Methods for preparing metakaolin-enhanced industrial minerals. Mixing and heating kaolinite clay with an industrial mineral, such as activated carbon, that is between 750° F. and 1400° F. results in a metakaolin/activated carbon complex that provides good mercury sorbent qualities while producing a fly ash (after use as a sorbent in emissions applications) that has a lower foaming index.
B01D 53/02 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse
B01D 53/64 - Métaux lourds ou leurs composés, p. ex. mercure
B01J 20/12 - Argiles d'origine naturelle ou terres décolorantes
B01J 20/20 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant du carbone libreCompositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant du carbone obtenu par des procédés de carbonisation
2.
OPERATIONAL CONDITIONS AND METHOD FOR PRODUCTION OF HIGH QUALITY ACTIVATED CARBON
Methods and systems for producing activated carbon from a particulate coal feedstock that include the introduction of a buffering gas, a moisture spray, a finest carbon fraction as a fuel, and certain gas ratios. Different methods and system configurations allow the production of activated carbon or other heat-treated carbons while concurrently avoiding adverse reaction conditions.
Methods for preparing metakaolin-enhanced industrial minerals. Mixing and heating kaolinite clay with an industrial mineral, such as activated carbon, that is between 750°F and 1400°F results in a metakaolin/activated carbon complex that provides good mercury sorbent qualities while producing a fly ash (after use as a sorbent in emissions applications) that has a lower foaming index.
Methods and systems for producing activated carbon from a particulate coal feedstock that include the introduction of an activation medium such that the water content of the coal feedstock is equal to or greater than that of the feedstock's naturally occurring state. Different methods and system configurations allow the production of activated carbon or other heat-treated carbons while concurrently avoiding adverse reaction conditions.
Methods for producing devolatilized and/or activated carbon in a reactor or reaction vessel of a heat treatment system from a suitable carbonaceous feedstock by introducing the feedstock into the reactor tangentially at a rotational velocity of at least 90 RPM (Fig. 2). The methods include the steps of providing a combination of conveying means and a gas flow having various compositions and creating distinct carbonaceous feedstock material flow patterns and process conditions such that the feedstock is conveyed through the reactor or reaction vessel and heated via combustion, thereby producing activated carbon or other heat-treated carbons while concurrently avoiding adverse reaction conditions. Single and two-stage heat treatment systems may be used to heat a carbon feedstock, to which one or more industrial minerals may be added to co-produce compositions such as lime with the heat-treated carbon.
Methods for producing devolatilized and/or activated carbon in a reactor or reaction vessel of a heat treatment system from a suitable carbonaceous feedstock by introducing the feedstock into the reactor tangentially at a rotational velocity of at least 90 RPM. The methods include the steps of providing a combination of conveying means and a gas flow having various compositions and creating distinct carbonaceous feedstock material flow patterns and process conditions such that the feedstock is conveyed through the reactor or reaction vessel and heated via combustion, thereby producing activated carbon or other heat-treated carbons while concurrently avoiding adverse reaction conditions. Single and two-stage heat treatment systems may be used to heat a carbon feedstock, to which one or more industrial minerals may be added to co-produce compositions such as lime with the heat-treated carbon.
Methods and systems for producing activated carbon from a particulate coal feedstock that include the introduction of an activation medium such that the water content of the coal feedstock is equal to or greater than that of the feedstock's naturally occurring state. Different methods and system configurations allow the production of activated carbon or other heat-treated carbons while concurrently avoiding adverse reaction conditions.
Particulate material to be calcined is conditioned and then introduced into a stream of flue gases which transport the material along a sloping drying duct (26) while drying the material. The dried material is then introduced into the same stream of flue gases upstream of the drying duct (26), and the flue gases transport the dried material along a sloping preheating duct (38) while preheating the material. The preheated material is fed tangentially into the lower end of a vertical calcine reactor (56) and calcined product is withdrawn tangentially from the upper end of the reactor (56). The flue gases used for drying and preheating are produced in the calcine reactor (56) and are cooled during the drying and preheating.
Particulate material to be calcined is conditioned and then introduced into a stream of flue gases which transport the material along a sloping drying duct while drying the material. The dried material is then introduced into the same stream of flue gases upstream of the drying duct, and the flue gases transport the dried material along a sloping preheating duct while preheating the material. The preheated material is fed tangentially into the lower end of a vertical calcine reactor and calcined product is withdrawn tangentially from the upper end of the reactor. The flue gases used for drying and preheating are produced in the calcine reactor and are cooled during the drying and preheating.
B01J 10/00 - Procédés chimiques généraux faisant réagir un liquide avec des milieux gazeux autrement qu'en présence de particules solidesAppareillage spécialement adapté à cet effet
F27B 15/00 - Fours à lit fluidiséAutres fours utilisant ou traitant des matières finement divisées en dispersion