors to measure signals such as ECG from the head of a subject. Methods of use of such apparatus to provide fitness, health, or other measured or derived, estimated, or predicted metrics are also disclosed.
A wearable device for comprehensive bio-monitoring of physiologic metrics to determine metabolic, pulmonary and cardiac function and oxygen saturation measurements from breathing mask apparatuses. The device non-invasively monitors the physiologic profile of the subject, and is capable of detecting physiologic changes, predicting onset of symptoms, and alerting the wearer or another person or system. In some embodiments, the device comprises both a wearable sensor suite and a portable gas composition and flow analysis system. In preferred embodiments, it comprises a miniaturized non-invasive sensor suite for detecting physiologic changes to detect dangerous breathing or other health conditions. The acquired physiologic profile is used to generate alarms or warnings based on detectable physiological changes, to adjust gas delivery to the subject, alter mission profiles, or to transfer control of the craft or other duties away from a debilitated subject. The device is compact, portable, vehicle independent and non-encumbering to the subject.
Methods involve using a guided munition (e.g., a mortar round or a grenade) that utilizes deployable flow effectors, activatable flow effectors and/or active flow control devices to extend the range and enhance the precision of traditional unguided munitions without increasing the charge needed for launch. Sensors such as accelerometers, magnetometers, IR sensors, rate gyros, and motor controller sensors feed signals into a controller which then actuates or deploys the flow effectors/flow control devices to achieve the enhanced characteristics.
The present invention relates to projectiles and munitions, and more specifically to such in flight. More particularly the present invention relates to projectiles and munitions in flight equipped with one or more image sensors adapted for acquiring image data of the environment surrounding the projection or munition in flight. The present invention further relates to systems and methods for correcting or stabilizing motion effects and artifacts present in the image data related to the movement or motion of the projectile or munition in flight, including spin or rotation of the projectile or munition.
The present invention is directed to systems, devices and methods for stimulating perceived motion, and more particularly to stimulating perceived motion in three axes. The invention is further directed to stimulating such perceived motion when accompanied by visual stimuli. The invention is further directed to utilizing as few as two distinct pairs of electrodes to administer electrical stimulation to generate the perceived motion. The invention is further directed to systems, devices and methods to minimize side effects while utilizing electrical currents create the perceived motion.
Multiple redundant harmonic drive motors on a rotor head actuate the angle of attack of rotor blades at the rotor blade roots, providing collective control that, in combination with a system for providing cyclic control on the rotor blades, eliminates the need for a swashplate, thereby advantageously reducing the weight and maintenance cost of a helicopter, increasing its reliability, and reducing its vulnerability to ballistic attack.
B64C 11/06 - Blade mountings for variable-pitch blades
B64C 27/68 - Transmitting means, e.g. interrelated with initiating means or means acting on blades using electrical energy, e.g. having electrical power amplification
24.
Dynamic magnetic vector fluxgate magnetometer and methods of using
The present invention relates to a sensor suite comprising at least one sensor. More particularly, the present invention relates to a sensor suite for measuring absolute and/or relative position, location and orientation of an object on or in which the sensor suite is employed. The present invention further relates to improved, novel sensor types for use in the sensor suite. More particularly, the present invention relates to an improved, novel magnetometer that is self-calibrating and scalable. Still more particularly, the present invention relates to such a magnetometer that is miniaturized. Further embodiments of the present invention relate to systems and methods for providing location and guidance, and more particularly for providing location and guidance in environments where global position systems (GPS) are unavailable or unreliable (GPS denied and/or degraded environments).
Eyewear apparatus includes dry electrophysiological electrodes and, optionally, other physiological and/or environmental sensors to measure signals such as EOG and ECG from the head of a subject. Methods of use of such apparatus to provide fitness, health, or other measured or derived, estimated, or predicted metrics are also disclosed.
Hat, helmet, and other headgear apparatus includes dry electrophysiological electrodes and, optionally, other physiological and/or environmental sensors to measure signals such as ECG from the head of a subject. Methods of use of such apparatus to provide fitness, health, or other measured or derived, estimated, or predicted metrics are also disclosed.
A61B 5/1455 - Measuring characteristics of blood in vivo, e.g. gas concentration, pH-value using optical sensors, e.g. spectral photometrical oximeters
A42B 1/242 - Means for mounting detecting, signalling or lighting devices
A42B 3/04 - Parts, details or accessories of helmets
A61B 5/0205 - Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
A61B 5/18 - Devices for psychotechnics; Testing reaction times for vehicle drivers
A61B 5/0245 - Measuring pulse rate or heart rate using sensing means generating electric signals
A61B 5/08 - Measuring devices for evaluating the respiratory organs
A61B 3/113 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions for determining or recording eye movement
A61B 5/11 - Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
A wearable device for comprehensive bio-monitoring of physiologic metrics to determine metabolic, pulmonary and cardiac function and oxygen saturation measurements from breathing mask apparatuses. The device non-invasively monitors the physiologic profile of the subject, and is capable of detecting physiologic changes, predicting onset of symptoms, and alerting the wearer or another person or system. In some embodiments, the device comprises both a wearable sensor suite and a portable gas composition and flow analysis system. In preferred embodiments, it comprises a miniaturized non-invasive sensor suite for detecting physiologic changes to detect dangerous breathing or other health conditions. The acquired physiologic profile is used to generate alarms or warnings based on detectable physiological changes, to adjust gas delivery to the subject, alter mission profiles, or to transfer control of the craft or other duties away from a debilitated subject. The device is compact, portable, vehicle independent and non-encumbering to the subject.
The present invention relates to the control of munitions, missiles and projectiles, in flight. The present invention further relates to systems and methods for control of munitions, missiles and projectiles in flight with the use of activatable or deployable flow effectors that remain stowed or inactive during launch or firing, and can be actuated after launch or firing on demand. More specifically, the present invention relates to systems and methods for control of munitions, missiles, and projectiles by activating and/or deactivating a control actuation system (CAS) based on measurements of an inertial measurement unit (IMU) and sensors integrated into such IMU, the IMU and sensors being at least part of a configurable guidance sensor suite (CGSS).
A closed, self-contained ballistic apogee detection module for use in a projectile, such as a rocket, mortar round, or artillery round, fuses data from multiple built-in sensors, such as an accelerometer, a magnetometer, and a gyroscope, and processes the data using a microprocessor through a custom quaternion extended Kalman filter to provide accurate state and orientation information about the projectile so as to accurately predict apogee. The module outputs a signal indicating apogee detection or prediction which they projectile uses to initiate fuze arming, targeting control, airbody transformation, maneuvering, flow effector deployment or activation, payload exposure or deployment, and/or other mission activity. Because the system and method of the invention does not rely on external environmental data to detect apogee, it need not use a pressure sensor and can be completely sealed in and closed without requiring access to air from outside the projectile for barometric readings.
The present invention relates to systems and methods for providing location and guidance, and more particularly for providing location and guidance in environments where global position systems (GPS) are unavailable or unreliable (GPS denied and/or degraded environments). The present invention further relates to systems and methods for using inertial measurement units IMUs to provide location and guidance. More particularly, the present invention relates to the use of a series of low-accuracy or low-resolution IMUs, in combination, to provide high-accuracy or high-resolution location and guidance results. The present invention further relates to an electronics-control system for handing off control of the measurement and guidance of a body in flight between groups or subgroups of IMUs to alternate between high dynamic range/lower resolution and lower dynamic range/higher resolution measurement and guidance as the environment dictates.
F42B 15/01 - Arrangements thereon for guidance or control
G01C 21/16 - Navigation; Navigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
The present invention relates to an electrode harness and more particularly to an electrode harness with various features, which enhance the use and performance of the electrode harness. The present invention further relates to a method of taking biopotential measurements. The electrode harness and methods of the present invention allow for use with most applications where biopotential measurements are taken. The electrode harness can be used in ECG (or EKG), EEG, EMG, and other such biopotential measurement applications. Because of the versatility of various embodiments of the present invention, preferably the electrode harness can be adjusted for different applications or for application to various sized and shaped subjects. The electrode harness is further preferably part of a system, which includes either wireless or tethered bridges between the electrode harness and a monitor, and preferably includes various forms of processors for analyzing the biopotential signal.
A projectile incorporates one or more spoiler-tabbed spinning disks to effect flow around the projectile and thus impart steering forces and/or moments. The spoiler tabs may be deployed only during steering phases of travel thus minimizing the drag penalty associated with steering systems. The disks are driven by motors and informed and controlled by sensors and electronic control systems. The spoiler tabs protrude through the surface of the projectile only for certain angles of spin of the spinning disk. For spin-stabilized projectiles, the disks spin at substantially the same rate as the projectile, but the disks may function in fin-stabilized projectiles as well. Any number of such spinning flow effector disks may be incorporated in a projectile, with the manner of functional coordination differing slightly for even and odd numbers of disks.
B64C 13/00 - Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
F42B 10/00 - Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
F42B 10/14 - Stabilising arrangements using fins spread or deployed after launch, e.g. after leaving the barrel
33.
Methods for extended-range, enhanced-precision gun-fired rounds using g-hardened flow control systems
Methods involve using a guided munition (e.g., a mortar round or a grenade) that utilizes deployable flow effectors, activatable flow effectors and/or active flow control devices to extend the range and enhance the precision of traditional unguided munitions without increasing the charge needed for launch. Sensors such as accelerometers, magnetometers, IR sensors, rate gyros, and motor controller sensors feed signals into a controller which then actuates or deploys the flow effectors/flow control devices to achieve the enhanced characteristics.
The present invention relates to projectiles and munitions, and more specifically to such in flight. More particularly the present invention relates to projectiles and munitions in flight equipped with one or more image sensors adapted for acquiring image data of the environment surrounding the projection or munition in flight. The present invention further relates to systems and methods for correcting or stabilizing motion effects and artifacts present in the image data related to the movement or motion of the projectile or munition in flight, including spin or rotation of the projectile or munition.
The present invention relates to systems and methods for providing location and guidance, and more particularly for providing location and guidance in environments where global position systems (GPS) are unavailable or unreliable (GPS denied and/or degraded environments). The present invention further relates to systems and methods for using inertial measurement units IMUs to provide location and guidance. More particularly, the present invention relates to the use of a series of low-accuracy or low-resolution IMUs, in combination, to provide high-accuracy or high-resolution location and guidance results.
F42B 15/01 - Arrangements thereon for guidance or control
G01C 21/16 - Navigation; Navigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
The present invention is directed to a physiological recording device and, more particularly, to a physiological recording device that can be used without skin preparation or the use of electrolytic gels. The invention is further directed to an encouragement ring which stabilizes and helps situate the physiological recording device on a subject's skin to help provide a better electrical signal, increase surface area, and reduce and minimize noise and artifacts during the process of recording or monitoring a physiological signal. The invention is still further directed to surface features on a surface of the physiological recording device with a size and shape that will not substantially bend or break, which limits the depth of application of the recording device, and/or anchors the recording device during normal application. The invention is even further directed to a method for manufacturing a physiological recording device, and minimizing cost of manufacture.
Earphone apparatus includes dry electrophysiological electrodes and, optionally, other physiological and/or environmental sensors to measure signals such as ECG from the head of a subject. Methods of use of such apparatus to provide fitness, health, or other measured or derived, estimated, or predicted metrics are also disclosed.
The present invention relates to a sensor suite comprising at least one sensor. More particularly, the present invention relates to a sensor suite for measuring absolute and/or relative position, location and orientation of an object on or in which the sensor suite is employed. The present invention further relates to improved, novel sensor types for use in the sensor suite. More particularly, the present invention relates to an improved, novel magnetometer that is self-calibrating and scalable. Still more particularly, the present invention relates to such a magnetometer that is miniaturized. Further embodiments of the present invention relate to systems and methods for providing location and guidance, and more particularly for providing location and guidance in environments where global position systems (GPS) are unavailable or unreliable (GPS denied and/or degraded environments).
Hat, helmet, and other headgear apparatus includes dry electrophysiological electrodes and, optionally, other physiological and/or environmental sensors to measure signals such as ECG from the head of a subject. Methods of use of such apparatus to provide fitness, health, or other measured or derived, estimated, or predicted metrics are also disclosed.
A61B 5/00 - Measuring for diagnostic purposes ; Identification of persons
A61B 5/1455 - Measuring characteristics of blood in vivo, e.g. gas concentration, pH-value using optical sensors, e.g. spectral photometrical oximeters
A61B 5/0496 - Electro-oculography, e.g. detecting nystagmus
A61B 5/18 - Devices for psychotechnics; Testing reaction times for vehicle drivers
A61B 3/113 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions for determining or recording eye movement
A61B 5/11 - Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
A61B 5/0245 - Measuring pulse rate or heart rate using sensing means generating electric signals
A61B 5/145 - Measuring characteristics of blood in vivo, e.g. gas concentration, pH-value
A61B 5/08 - Measuring devices for evaluating the respiratory organs
40.
Biometric and environmental monitoring and control system
The present invention is a wearable device for comprehensive bio-monitoring of physiologic metrics to determine metabolic, pulmonary and cardiac function and oxygen saturation measurements from breathing mask apparatuses. The device non-invasively monitors the physiologic profile of the subject, and is capable of detecting physiologic changes, predicting onset of symptoms, and alerting the wearer or another person or system. In some embodiments, the device comprises both a wearable sensor suite and a portable gas composition and flow analysis system. In preferred embodiments, it comprises a miniaturized non-invasive sensor suite for detecting physiologic changes to detect dangerous breathing or other health conditions. The system utilizes advanced fast-response sensors with improved efficiency and lifespan, and provides rapid analysis for substantially real-time monitoring of the subject's present condition to predict, mitigate and/or prevent the onset of dangerous conditions.
The present invention relates to projectiles and munitions, and more specifically to such in flight. More particularly the present invention relates to projectiles and munitions in flight equipped with one or more image sensors adapted for acquiring image data of the environment surrounding the projection or munition in flight. The present invention further relates to systems and methods for correcting or stabilizing motion effects and artifacts present in the image data related to the movement or motion of the projectile or munition in flight, including spin or rotation of the projectile or munition.
The present invention is directed to systems, devices and methods for stimulating perceived motion, and more particularly to stimulating perceived motion in three axes. The invention is further directed to stimulating such perceived motion when accompanied by visual stimuli. The invention is further directed to utilizing as few as two distinct pairs of electrodes to administer electrical stimulation to generate the perceived motion. The invention is further directed to systems, devices and methods to minimize side effects while utilizing electrical currents create the perceived motion.
A wearable device for comprehensive bio-monitoring of physiologic metrics to determine metabolic, pulmonary and cardiac function and oxygen saturation measurements from breathing mask apparatuses. The device non-invasively monitors the physiologic profile of the subject, and is capable of detecting physiologic changes, predicting onset of symptoms, and alerting the wearer or another person or system. In some embodiments, the device comprises both a wearable sensor suite and a portable gas composition and flow analysis system. In preferred embodiments, it comprises a miniaturized non-invasive sensor suite for detecting physiologic changes to detect dangerous breathing or other health conditions. The acquired physiologic profile is used to generate alarms or warnings based on detectable physiological changes, to adjust gas delivery to the subject, alter mission profiles, or to transfer control of the craft or other duties away from a debilitated subject. The device is compact, portable, vehicle independent and non-encumbering to the subject.
A projectile incorporates one or more spoiler-tabbed spinning disks to effect flow around the projectile and thus impart steering forces and/or moments. The spoiler tabs may be deployed only during steering phases of travel thus minimizing the drag penalty associated with steering systems. The disks are driven by motors and informed and controlled by sensors and electronic control systems. The spoiler tabs protrude through the surface of the projectile only for certain angles of spin of the spinning disk. For spin-stabilized projectiles, the disks spin at substantially the same rate as the projectile, but the disks may function in fin-stabilized projectiles as well. Any number of such spinning flow effector disks may be incorporated in a projectile, with the manner of functional coordination differing slightly for even and odd numbers of disks.
F42B 10/00 - Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
B64C 13/00 - Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
45.
Multi-IMU guidance measurement and control system with handshake capability to refine guidance control in response to changing conditions
Systems and methods for providing location and guidance, and more particularly for providing location and guidance in environments where global position systems (GPS) are unavailable or unreliable (GPS denied and/or degraded environments) utilizing inertial measurement units IMUs to provide such location and guidance. A series of low-accuracy or low-resolution IMUs, in combination, are utilized to provide high-accuracy or high-resolution location and guidance results along with an electronics-control system for handing off control of the measurement and guidance of a body in flight between groups or subgroups of IMUs to alternate between high dynamic range/lower resolution and lower dynamic range/higher resolution measurement and guidance as the environment dictates.
G01C 21/16 - Navigation; Navigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
F42B 15/01 - Arrangements thereon for guidance or control
Systems and methods for providing location and guidance, and more particularly for providing location and guidance in environments where global position systems (GPS) are unavailable or unreliable (GPS denied and/or degraded environments), utilizing inertial measurement units (IMUs) to provide such location and guidance. A series of low-accuracy or low-resolution IMUs, in combination, are utilized to provide high-accuracy or high-resolution location and guidance results.
G01C 21/16 - Navigation; Navigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
F42B 15/01 - Arrangements thereon for guidance or control
Methods involve using a guided munition (e.g., a mortar round or a grenade) that utilizes deployable flow effectors, activatable flow effectors and/or active flow control devices to extend the range and enhance the precision of traditional unguided munitions without increasing the charge needed for launch. Sensors such as accelerometers, magnetometers, IR sensors, rate gyros, and motor controller sensors feed signals into a controller which then actuates or deploys the flow effectors/flow control devices to achieve the enhanced characteristics.
The present invention is directed to a physiological recording device and, more particularly, to a physiological recording device that can be used without skin preparation or the use of electrolytic gels. The invention is further directed to an encouragement ring which stabilizes and helps situate the physiological recording device on a subject's skin to help provide a better electrical signal, increase surface area, and reduce and minimize noise and artifacts during the process of recording or monitoring a physiological signal. The invention is still further directed to surface features on a surface of the physiological recording device with a size and shape that will not substantially bend or break, which limits the depth of application of the recording device, and/or anchors the recording device during normal application. The invention is even further directed to a method for manufacturing a physiological recording device, and minimizing cost of manufacture.
Hat, helmet, and other headgear apparatus includes dry electrophysiological electrodes and, optionally, other physiological and/or environmental sensors to measure signals such as ECG from the head of a subject. Methods of use of such apparatus to provide fitness, health, or other measured or derived, estimated, or predicted metrics are also disclosed.
A closed, self-contained ballistic apogee detection module for use in a projectile, such as a rocket, mortar round, or artillery round, fuses data from multiple built-in sensors, such as an accelerometer, a magnetometer, and a gyroscope, and processes the data using a microprocessor through a custom quaternion extended Kalman filter to provide accurate state and orientation information about the projectile so as to accurately predict apogee. The module outputs a signal indicating apogee detection or prediction which they projectile uses to initiate fuze arming, targeting control, airbody transformation, maneuvering, flow effector deployment or activation, payload exposure or deployment, and/or other mission activity. Because the system and method of the invention does not rely on external environmental data to detect apogee, it need not use a pressure sensor and can be completely sealed in and closed without requiring access to air from outside the projectile for barometric readings.
A projectile incorporates one or more spoiler-tabbed spinning disks to effect flow around the projectile and thus impart steering forces and/or moments. The spoiler tabs may be deployed only during steering phases of travel thus minimizing the drag penalty associated with steering systems. The disks are driven by motors and informed and controlled by sensors and electronic control systems. The spoiler tabs protrude through the surface of the projectile only for certain angles of spin of the spinning disk. For spin-stabilized projectiles, the disks spin at substantially the same rate as the projectile, but the disks may function in fin-stabilized projectiles as well. Any number of such spinning flow effector disks may be incorporated in a projectile, with the manner of functional coordination differing slightly for even and odd numbers of disks.
F42B 10/00 - Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
B64C 13/00 - Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
52.
Aircraft and missile forebody flow control device and method of controlling flow
A forebody flow control system and more particularly an aircraft or missile flow control system for enhanced maneuverability and stabilization at high angles of attack. The present invention further relates to a method of operating the flow control system. In one embodiment, the present invention includes a missile or aircraft comprising an afterbody and a forebody; at least one deployable flow effector on the missile or aircraft forebody; at least one sensors each having a signal associated therewith, the at least one sensor being used for determining or estimating flow separation or side forces on the missile forebody; and a closed loop control system; wherein the closed loop control system is used for activating and deactivating the at least one deployable flow effector based on at least in part the signal of the at least one sensor.
The present invention relates to an electrode harness and more particularly to an electrode harness with various features, which enhance the use and performance of the electrode harness. The present invention further relates to a method of taking biopotential measurements. The electrode harness and methods of the present invention allow for use with most applications where biopotential measurements are taken. The electrode harness can be used in ECG (or EKG), EEG, EMG, and other such biopotential measurement applications. Because of the versatility of various embodiments of the present invention, preferably the electrode harness can be adjusted for different applications or for application to various sized and shaped subjects. The electrode harness is further preferably part of a system, which includes either wireless or tethered bridges between the electrode harness and a monitor, and preferably includes various forms of processors for analyzing the biopotential signal.
Methods involve using a guided munition (e.g., a mortar round or a grenade) that utilizes deployable flow effectors, activatable flow effectors and/or active flow control devices to extend the range and enhance the precision of traditional unguided munitions without increasing the charge needed for launch. Sensors such as accelerometers, magnetometers, IR sensors, rate gyros, and motor controller sensors feed signals into a controller which then actuates or deploys the flow effectors/flow control devices to achieve the enhanced characteristics.
F42B 12/20 - Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
F42B 15/01 - Arrangements thereon for guidance or control
F42B 10/14 - Stabilising arrangements using fins spread or deployed after launch, e.g. after leaving the barrel
F42B 10/44 - Boat-tails specially adapted for drag reduction
F42B 10/62 - Steering by movement of flight surfaces
A projectile incorporates one or more spoiler-tabbed spinning disks to effect flow around the projectile and thus impart steering forces and/or moments. The spoiler tabs may be deployed only during steering phases of travel thus minimizing the drag penalty associated with steering systems. The disks are driven by motors and informed and controlled by sensors and electronic control systems. The spoiler tabs protrude through the surface of the projectile only for certain angles of spin of the spinning disk. For spin-stabilized projectiles, the disks spin at substantially the same rate as the projectile, but the disks may function in fin-stabilized projectiles as well. Any number of such spinning flow effector disks may be incorporated in a projectile, with the manner of functional coordination differing slightly for even and odd numbers of disks.
B64C 13/00 - Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
F42B 10/00 - Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
56.
Electrode harness and method of taking electrical measurements
The present invention relates to an electrode harness and more particularly to an electrode harness with various features, which enhance the use and performance of the electrode harness. The present invention further relates to a method of taking biopotential measurements. The electrode harness and methods of the present invention allow for use with most applications where biopotential measurements are taken. The electrode harness can be used in ECG (or EKG), EEG, EMG, and other such biopotential measurement applications. Because of the versatility of various embodiments of the present invention, preferably the electrode harness can be adjusted for different applications or for application to various sized and shaped subjects. The electrode harness is further preferably part of a system, which includes either wireless or tethered bridges between the electrode harness and a monitor, and preferably includes various forms of processors for analyzing the biopotential signal.
The present invention is directed to a physiological recording device, or other types of sensors to detect a biopotential, and more particularly, a physiological recording electrode that can be used without skin preparation or the use of electrolytic gels. The invention is further directed to the configurations of structures on the physiological recording electrode's lower surface. The structures having a length, width, and height, which are capable, at least in part, of transmitting an electric potential from the skin which can be measured. The structures may or may not limit the depth of application, and/or anchor the electrode or other device during normal application, and/or allow for uniform application of the electrode or other device over unprepared skin.
A closed, self-contained ballistic apogee detection module for use in a projectile, such as a rocket, mortar round, or artillery round, fuses data from multiple built-in sensors, such as an accelerometer, a magnetometer, and a gyroscope, and processes the data using a microprocessor through a custom quaternion extended Kalman filter to provide accurate state and orientation information about the projectile so as to accurately predict apogee. The module outputs a signal indicating apogee detection or prediction which they projectile uses to initiate fuze arming, targeting control, airbody transformation, maneuvering, flow effector deployment or activation, payload exposure or deployment, and/or other mission activity. Because the system and method of the invention does not rely on external environmental data to detect apogee, it need not use a pressure sensor and can be completely sealed in and closed without requiring access to air from outside the projectile for barometric readings.
G05D 1/00 - Control of position, course, altitude, or attitude of land, water, air, or space vehicles, e.g. automatic pilot
F42B 10/00 - Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
F42B 15/01 - Arrangements thereon for guidance or control
F42B 10/14 - Stabilising arrangements using fins spread or deployed after launch, e.g. after leaving the barrel
An aircraft, missile, projectile, or underwater vehicle with an improved control system, an improved control system, or a method of maneuvering an aircraft, missile, projectile, or underwater vehicle uses control surfaces that are movable along a track. The control system on a track (or “tracked control surface”) advantageously enables the aircraft, missile, projectile, or underwater vehicle to have an unlimited number of configurations, each configuration being tailored to the specific stability or maneuverability requirements during a specific portion of the flight by adjusting the center of pressure of the aircraft, missile, projectile, or underwater vehicle relative to its center of gravity.
Methods involve using a guided munition (e.g., a mortar round or a grenade) that utilizes deployable flow effectors, activatable flow effectors and/or active flow control devices to extend the range and enhance the precision of traditional unguided munitions without increasing the charge needed for launch. Sensors such as accelerometers, magnetometers, IR sensors, rate gyros, and motor controller sensors feed signals into a controller which then actuates or deploys the flow effectors/flow control devices to achieve the enhanced characteristics.
F42B 12/20 - Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
An afterbody flow control system is used for aircraft or missile flow control to provide enhanced maneuverability and stabilization. A method of operating the flow control system is also described. The missile or aircraft comprises an afterbody and a forebody; at least one activatable flow effector on the missile or aircraft afterbody; at least one sensor having a signal, the at least one sensor being positioned to detect forces or flow conditions on the missile or aircraft afterbody; and a closed loop control system; wherein the closed loop control system is used for activating and deactivating the at least one activatable flow effector based on at least in part the signal of the at least one sensor.
An apparatus for measuring biopotential signals comprises a plurality of electrodes embedded or affixed to a wearable worn about the torso of a pregnant subject, enabling the non-invasive acquisition of electrocardiographic signals and the extraction of separate fetal and maternal electrocardiographic signals therefrom. The wearable is stretchable or adjustable to accommodate any maternal body habitus and can advantageously employ dry physiologic electrodes to eliminate the step of skin preparation and provide longer-term monitoring that is also both more convenient and more comfortable.
Hat, helmet, and other headgear apparatus includes dry electrophysiological electrodes and, optionally, other physiological and/or environmental sensors to measure signals such as ECG from the head of a subject. Methods of use of such apparatus to provide fitness, health, or other measured or derived, estimated, or predicted metrics are also disclosed.
B05D 3/00 - Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
64.
Physiological recording device with harness to attach and method
The present invention relates to a physiological recording electrode, a method, and apparatus for attaching the physiological electrode to a subject. The physiological electrode comprises a substrate having an upper and a lower surface, and at least one penetrator(s) protruding from the upper surface of the substrate. The penetrator(s) is capable of piercing through the stratum corneum or outer layer of the skin, and transmitting an electric potential from the lower layers of the epidermis through the penetrator(s) which can be measured, or detecting agents from the lower layers of the epidermis primarily the stratum germinativum layer. At least one epidermis stop may be provided resulting in the formation of detritus troughs interposed between adjacent penetrator(s) and epidermis stops. The physiological electrode is attached to a subject by means of the apparatus and method for attaching same. The present invention also includes a method of sensing biopotentials in the skin.
A forebody flow control system and more particularly an aircraft or missile flow control system for enhanced maneuverability and stabilization utilizes various types of sensors and various types of activatable flow effectors to maneuver the aircraft or missile with the help of a control system. A method of operating the flow control system is also disclosed.
Methods involve using a guided munition (e.g., a mortar round or a grenade) that utilizes deployable flow effectors, activatable flow effectors and/or active flow control devices to extend the range and enhance the precision of traditional unguided munitions without increasing the charge needed for launch. Sensors such as accelerometers, magnetometers, IR sensors, rate gyros, and motor controller sensors feed signals into a controller which then actuates or deploys the flow effectors/flow control devices to achieve the enhanced characteristics.
F42B 12/20 - Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
F42B 10/44 - Boat-tails specially adapted for drag reduction
67.
Electrode harness and method of taking biopotential measurements
The present invention relates to an electrode harness and more particularly to an electrode harness with various features, which enhance the use and performance of the electrode harness. The present invention further relates to a method of taking biopotential measurements. The electrode harness and methods of the present invention allow for use with most applications where biopotential measurements are taken. The electrode harness can be used in ECG (or EKG), EEG, EMG, and other such biopotential measurement applications. Because of the versatility of various embodiments of the present invention, preferably the electrode harness can be adjusted for different applications or for application to various sized and shaped subjects. The electrode harness is further preferably part of a system, which includes either wireless or tethered bridges between the electrode harness and a monitor, and preferably includes various forms of processors for analyzing the biopotential signal.
The present invention is directed to a physiological recording device and, more particularly, to a physiological recording device that can be used without skin preparation or the use of electrolytic gels. The invention is further directed to an encouragement ring which stabilizes and helps situate the physiological recording device on a subject's skin to help provide a better electrical signal, increase surface area, and reduce and minimize noise and artifacts during the process of recording or monitoring a physiological signal. The invention is still further directed to surface features on a surface of the physiological recording device with a size and shape that will not substantially bend or break, which limits the depth of application of the recording device, and/or anchors the recording device during normal application. The invention is even further directed to a method for manufacturing a physiological recording device, and minimizing cost of manufacture.
A guided munition (e.g., a mortar round or a grenade) utilizes deployable flow effectors, activatable flow effectors and/or active flow control devices to extend the range and enhance the precision of traditional unguided munitions without increasing the charge needed for launch. Sensors such as accelerometers, magnetometers, IR sensors, rate gyros, and motor controller sensors feed signals into a controller which then actuates or deploys the flow effectors/flow control devices to achieve the enhanced characteristics.
F42B 12/20 - Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
F42B 15/01 - Arrangements thereon for guidance or control
F42B 10/14 - Stabilising arrangements using fins spread or deployed after launch, e.g. after leaving the barrel
70.
Aircraft, missile, projectile or underwater vehicle with improved control system and method of using
The present invention relates to an aircraft, missile, projectile or underwater vehicle with an improved control system, an improved control system and a method of maneuvering an aircraft, missile, projectile or underwater vehicle. More particularly, the present invention relates to an aircraft, missile, projectile or underwater vehicle with control surfaces that are movable along a track. The present invention further relates to a method of controlling a aircraft, missile, projectile or underwater vehicle using such a control system. One of the technical advantages of the control system on a track (or “tracked control surface”) over other aircraft, missile, projectile or underwater vehicle control systems is that the tracked control surface system enables the aircraft, missile, projectile or underwater vehicle to have an unlimited number of configurations, each configuration being tailored to the specific stability or maneuverability requirements during a specific portion of the flight.
The present invention is directed to a device, which can be attached to a subject's skin with an adhesive collar. The device can be a sensor, an actuator or a marker. Preferably, the device is a sensor, and more preferably in the form of a wet or dry electrode sensor, and most preferably, a dry electrode sensor. The invention is used to attach the device to a subject's prepared or unprepared skin so that the device can remain attached to the subject for an extended period of time with minimal skin irritation, breakdown, or re-application, and preferably with no skin irritation, breakdown, or re-application.
The present invention relates to a missile or aircraft with a hierarchical, modular, closed-loop flow control system and more particularly to aircraft or missile with a flow control system for enhanced aerodynamic control, maneuverability and stabilization. The present invention further relates to a method of operating the flow control system.
Various embodiments of the flow control system of the present invention involve different elements including flow sensors, active flow control device or activatable flow effectors and logic devices with closed loop control architecture. The sensors of these various embodiments are used to estimate or determine flow conditions on the various surfaces of a missile or aircraft. The active flow control device or activatable flow effectors of these various embodiments create on-demand flow disturbances, preferably micro-disturbances, at different points along the various aerodynamic surfaces of the missile or aircraft to achieve a desired stabilization or maneuverability effect. The logic devices are embedded with a hierarchical control structure allowing for rapid, real-time control at the flow surface.
B64C 13/00 - Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
G01C 23/00 - Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
F41G 7/00 - Direction control systems for self-propelled missiles
75.
Method of controlling aircraft, missiles, munitions and ground vehicles with plasma actuators
A method of controlling an aircraft, missile, munition or ground vehicle with plasma actuators, and more particularly of controlling fluid flow across their surfaces or other surfaces which would benefit from such a method, includes the design of an aerodynamic plasma actuator for the purpose of controlling airflow separation over a control surface of a aircraft, missile, or a ground vehicle, and a method of determining a modulation frequency for the plasma actuator for the purpose of fluid flow control over these vehicles. Various embodiments provide steps to increase the efficiency of aircraft, missiles, munitions and ground vehicles. The method of flow control reduces the power requirements of the aircraft, missile, munition and or ground vehicle. These methods also provide alternative aerodynamic control using low-power hingeless plasma actuator devices.
A helicopter uses multiple redundant harmonic drive motors on the rotor head to actuate the angle of attack of rotor blades at the rotor blade roots, providing collective control that, in combination with a system for providing cyclic control on the rotor blades, eliminates the need for a swashplate, thereby advantageously reducing the weight and maintenance cost of the helicopter, increasing its reliability, and reducing its vulnerability to ballistic attack.
The present invention is directed to a physiological recording device, or other types of sensors to detect a biopotential, and more particularly, a physiological recording electrode that can be used without skin preparation or the use of electrolytic gels. The invention is further directed to the configurations of structures on the physiological recording electrode's lower surface. The structures having a length, width, and height, which are capable, at least in part, of transmitting an electric potential from the skin which can be measured. The structures may or may not limit the depth of application, and/or anchor the electrode or other device during normal application, and/or allow for uniform application of the electrode or other device over unprepared skin.
H01R 43/00 - Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
78.
Method of controlling aircraft, missiles, munitions and ground vehicles with plasma actuators
A method of controlling an aircraft, missile, munition or ground vehicle with plasma actuators, and more particularly of controlling fluid flow across their surfaces or other surfaces which would benefit from such a method, includes the design of an aerodynamic plasma actuator for the purpose of controlling airflow separation over a control surface of a aircraft, missile, or a ground vehicle, and a method of determining a modulation frequency for the plasma actuator for the purpose of fluid flow control over these vehicles. Various embodiments provide steps to increase the efficiency of aircraft, missiles, munitions and ground vehicles. The method of flow control reduces the power requirements of the aircraft, missile, munition or ground vehicle. These methods also provide alternative aerodynamic control using low-power hingeless plasma actuator devices.
The present invention relates to a method of controlling an aircraft, missile, munition or ground vehicle with plasma actuators, and more particularly to controlling fluid flow across their surfaces or other surfaces, which would benefit from such a method. The method includes the design of an aerodynamic plasma actuator for the purpose of controlling airflow separation over a control surface of a aircraft, missile, or a ground vehicle, and more particularly to the method of determining a modulation frequency for the plasma actuator for the purpose of fluid flow control over these vehicles. The various embodiments provide the steps to increase the efficiency of aircraft, missiles, munitions and ground vehicles. The method of flow control provides a means for reducing aircraft, missile's, munition's and ground vehicle's power requirements. These methods also provide alternate means for aerodynamic control using low-power hingeless plasma actuator devices.