The present technology is generally directed to a prosthetic digit usable with capacitive panels. The digit includes a proximal body removably couplable to a residuum of a user, an intermediate body pivotably coupled to the proximal body via a first fastener, a distal body pivotably coupled to the intermediate body via a second fastener, a first bearing capacitively coupled to the first fastener, and a second bearing capacitively coupled to the second fastener. The digit further includes a first conductive epoxy portion coupled between the first and second bearings, and a second conductive epoxy portion coupled between the second fastener and the distal body. The first and second conductive epoxy portions provide a low impedance, capacitive coupling pathway between the capacitive panel and the residuum of the user.
The present technology is generally directed to a prosthetic digit usable with capacitive panels. The digit includes a proximal body removably couplable to a residuum of a user, an intermediate body pivotably coupled to the proximal body via a first fastener, a distal body pivotably coupled to the intermediate body via a second fastener, a first bearing capacitively coupled to the first fastener, and a second bearing capacitively coupled to the second fastener. The digit further includes a first conductive epoxy portion coupled between the first and second bearings, and a second conductive epoxy portion coupled between the second fastener and the distal body. The first and second conductive epoxy portions provide a low impedance, capacitive coupling pathway between the capacitive panel and the residuum of the user.
This disclosure provides systems, apparatuses, and devices for a prosthetic digit usable with persons with amputations at or proximal to the metacarpophalangeal joint. The device restores prehension in a person with missing fingers or thumb by providing opposition to forces in the extension direction via a spring-loaded pawl and locking rack ratchet mechanism, thereby allowing an individual to manipulate or stabilize objects. The digit may be spring-loaded in the extension direction by a torsion spring or other biasing member. The pawl may be automatically disengaged from the rack when the digit reaches full flexion, and the full flexion disengage stop may be adjustable. The pawl may be automatically engaged with the rack when the digit reaches full extension, and the extension stop may be adjustable. The pawl may contain a lateral feature that creates interference with the anchoring linkage under load and limits deflection of the structure.
The disclosure provides apparatus and methods of use pertaining to a biomechanical finger brace assembly. In one embodiment, the assembly includes a coupling tip, a proximal ring configured to concentrically receive a user's finger, a distal ring configured to concentrically receive the finger, and a rocker formed in an H-shape. The distal ring and the rocker are pivotally suspended between a proximal coordinated pivot point anchored on the proximal ring and a distal coordinated pivot point anchored on the coupling tip, such that movements of the finger within the proximal ring articulate the distal ring together with the rocker to articulate the coupling tip. The coupling tip may include an open end or an enclosed recess to accept a minimally-amputated or non-amputated finger. Other embodiments are also disclosed.
A61F 2/76 - Moyens pour assembler, ajuster ou tester les prothèses, p.ex. pour mesurer ou équilibrer
A61F 5/01 - Dispositifs orthopédiques, p.ex. dispositifs pour immobiliser ou pour exercer des pressions de façon durable pour le traitement des os fracturés ou déformés, tels que éclisses, plâtres orthopédiques ou attelles
5.
Bidirectional biomechanical prosthetic full finger configured for abduction and adduction with MCP pivot
The disclosure provides apparatus and methods of use pertaining to a bidirectional biomechanical prosthetic finger assembly. In one embodiment, the assembly includes an eccentric metacarpophalangeal (MCP) pivot configured for swivelable attachment to a hand of a user, a distal coupler, and an articulation assembly rotatively coupled therebetween. A ring configured to receive a user's residual finger is disposed upon the articulation assembly, and may be adjusted to a target location based on a length of the residual finger. The articulation assembly is configured to utilize vertical movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-z plane, and the MCP pivot is configured to utilize lateral movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-y plane. Other embodiments are also disclosed.
A prosthetic digit usable with capacitive panels is provided. The digit includes at least one conductive layer surrounding the body of the digit, and a non-conductive sealing layer around the conductive layer preventing direct external contact of the conductive layer with the capacitive panel. The digit may have a conductive tip pad to create a series capacitive pathway between the conductive layer of the body and the electrodes of the capacitive panel. Using the digit with a capacitive panel does not require a direct conductive pathway, e.g., a pathway between the capacitive panel and the structure of the device, the user's skin, or metallic sink.
A61F 2/78 - Moyens pour protéger les prothèses ou pour les assujettir au corps, p.ex. bandages, harnais, courroies ou bas pour moignons
A61F 2/50 - Prothèses non implantables dans le corps
H03K 17/94 - Commutation ou ouverture de porte électronique, c. à d. par d'autres moyens que la fermeture et l'ouverture de contacts caractérisée par la manière dont sont produits les signaux de commande
G06F 3/01 - Dispositions d'entrée ou dispositions d'entrée et de sortie combinées pour l'interaction entre l'utilisateur et le calculateur
G06F 3/044 - Numériseurs, p.ex. pour des écrans ou des pavés tactiles, caractérisés par les moyens de transduction par des moyens capacitifs
7.
BIOMEDICAL FINGER ASSEMBLY FOR USE WITH CAPACITIVE PANELS
A prosthetic digit usable with capacitive panels is provided. The digit includes at least one conductive layer surrounding the body of the digit, and a non-conductive sealing layer around the conductive layer preventing direct external contact of the conductive layer with the capacitive panel. The digit may have a conductive tip pad to create a series capacitive pathway between the conductive layer of the body and the electrodes of the capacitive panel. Using the digit with a capacitive panel does not require a direct conductive pathway, e.g., a pathway between the capacitive panel and the structure of the device, the user's skin, or metallic sink.
A61F 2/78 - Moyens pour protéger les prothèses ou pour les assujettir au corps, p.ex. bandages, harnais, courroies ou bas pour moignons
G06F 3/039 - Leurs accessoires, p.ex. tapis de souris
G06F 3/044 - Numériseurs, p.ex. pour des écrans ou des pavés tactiles, caractérisés par les moyens de transduction par des moyens capacitifs
H03K 17/94 - Commutation ou ouverture de porte électronique, c. à d. par d'autres moyens que la fermeture et l'ouverture de contacts caractérisée par la manière dont sont produits les signaux de commande
8.
BIOMEDICAL FINGER ASSEMBLY FOR USE WITH CAPACITIVE PANELS
A prosthetic digit usable with capacitive panels is provided. The digit includes at least one conductive layer surrounding the body of the digit, and a non-conductive sealing layer around the conductive layer preventing direct external contact of the conductive layer with the capacitive panel. The digit may have a conductive tip pad to create a series capacitive pathway between the conductive layer of the body and the electrodes of the capacitive panel. Using the digit with a capacitive panel does not require a direct conductive pathway, e.g., a pathway between the capacitive panel and the structure of the device, the user's skin, or metallic sink.
This disclosure provides systems, apparatuses, and devices for a powered prosthetic digit. The disclosed devices restore prehension in a person with missing fingers or thumb by providing motor-driven extension and flexion, and opposition to forces in the extension direction via a pawl and locking rack ratchet mechanism, thereby allowing an individual to manipulate or stabilize objects. In one embodiment, a digit comprises a base configured to be removably couplable to an anchor, a first segment pivotably coupled to the base, and a second segment removably coupled to the first segment. The first segment comprises a rack with a plurality of rack teeth and a pawl with a nose configured to engage with the rack to prevent pivoting of the first segment in a rotational direction corresponding to extension of the prosthetic digit. The second segment comprises a drive gear operable to pivot the first segment with respect to the base.
This disclosure provides systems, apparatuses, and devices for a powered prosthetic digit. The disclosed devices restore prehension in a person with missing fingers or thumb by providing motor-driven extension and flexion, and opposition to forces in the extension direction via a pawl and locking rack ratchet mechanism, thereby allowing an individual to manipulate or stabilize objects. In one embodiment, a digit comprises a base configured to be removably couplable to an anchor, a first segment pivotably coupled to the base, and a second segment removably coupled to the first segment. The first segment comprises a rack with a plurality of rack teeth and a pawl with a nose configured to engage with the rack to prevent pivoting of the first segment in a rotational direction corresponding to extension of the prosthetic digit. The second segment comprises a drive gear operable to pivot the first segment with respect to the base.
This disclosure provides systems, apparatuses, and devices for a powered prosthetic digit. The disclosed devices restore prehension in a person with missing fingers or thumb by providing motor-driven extension and flexion, and opposition to forces in the extension direction via a pawl and locking rack ratchet mechanism, thereby allowing an individual to manipulate or stabilize objects. In one embodiment, a digit comprises a base configured to be removably couplable to an anchor, a first segment pivotably coupled to the base, and a second segment removably coupled to the first segment. The first segment comprises a rack with a plurality of rack teeth and a pawl with a nose configured to engage with the rack to prevent pivoting of the first segment in a rotational direction corresponding to extension of the prosthetic digit. The second segment comprises a drive gear operable to pivot the first segment with respect to the base.
This disclosure provides systems, apparatuses, and devices for a powered prosthetic digit. The disclosed devices restore prehension in a person with missing fingers or thumb by providing motor-driven extension and flexion, and opposition to forces in the extension direction via a pawl and locking rack ratchet mechanism, thereby allowing an individual to manipulate or stabilize objects. In one embodiment, a digit comprises a base configured to be removably couplable to an anchor, a first segment pivotably coupled to the base, and a second segment removably coupled to the first segment. The first segment comprises a rack with a plurality of rack teeth and a pawl with a nose configured to engage with the rack to prevent pivoting of the first segment in a rotational direction corresponding to extension of the prosthetic digit. The second segment comprises a drive gear operable to pivot the first segment with respect to the base.
This disclosure provides systems, apparatuses, and devices for a prosthetic digit usable with persons with amputations at or proximal to the metacarpophalangeal joint. The device restores prehension in a person with missing fingers or thumb by providing opposition to forces in the extension direction via a spring-loaded pawl and locking rack ratchet mechanism, thereby allowing an individual to manipulate or stabilize objects. The digit may be spring-loaded in the extension direction by a torsion spring or other biasing member. The pawl may be automatically disengaged from the rack when the digit reaches full flexion, and the full flexion disengage stop may be adjustable. The pawl may be automatically engaged with the rack when the digit reaches full extension, and the extension stop may be adjustable. The pawl may contain a lateral feature that creates interference with the anchoring linkage under load and limits deflection of the structure.
This disclosure provides systems, apparatuses, and devices for a prosthetic digit usable with persons with amputations at or proximal to the metacarpophalangeal joint. The device restores prehension in a person with missing fingers or thumb by providing opposition to forces in the extension direction via a spring-loaded pawl and locking rack ratchet mechanism, thereby allowing an individual to manipulate or stabilize objects. The digit may be spring-loaded in the extension direction by a torsion spring or other biasing member. The pawl may be automatically disengaged from the rack when the digit reaches full flexion, and the full flexion disengage stop may be adjustable. The pawl may be automatically engaged with the rack when the digit reaches full extension, and the extension stop may be adjustable. The pawl may contain a lateral feature that creates interference with the anchoring linkage under load and limits deflection of the structure.
This disclosure provides systems, apparatuses, and devices for a prosthetic digit usable with persons with amputations at or proximal to the metacarpophalangeal joint. The device restores prehension in a person with missing fingers or thumb by providing opposition to forces in the extension direction via a spring-loaded pawl and locking rack ratchet mechanism, thereby allowing an individual to manipulate or stabilize objects. The digit may be spring-loaded in the extension direction by a torsion spring or other biasing member. The pawl may be automatically disengaged from the rack when the digit reaches full flexion, and the full flexion disengage stop may be adjustable. The pawl may be automatically engaged with the rack when the digit reaches full extension, and the extension stop may be adjustable. The pawl may contain a lateral feature that creates interference with the anchoring linkage under load and limits deflection of the structure.
The disclosure provides apparatus and methods of use pertaining to a bidirectional biomechanical prosthetic finger assembly. One embodiment includes a metacarpophalangeal (MCP) pivot configured for swivelable attachment to a hand of a user, a distal coupler, and an articulation assembly rotatively coupled therebetween. A multiple-finger ring configured to receive a user's residual finger and at least one adjacent finger is disposed upon the articulation assembly, and may be adjusted to a target location based on a length of the residual finger. The articulation assembly is configured to utilize vertical movements of the residual and/or adjacent finger(s) within the multiple-finger ring to articulate the distal coupler within a plane parallel to an x-z plane, and the MCP pivot is configured to utilize lateral movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-y plane. Other embodiments are also disclosed.
The disclosure provides apparatus and methods of use pertaining to a biomechanical finger brace assembly. In one embodiment, the assembly includes a coupling tip, a proximal ring configured to concentrically receive a user's finger, a distal ring configured to concentrically receive the finger, and a rocker formed in an H-shape. The distal ring and the rocker are pivotally suspended between a proximal coordinated pivot point anchored on the proximal ring and a distal coordinated pivot point anchored on the coupling tip, such that movements of the finger within the proximal ring articulate the distal ring together with the rocker to articulate the coupling tip. The coupling tip may include an open end or an enclosed recess to accept a minimally-amputated or non-amputated finger. Other embodiments are also disclosed.
A61F 5/01 - Dispositifs orthopédiques, p.ex. dispositifs pour immobiliser ou pour exercer des pressions de façon durable pour le traitement des os fracturés ou déformés, tels que éclisses, plâtres orthopédiques ou attelles
A61F 2/76 - Moyens pour assembler, ajuster ou tester les prothèses, p.ex. pour mesurer ou équilibrer
18.
Bidirectional biomechanical prosthetic full finger configured for abduction and adduction with MCP pivot
The disclosure provides apparatus and methods of use pertaining to a bidirectional biomechanical prosthetic finger assembly. In one embodiment, the assembly includes an eccentric metacarpophalangeal (MCP) pivot configured for swivelable attachment to a hand of a user, a distal coupler, and an articulation assembly rotatively coupled therebetween. A ring configured to receive a user's residual finger is disposed upon the articulation assembly, and may be adjusted to a target location based on a length of the residual finger. The articulation assembly is configured to utilize vertical movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-z plane, and the MCP pivot is configured to utilize lateral movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-y plane. Other embodiments are also disclosed.
The disclosure provides apparatus and methods of use pertaining to a prosthetic finger assembly. In one embodiment, the assembly includes a coupling tip and a distal ring coupled with the coupling tip. The assembly further includes a proximal ring coupled with the distal ring. A rocker formed in an H-shape with a first end forming a first split prong and a second end forming a second split prong may extend between the coupling tip and the proximal ring. The coupling tip, distal ring, proximal ring, and H-shaped rocker may all be hingedly connected such that movements of the residual finger within the proximal ring articulate the distal ring together with the rocker to articulate the coupling tip. Other embodiments are also disclosed.
The disclosure provides apparatus and methods of use pertaining to a prosthetic finger assembly. In one embodiment, the assembly includes a coupling tip and a distal ring coupled with the coupling tip. The assembly further includes a proximal ring coupled with the distal ring. A rocker formed in a Y-shape with a first end forming a single prong and a second end forming a split prong may extend between the coupling tip and the proximal ring. The coupling tip, distal ring, proximal ring, and Y-shaped rocker may all be hingedly connected such that movements of the residual finger within the proximal ring and the distal articulate the distal ring together with the rocker to curl and bend the coupling tip. Other embodiments are also disclosed.
The disclosure provides apparatus and methods of use pertaining to a bidirectional biomechanical prosthetic finger assembly. One embodiment includes a metacarpophalangeal (MCP) pivot configured for swivelable attachment to a hand of a user, a distal coupler, and an articulation assembly rotatively coupled therebetween. A multiple-finger ring configured to receive a user's residual finger and at least one adjacent finger is disposed upon the articulation assembly, and may be adjusted to a target location based on a length of the residual finger. The articulation assembly is configured to utilize vertical movements of the residual and/or adjacent finger(s) within the multiple-finger ring to articulate the distal coupler within a plane parallel to an x-z plane, and the MCP pivot is configured to utilize lateral movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-y plane. Other embodiments are also disclosed.
The disclosure provides apparatus and methods of use pertaining to a biomechanical finger brace assembly. In one embodiment, the assembly includes a coupling tip, a proximal ring configured to concentrically receive a user's finger, a distal ring configured to concentrically receive the finger, and a rocker formed in an H-shape. The distal ring and the rocker are pivotally suspended between a proximal coordinated pivot point anchored on the proximal ring and a distal coordinated pivot point anchored on the coupling tip, such that movements of the finger within the proximal ring articulate the distal ring together with the rocker to articulate the coupling tip. The coupling tip may include an open end or an enclosed recess to accept a minimally-amputated or non-amputated finger. Other embodiments are also disclosed.
A61F 2/54 - Bras ou mains artificiels ou leurs parties
A61F 5/01 - Dispositifs orthopédiques, p.ex. dispositifs pour immobiliser ou pour exercer des pressions de façon durable pour le traitement des os fracturés ou déformés, tels que éclisses, plâtres orthopédiques ou attelles
A61F 2/76 - Moyens pour assembler, ajuster ou tester les prothèses, p.ex. pour mesurer ou équilibrer
35.
Bio-mechanical prosthetic finger with H-shaped rocker
The disclosure provides apparatus and methods of use pertaining to a prosthetic finger assembly. In one embodiment, the assembly includes a coupling tip and a distal ring coupled with the coupling tip. The assembly further includes a proximal ring coupled with the distal ring. A rocker formed in an H-shape with a first end forming a first split prong and a second end forming a second split prong may extend between the coupling tip and the proximal ring. The coupling tip, distal ring, proximal ring, and H-shaped rocker may all be hingedly connected such that movements of the residual finger within the proximal ring articulate the distal ring together with the rocker to articulate the coupling tip. Other embodiments are also disclosed.
The disclosure provides apparatus and methods of use pertaining to a bidirectional biomechanical prosthetic finger assembly. In one embodiment, the assembly includes an eccentric metacarpophalangeal (MCP) pivot configured for swivelable attachment to a hand of a user, a distal coupler, and an articulation assembly rotatively coupled therebetween. A ring configured to receive a user's residual finger is disposed upon the articulation assembly, and may be adjusted to a target location based on a length of the residual finger. The articulation assembly is configured to utilize vertical movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-z plane, and the MCP pivot is configured to utilize lateral movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-y plane. Other embodiments are also disclosed.
The disclosure provides apparatus and methods of use pertaining to a prosthetic finger assembly. In one embodiment, the assembly includes a coupling tip and a distal ring coupled with the coupling tip. The assembly further includes a proximal ring coupled with the distal ring. A rocker formed in a Y-shape with a first end forming a single prong and a second end forming a split prong may extend between the coupling tip and the proximal ring. The coupling tip, distal ring, proximal ring, and Y-shaped rocker may all be hingedly connected such that movements of the residual finger within the proximal ring and the distal articulate the distal ring together with the rocker to curl and bend the coupling tip. Other embodiments are also disclosed.
The disclosure provides apparatus and methods of use pertaining to a biomechanical finger brace assembly. In one embodiment, the assembly includes a coupling tip, a proximal ring configured to concentrically receive a user's finger, a distal ring configured to concentrically receive the finger, and a rocker formed in an H-shape. The distal ring and the rocker are pivotally suspended between a proximal coordinated pivot point anchored on the proximal ring and a distal coordinated pivot point anchored on the coupling tip, such that movements of the finger within the proximal ring articulate the distal ring together with the rocker to articulate the coupling tip. The coupling tip may include an open end or an enclosed recess to accept a minimally-amputated or non-amputated finger. Other embodiments are also disclosed.
A61F 5/01 - Dispositifs orthopédiques, p.ex. dispositifs pour immobiliser ou pour exercer des pressions de façon durable pour le traitement des os fracturés ou déformés, tels que éclisses, plâtres orthopédiques ou attelles
A61F 2/76 - Moyens pour assembler, ajuster ou tester les prothèses, p.ex. pour mesurer ou équilibrer
39.
Bio-mechanical prosthetic finger with Y-shaped rocker
The disclosure provides apparatus and methods of use pertaining to a prosthetic finger assembly. In one embodiment, the assembly includes a coupling tip and a distal ring coupled with the coupling tip. The assembly further includes a proximal ring coupled with the distal ring. A rocker formed in a Y-shape with a first end forming a single prong and a second end forming a split prong may extend between the coupling tip and the proximal ring. The coupling tip, distal ring, proximal ring, and Y-shaped rocker may all be hingedly connected such that movements of the residual finger within the proximal ring and the distal articulate the distal ring together with the rocker to curl and bend the coupling tip. Other embodiments are also disclosed.
There is disclosed a biomechanically driven prosthetic thumb assembly. Embodiments include an H-shaped rocker and a distal ring configured to receive a user's residual thumb, the distal ring and the rocker each independently and rotatively coupled between a coupling tip and a proximal anchor plate configured for affixing to a hand strap secured to a user. The coupling tip is articulated in response to a pulling force of the H-shaped rocker. Additional embodiments include a bidirectional thumb assembly including a ring mounted upon an adjustable ring tendon that is rotatively coupled between a coupling tip and a proximal anchor plate, which is rotatively coupled with a hand strap attached to the user. Vertical movement of the residual thumb within the ring actuates the coupling tip within a vertical plane. Lateral movement of the residual thumb within the ring actuates the coupling tip within a lateral plane. Other embodiments are disclosed.
The disclosure provides apparatus and methods of use pertaining to a prosthetic finger assembly. In one embodiment, the assembly includes a coupling tip and a distal ring coupled with the coupling tip. The assembly further includes a proximal ring coupled with the distal ring. A rocker formed in an H-shape with a first end forming a first split prong and a second end forming a second split prong may extend between the coupling tip and the proximal ring. The coupling tip, distal ring, proximal ring, and H-shaped rocker may all be hingedly connected such that movements of the residual finger within the proximal ring articulate the distal ring together with the rocker to articulate the coupling tip. Other embodiments are also disclosed.
The disclosure provides apparatus and methods of use pertaining to a bidirectional biomechanical prosthetic finger assembly. In one embodiment, the assembly includes an eccentric metacarpophalangeal (MCP) pivot configured for swivelable attachment to a hand of a user, a distal coupler, and an articulation assembly rotatively coupled therebetween. A ring configured to receive a user's residual finger is disposed upon the articulation assembly, and may be adjusted to a target location based on a length of the residual finger. The articulation assembly is configured to utilize vertical movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-z plane, and the MCP pivot is configured to utilize lateral movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-y plane. Other embodiments are also disclosed.
The disclosure provides apparatus and methods of use pertaining to a bidirectional biomechanical prosthetic finger assembly. One embodiment includes a metacarpophalangeal (MCP) pivot configured for swivelable attachment to a hand of a user, a distal coupler, and an articulation assembly rotatively coupled therebetween. A multiple-finger ring configured to receive a user's residual finger and at least one adjacent finger is disposed upon the articulation assembly, and may be adjusted to a target location based on a length of the residual finger. The articulation assembly is configured to utilize vertical movements of the residual and/or adjacent finger(s) within the multiple-finger ring to articulate the distal coupler within a plane parallel to an x-z plane, and the MCP pivot is configured to utilize lateral movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-y plane. Other embodiments are also disclosed.
There is disclosed a biomechanically driven prosthetic thumb assembly. Embodiments include an H-shaped rocker and a distal ring configured to receive a user's residual thumb, the distal ring and the rocker each independently and rotatively coupled between a coupling tip and a proximal anchor plate configured for affixing to a hand strap secured to a user. The coupling tip is articulated in response to a pulling force of the H-shaped rocker. Additional embodiments include a bidirectional thumb assembly including a ring mounted upon an adjustable ring tendon that is rotatively coupled between a coupling tip and a proximal anchor plate, which is rotatively coupled with a hand strap attached to the user. Vertical movement of the residual thumb within the ring actuates the coupling tip within a vertical plane. Lateral movement of the residual thumb within the ring actuates the coupling tip within a lateral plane. Other embodiment are disclosed.
A61F 2/00 - Filtres implantables dans les vaisseaux sanguins; Prothèses, c.-à-d. éléments de substitution ou de remplacement pour des parties du corps; Appareils pour les assujettir au corps; Dispositifs maintenant le passage ou évitant l'affaissement de structures corporelles tubulaires, p.ex. stents
A61F 2/42 - Articulations pour les pieds, p.ex. pour les orteils
A61F 2/50 - Prothèses non implantables dans le corps
A61F 2/54 - Bras ou mains artificiels ou leurs parties
A61F 2/56 - Bras ou mains artificiels ou leurs parties réglables
There is disclosed a biomechanically driven prosthetic thumb assembly. Embodiments include an H-shaped rocker and a distal ring configured to receive a user's residual thumb, the distal ring and the rocker each independently and rotatively coupled between a coupling tip and a proximal anchor plate configured for affixing to a hand strap secured to a user. The coupling tip is articulated in response to a pulling force of the H-shaped rocker. Additional embodiments include a bidirectional thumb assembly including a ring mounted upon an adjustable ring tendon that is rotatively coupled between a coupling tip and a proximal anchor plate, which is rotatively coupled with a hand strap attached to the user. Vertical movement of the residual thumb within the ring actuates the coupling tip within a vertical plane. Lateral movement of the residual thumb within the ring actuates the coupling tip within a lateral plane. Other embodiments are disclosed.
There is disclosed a biomechanically driven prosthetic thumb assembly. Embodiments include an H-shaped rocker and a distal ring configured to receive a user's residual thumb, the distal ring and the rocker each independently and rotatively coupled between a coupling tip and a proximal anchor plate configured for affixing to a hand strap secured to a user. The coupling tip is articulated in response to a pulling force of the H-shaped rocker. Additional embodiments include a bidirectional thumb assembly including a ring mounted upon an adjustable ring tendon that is rotatively coupled between a coupling tip and a proximal anchor plate, which is rotatively coupled with a hand strap attached to the user. Vertical movement of the residual thumb within the ring actuates the coupling tip within a vertical plane. Lateral movement of the residual thumb within the ring actuates the coupling tip within a lateral plane. Other embodiment are disclosed.
A61F 2/00 - Filtres implantables dans les vaisseaux sanguins; Prothèses, c.-à-d. éléments de substitution ou de remplacement pour des parties du corps; Appareils pour les assujettir au corps; Dispositifs maintenant le passage ou évitant l'affaissement de structures corporelles tubulaires, p.ex. stents
A61F 2/42 - Articulations pour les pieds, p.ex. pour les orteils
A61F 2/50 - Prothèses non implantables dans le corps
A61F 2/54 - Bras ou mains artificiels ou leurs parties
A61F 2/56 - Bras ou mains artificiels ou leurs parties réglables
The disclosure provides apparatus and methods of use pertaining to a prosthetic finger assembly. In one embodiment, the assembly includes a coupling tip and a distal ring coupled with the coupling tip. The assembly further includes a proximal ring coupled with the distal ring. A rocker formed in an H-shape with a first end forming a first split prong and a second end forming a second split prong may extend between the coupling tip and the proximal ring. The coupling tip, distal ring, proximal ring, and H-shaped rocker may all be hingedly connected such that movements of the residual finger within the proximal ring articulate the distal ring together with the rocker to articulate the coupling tip. Other embodiments are also disclosed.
The disclosure provides apparatus and methods of use pertaining to a biomechanical finger brace assembly. In one embodiment, the assembly includes a coupling tip, a proximal ring configured to concentrically receive a user's finger, a distal ring configured to concentrically receive the finger, and a rocker formed in an H-shape. The distal ring and the rocker are pivotally suspended between a proximal coordinated pivot point anchored on the proximal ring and a distal coordinated pivot point anchored on the coupling tip, such that movements of the finger within the proximal ring articulate the distal ring together with the rocker to articulate the coupling tip. The coupling tip may include an open end or an enclosed recess to accept a minimally-amputated or non-amputated finger. Other embodiments are also disclosed.
A61F 5/01 - Dispositifs orthopédiques, p.ex. dispositifs pour immobiliser ou pour exercer des pressions de façon durable pour le traitement des os fracturés ou déformés, tels que éclisses, plâtres orthopédiques ou attelles
A61F 2/76 - Moyens pour assembler, ajuster ou tester les prothèses, p.ex. pour mesurer ou équilibrer
49.
Bidirectional biomechanical prosthetic full finger configured for abduction and adduction with MCP pivot
The disclosure provides apparatus and methods of use pertaining to a bidirectional biomechanical prosthetic finger assembly. In one embodiment, the assembly includes an eccentric metacarpophalangeal (MCP) pivot configured for swivelable attachment to a hand of a user, a distal coupler, and an articulation assembly rotatively coupled therebetween. A ring configured to receive a user's residual finger is disposed upon the articulation assembly, and may be adjusted to a target location based on a length of the residual finger. The articulation assembly is configured to utilize vertical movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-z plane, and the MCP pivot is configured to utilize lateral movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-y plane. Other embodiments are also disclosed.
The disclosure provides apparatus and methods of use pertaining to a bidirectional biomechanical prosthetic finger assembly. One embodiment includes a metacarpophalangeal (MCP) pivot configured for swivelable attachment to a hand of a user, a distal coupler, and an articulation assembly rotatively coupled therebetween. A multiple-finger ring configured to receive a user's residual finger and at least one adjacent finger is disposed upon the articulation assembly, and may be adjusted to a target location based on a length of the residual finger. The articulation assembly is configured to utilize vertical movements of the residual and/or adjacent finger(s) within the multiple-finger ring to articulate the distal coupler within a plane parallel to an x-z plane, and the MCP pivot is configured to utilize lateral movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-y plane. Other embodiments are also disclosed.
The disclosure provides apparatus and methods of use pertaining to a bidirectional biomechanical prosthetic finger assembly. In one embodiment, the assembly includes an eccentric metacarpophalangeal (MCP) pivot configured for swivelable attachment to a hand of a user, a distal coupler, and an articulation assembly rotatively coupled therebetween. A ring configured to receive a user's residual finger is disposed upon the articulation assembly, and may be adjusted to a target location based on a length of the residual finger. The articulation assembly is configured to utilize vertical movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-z plane, and the MCP pivot is configured to utilize lateral movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-y plane. Other embodiments are also disclosed.
The disclosure provides apparatus and methods of use pertaining to a bidirectional biomechanical prosthetic finger assembly. In one embodiment, the assembly includes an eccentric metacarpophalangeal (MCP) pivot configured for swivelable attachment to a hand of a user, a distal coupler, and an articulation assembly rotatively coupled therebetween. A ring configured to receive a user's residual finger is disposed upon the articulation assembly, and may be adjusted to a target location based on a length of the residual finger. The articulation assembly is configured to utilize vertical movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-z plane, and the MCP pivot is configured to utilize lateral movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-y plane. Other embodiments are also disclosed.
The disclosure provides apparatus and methods of use pertaining to a bidirectional biomechanical prosthetic finger assembly. In one embodiment, the assembly includes an eccentric metacarpophalangeal (MCP) pivot configured for swivelable attachment to a hand of a user, a distal coupler, and an articulation assembly rotatively coupled therebetween. A ring configured to receive a user's residual finger is disposed upon the articulation assembly, and may be adjusted to a target location based on a length of the residual finger. The articulation assembly is configured to utilize vertical movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-z plane, and the MCP pivot is configured to utilize lateral movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-y plane. Other embodiments are also disclosed.
The disclosure provides apparatus and methods of use pertaining to a bidirectional biomechanical prosthetic finger assembly. One embodiment includes a metacarpophalangeal (MCP) pivot configured for swivelable attachment to a hand of a user, a distal coupler, and an articulation assembly rotatively coupled therebetween. A multiple-finger ring configured to receive a user's residual finger and at least one adjacent finger is disposed upon the articulation assembly, and may be adjusted to a target location based on a length of the residual finger. The articulation assembly is configured to utilize vertical movements of the residual and/or adjacent finger(s) within the multiple-finger ring to articulate the distal coupler within a plane parallel to an x-z plane, and the MCP pivot is configured to utilize lateral movements of the residual finger within the ring to articulate the distal coupler within a plane parallel to an x-y plane. Other embodiments are also disclosed.
A prosthetic finger that is able to provide independent natural movement to mimic a real finger. The present invention utilizes unique connections to provide users with natural movement and restore their ability to perform activities that require the full dexterity of their hands. Additionally, the present invention also allows users to interact with touch screens that normally would not work due to the insulating properties of other traditional prosthetic fingers.
The disclosure provides apparatus and methods of use pertaining to a prosthetic finger assembly. In one embodiment, the assembly includes a coupling tip and a distal ring coupled with the coupling tip. The assembly further includes a proximal ring coupled with the distal ring. A rocker formed in a Y-shape with a first end forming a single prong and a second end forming a split prong may extend between the coupling tip and the proximal ring. The coupling tip, distal ring, proximal ring, and Y-shaped rocker may all be hingedly connected such that movements of the residual finger within the proximal ring and the distal articulate the distal ring together with the rocker to curl and bend the coupling tip. Other embodiments are also disclosed.
The disclosure provides apparatus and methods of use pertaining to a prosthetic finger assembly. In one embodiment, the assembly includes a coupling tip and a distal ring coupled with the coupling tip. The assembly further includes a proximal ring coupled with the distal ring. A rocker formed in an H-shape with a first end forming a first split prong and a second end forming a second split prong may extend between the coupling tip and the proximal ring. The coupling tip, distal ring, proximal ring, and H-shaped rocker may all be hingedly connected such that movements of the residual finger within the proximal ring articulate the distal ring together with the rocker to articulate the coupling tip. Other embodiments are also disclosed.
The disclosure provides apparatus and methods of use pertaining to a prosthetic finger assembly. In one embodiment, the assembly includes a coupling tip and a distal ring coupled with the coupling tip. The assembly further includes a proximal ring coupled with the distal ring. A rocker formed in an H-shape with a first end forming a first split prong and a second end forming a second split prong may extend between the coupling tip and the proximal ring. The coupling tip, distal ring, proximal ring, and H-shaped rocker may all be hingedly connected such that movements of the residual finger within the proximal ring articulate the distal ring together with the rocker to articulate the coupling tip. Other embodiments are also disclosed.
The disclosure provides apparatus and methods of use pertaining to a biomechanical finger brace assembly. In one embodiment, the assembly includes a coupling tip, a proximal ring configured to concentrically receive a user's finger, a distal ring configured to concentrically receive the finger, and a rocker formed in an H-shape. The distal ring and the rocker are pivotally suspended between a proximal coordinated pivot point anchored on the proximal ring and a distal coordinated pivot point anchored on the coupling tip, such that movements of the finger within the proximal ring articulate the distal ring together with the rocker to articulate the coupling tip. The coupling tip may include an open end or an enclosed recess to accept a minimally-amputated or non-amputated finger. Other embodiments are also disclosed.
A61F 2/76 - Moyens pour assembler, ajuster ou tester les prothèses, p.ex. pour mesurer ou équilibrer
A61F 5/01 - Dispositifs orthopédiques, p.ex. dispositifs pour immobiliser ou pour exercer des pressions de façon durable pour le traitement des os fracturés ou déformés, tels que éclisses, plâtres orthopédiques ou attelles
A61F 5/10 - Dispositifs pour rectifier les difformités des doigts
60.
BIO-MECHANICAL PROSTHETIC FINGER WITH H-SHAPED ROCKER
Apparatus and methods of use pertaining to a biomechanically driven prosthetic finger assembly are provided, the assembly including a coupling tip and a distal ring coupled with the coupling tip, a proximal ring coupled with the distal ring, and a rocker formed in an H-shape with a first end forming a first split prong and a second end forming a second split prong. The coupling tip, distal ring, proximal ring, and H-shaped rocker may all be hingedly connected such that movements of a residual finger within the proximal ring articulate the distal ring together with the rocker to articulate the coupling tip.
The disclosure provides apparatus and methods of use pertaining to a prosthetic finger assembly. In one embodiment, the assembly includes a coupling tip and a distal ring coupled with the coupling tip. The assembly further includes a proximal ring coupled with the distal ring. A rocker formed in a Y-shaped with a first end forming a single prong and a second end forming a split prong may extend between the coupling tip and the proximal ring. The coupling tip, distal ring, proximal ring, and Y-shaped rocker may all be hingedly connected such that movements of the residual finger within the proximal ring and the distal articulate the distal ring together with the rocker to curl and bend the coupling tip. Other embodiments are disclosed.
There is disclosed a prosthetic full finger assembly. In an embodiment, the assembly includes a distal phalanges. The assembly further includes a middle phalanges having an operable connection with the distal phalanges. The assembly includes a proximal phalanges ring having an operable connection with the middle phalanges. The assembly includes a proximal phalanges yoke having an operable connection with the proximal phalanges ring. The assembly includes a metacarpal back plate having an operable connection with the proximal phalanges yoke and an operable connection with the proximal phalanges ring. The assembly includes an anchoring portion having an operable connection with the metacarpal back plate at a location proximal of the operable connection of the proximal phalanges ring. Other embodiments are also disclosed.
There is disclosed a prosthetic thumb assembly. In an embodiment, the assembly includes a distal phalanges. The assembly includes a proximal phalanges having an operable connection with the distal phalanges. The assembly includes a thumb strap ring having an operable connection with the distal phalanges. The assembly includes a proximal phalanges yoke having an operable connection with the thumb strap ring. The assembly includes an anchoring portion having an operable connection with the thumb strap ring. Other embodiments are also disclosed.
A61F 2/78 - Moyens pour protéger les prothèses ou pour les assujettir au corps, p.ex. bandages, harnais, courroies ou bas pour moignons
A61F 5/01 - Dispositifs orthopédiques, p.ex. dispositifs pour immobiliser ou pour exercer des pressions de façon durable pour le traitement des os fracturés ou déformés, tels que éclisses, plâtres orthopédiques ou attelles
A61F 2/50 - Prothèses non implantables dans le corps
A prosthetic finger that is able to provide independent natural movement to mimic a real finger. The present invention utilizes unique connections to provide users with natural movement and restore their ability to perform activities that require the full dexterity of their hands. Additionally, the present invention also allows users to interact with touch screens that normally would not work due to the insulating properties of other traditional prosthetic fingers.