The invention relates to a synthesis of cholesterol; a ring opening step of the compound of formula (I) and subsequent activation and reduction step yielding cholesterol. The inventions relates also to intermediates achieved during said synthesis.
C07J 9/00 - Normal steroids containing carbon, hydrogen, halogen, or oxygen, substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane
C07J 31/00 - Normal steroids containing one or more sulfur atoms not belonging to a hetero ring
C07J 41/00 - Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
C07J 71/00 - Steroids in which the cyclopenta[a]hydrophenanthrene skeleton is condensed with a heterocyclic ring
2.
SOLIDS REACTOR, SYSTEM, AND METHOD FOR SEPARATING OUT CARBON DIOXIDE, IN PARTICULAR FROM WASTE GASES
Described herein is a system (100) for storage and releasing of carbon dioxide comprising at least one solids reactor (1), at least one compressor (7, 8) for compressing the carbon dioxide-containing gas or fluid, respectively, which is introduced through the inlet (3) of the solids reactor,
wherein the compressor (7, 8) is constructed in such a way that it adiabatically expands the gas or fluid, respectively, depleted of carbon dioxide that is discharged from the reactor by means of the outlet (2) of the solids reactor, and at least one countercurrent recuperator (6), which is constructed for the heat exchange of the compressed exhaust gas or fluid, respectively, that contains carbon dioxide and the gas or fluid, respectively, depleted of carbon dioxide.
Described herein is a system (100) for storage and releasing of carbon dioxide comprising at least one solids reactor (1), at least one compressor (7, 8) for compressing the carbon dioxide-containing gas or fluid, respectively, which is introduced through the inlet (3) of the solids reactor,
wherein the compressor (7, 8) is constructed in such a way that it adiabatically expands the gas or fluid, respectively, depleted of carbon dioxide that is discharged from the reactor by means of the outlet (2) of the solids reactor, and at least one countercurrent recuperator (6), which is constructed for the heat exchange of the compressed exhaust gas or fluid, respectively, that contains carbon dioxide and the gas or fluid, respectively, depleted of carbon dioxide.
Described is furthermore a solids reactor for storage and releasing carbon dioxide, comprising a gas-tight or fluid-tight, respectively, housing, which has an interior, at least one inlet for feeding in fluids and at least one outlet for discharging of gases or fluids, respectively, wherein the interior of the housing is filled with at least two different solids, wherein one solid is provided for storing thermal energy and the other solid is provided for regenerative storage and releasing of carbon dioxide.
Described herein is a system (100) for storage and releasing of carbon dioxide comprising at least one solids reactor (1), at least one compressor (7, 8) for compressing the carbon dioxide-containing gas or fluid, respectively, which is introduced through the inlet (3) of the solids reactor,
wherein the compressor (7, 8) is constructed in such a way that it adiabatically expands the gas or fluid, respectively, depleted of carbon dioxide that is discharged from the reactor by means of the outlet (2) of the solids reactor, and at least one countercurrent recuperator (6), which is constructed for the heat exchange of the compressed exhaust gas or fluid, respectively, that contains carbon dioxide and the gas or fluid, respectively, depleted of carbon dioxide.
Described is furthermore a solids reactor for storage and releasing carbon dioxide, comprising a gas-tight or fluid-tight, respectively, housing, which has an interior, at least one inlet for feeding in fluids and at least one outlet for discharging of gases or fluids, respectively, wherein the interior of the housing is filled with at least two different solids, wherein one solid is provided for storing thermal energy and the other solid is provided for regenerative storage and releasing of carbon dioxide.
Furthermore described is a method for storage and releasing of carbon dioxide.
B01D 53/34 - Chemical or biological purification of waste gases
B01D 53/96 - Regeneration, reactivation or recycling of reactants
B01J 8/02 - Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
B01J 19/00 - Chemical, physical or physico-chemical processes in general; Their relevant apparatus
B01J 20/04 - Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
B01J 20/28 - Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
C09K 5/16 - Materials undergoing chemical reactions when used
F28D 20/00 - Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups or
3.
Cylinder arrangement and method of cooling the cylinder arrangement
Cylinder arrangement (1) and method for cooling the cylinder arrangement (1) addresses a solution with which the heat transfer from a combustion chamber (6) of an internal combustion engine located in a cylinder liner (2) of the cylinder arrangement (1) into a region (7) surrounding the cylinder liner (2), such as a cylinder block or crankcase, is controlled in a temperature-dependent manner. Arrangement solves said problem by providing a jacket (9), the expansion of which changes depending on temperature, arranged between the cylinder liner (2) and the region (7) surrounding the cylinder liner (2). The method uses the cylinder liner (2) with a jacket (9), expands depending on temperature and surrounds the cylinder liner (2); jacket (9) forms a gap (10) between jacket (9) and region (7) in a first temperature range; jacket (9) forms no gap (10) between jacket (9) and region (7) in a second temperature range.
An injector (1) for injecting fuel and an additional fluid, is provided in that the injector (1) is designed for optimal space-saving yet exhibiting a simple construction. This construction results in a precise injection of a fuel and an additional fluid into a combustion chamber of an internal combustion engine. The arrangement has two solenoid valves, the first valve (2) and the second valve (3). The second solenoid valve (3) has a second nozzle needle (9) which is arranged in the injector (1), and the first nozzle needle (7) of the first solenoid valve (2) and the second nozzle needle (9) of the second solenoid valve (3) are arranged one behind the other on a longitudinal axis (10) of the injector (1). Further, the nozzle needles (7, 9) can be controlled independently of one another.
F02M 61/10 - Other injectors with elongated valve bodies, i.e. of needle-valve type
F02M 63/00 - SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF - Details, component parts or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups or
The invention relates to a method and to a measurement system for determining and localizing incorrect positioning of support rollers (1) in support roller stations (13) of belt conveyor installations, wherein a unit of pressure sensors (4) is detachably mounted on the underside of a conveyor belt (2); the number of pressure sensors (4) corresponds at least to the number of support rollers (1) of a support roller station (13); and as the sensor (4) is led over a support roller (1), a signal of the contact pressure point is generated upon contact and the signal is measured and evaluated.
B65G 39/16 - Arrangements of rollers mounted on framework for aligning belts or chains
B65G 43/02 - Control devices, e.g. for safety, warning or fault-correcting detecting dangerous physical condition of load- carriers, e.g. for interrupting the drive in the event of overheating
An electrical machine having a priniary part, a secondary part, an air gap between the primary part and the secondary part, and an air gap winding in the air gap. The winding comprises at least two phases and is arranged directly on an iron core of the primary part. The machine has magnetic poles which are arranged alternately on an iron core of the secondary part. The air gap winding is arranged with respect to the magnetic poles in such a manner that a winding strand lies in the air gap for each magnetic pole and for each phase, perpendicular to a magnetic flux density in the air gap and also perpendicular to a direction of movement. Mutually parallel, directly neighbouring winding strands of a phase of the air gap winding in the air gap are connected by head pieces which alternate at each side to form a respective conductor.
H02K 21/16 - Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
H02K 3/04 - Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
H02K 21/22 - Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
7.
Optical stimulation device and method for programming
The invention relates to an optical stimulation device for stimulating nerve cells, wherein the stimulation device has at least one implant component, which is designed for implanting in a natural inner cavity of the body of a living being, through which cavity a bodily fluid flows, having the following features: a) the implant component has at least one supporting structure, which can be expanded in a radial direction for fastening in the natural inner cavity, b) a plurality of light sources is fastened to the supporting structure, which light sources are designed to emit light in the radial direction with respect to the supporting structure, c) a plurality or electrodes is fastened to the supporting structure, which electrodes are designed to capture electrical body signals, d) the supporting structure has a plurality of openings and/or channels, through which the bodily fluid can flow after implantation in the body. The invention further relates to a method for programming the parameter memory of a stimulation device.