Autodesk, Inc.

États‑Unis d’Amérique

Retour au propriétaire

1-100 de 1 522 pour Autodesk, Inc. et 5 filiales Trier par
Recheche Texte
Affiner par
Type PI
        Brevet 1 225
        Marque 297
Juridiction
        États-Unis 1 179
        International 226
        Canada 87
        Europe 30
Propriétaire / Filiale
[Owner] Autodesk, Inc. 1 513
Creative Market Labs, Inc. 3
Creative Market Labs, Inc. 2
Shotgun Software Inc. 2
Moldflow Pty. Ltd 1
Voir plus
Date
Nouveautés (dernières 4 semaines) 8
2024 décembre 8
2024 novembre 3
2024 octobre 5
2024 septembre 3
Voir plus
Classe IPC
G06F 17/50 - Conception assistée par ordinateur 167
G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu 87
G06T 15/00 - Rendu d'images tridimensionnelles [3D] 87
G06T 19/20 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie Édition d'images tridimensionnelles [3D], p.ex. modification de formes ou de couleurs, alignement d'objets ou positionnements de parties 80
G06F 30/13 - Conception architecturale, p.ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes 79
Voir plus
Classe NICE
09 - Appareils et instruments scientifiques et électriques 209
42 - Services scientifiques, technologiques et industriels, recherche et conception 163
41 - Éducation, divertissements, activités sportives et culturelles 60
38 - Services de télécommunications 17
16 - Papier, carton et produits en ces matières 13
Voir plus
Statut
En Instance 182
Enregistré / En vigueur 1 340
  1     2     3     ...     16        Prochaine page

1.

TECHNIQUES FOR SAMPLING AND REMIXING IN IMMERSIVE ENVIRONMENTS

      
Numéro d'application 18391494
Statut En instance
Date de dépôt 2023-12-20
Date de la première publication 2024-12-26
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Ledo Maira, David
  • Anderson, Fraser
  • Fitzmaurice, George William
  • Grossman, Tovi
  • Stemasov, Evgeny

Abrégé

During a sampling stage, a system enables a user to capture samples of 3D digital components within an immersive environment. The 3D digital component can include a 3D object that is rendered and displayed within the immersive environment. The 3D digital components can also include object-property components used to render a 3D object, such as texture, color scheme, animation, motion path, or physical parameters. The samples of the 3D digital components are stored to a sample-palette data structure (SPDS) that organizes the samples. During a remix stage, the system enables a user to apply a sample stored to the SPDS to modify a 3D object and/or an immersive environment. The user can add a sampled object to an immersive environment to modify the immersive environment. The user can apply one or more object-based samples to a 3D object to modify one or more object properties of the 3D object.

Classes IPC  ?

  • G06T 19/00 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie

2.

MONETARY VULNERABILITY ASSESSMENT (MVA) OF A REPARABLE INFRASTRUCTURE SYSTEM

      
Numéro d'application 18823484
Statut En instance
Date de dépôt 2024-09-03
Date de la première publication 2024-12-26
Propriétaire Autodesk, Inc. (USA)
Inventeur(s) Ro, Junje

Abrégé

A method and system provide the ability to estimate the vulnerability of a repairable infrastructure system. A survival curve is constructed for one or more assets. A rehabilitation plan is prescribed for one or more failure states of the repairable infrastructure system. A cost estimation model is constructed for costs associated with the repairs for each of the failure states. A planning basis is specified. A multiple probability simulation is conducted that estimates a potential restoration cost for a possible failure. The simulation is repeated to acquire a distribution of potential restoration costs. A vulnerability estimation is determined and provided based on the distribution.

Classes IPC  ?

  • H04L 41/0823 - Réglages de configuration caractérisés par les objectifs d’un changement de paramètres, p.ex. l’optimisation de la configuration pour améliorer la fiabilité
  • G06Q 10/0637 - Gestion ou analyse stratégiques, p. ex. définition d’un objectif ou d’une cible pour une organisation; Planification des actions en fonction des objectifs; Analyse ou évaluation de l’efficacité des objectifs
  • H04L 41/0826 - Réglages de configuration caractérisés par les objectifs d’un changement de paramètres, p.ex. l’optimisation de la configuration pour améliorer la fiabilité pour la réduction des coûts du réseau

3.

COMPUTER AIDED AUTOMATED SHAPE GENERATION OF THREE-DIMENSIONAL GEOMETRIES

      
Numéro d'application 18341625
Statut En instance
Date de dépôt 2023-06-26
Date de la première publication 2024-12-26
Propriétaire Autodesk, Inc. (USA)
Inventeur(s) Barley, Stephen Alan

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, including: receiving, by a shape modeling computer program, a selection of first geometry defined in a data structure used by the computer program to represent a three-dimensional model of an object and an indication of an amount of complexity reduction, The computer program produces a second geometry defined in the data structure based on the indication of the amount of indicated complexity reduction and taking into account local shape curvature for the first geometry, where the second geometry replaces the first geometry in representing the three-dimensional model of the object. The computer program provides the three-dimensional model of the object, with the second geometry included in the three-dimensional model, for use in manufacturing a physical structure corresponding to the object using one or more computer-controlled manufacturing systems, or for use in displaying the object on a display screen.

Classes IPC  ?

  • G06T 17/20 - Description filaire, p.ex. polygonalisation ou tessellation
  • G06T 17/30 - Description de surfaces, p.ex. description de surfaces polynomiales

4.

TECHNIQUES FOR SAMPLING AND REMIXING IN IMMERSIVE ENVIRONMENTS

      
Numéro d'application 18391498
Statut En instance
Date de dépôt 2023-12-20
Date de la première publication 2024-12-26
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Ledo Maira, David
  • Anderson, Fraser
  • Fitzmaurice, George William
  • Grossman, Tovi
  • Stemasov, Evgeny

Abrégé

During a sampling stage, a system enables a user to capture samples of 3D digital components within an immersive environment. The 3D digital component can include a 3D object that is rendered and displayed within the immersive environment. The 3D digital components can also include object-property components used to render a 3D object, such as texture, color scheme, animation, motion path, or physical parameters. The samples of the 3D digital components are stored to a sample-palette data structure (SPDS) that organizes the samples. During a remix stage, the system enables a user to apply a sample stored to the SPDS to modify a 3D object and/or an immersive environment. The user can add a sampled object to an immersive environment to modify the immersive environment. The user can apply one or more object-based samples to a 3D object to modify one or more object properties of the 3D object.

Classes IPC  ?

  • G06T 19/20 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie Édition d'images tridimensionnelles [3D], p.ex. modification de formes ou de couleurs, alignement d'objets ou positionnements de parties
  • G06T 13/40 - Animation tridimensionnelle [3D] de personnages, p.ex. d’êtres humains, d’animaux ou d’êtres virtuels

5.

AUTODESK EXPERT ELITE

      
Numéro de série 98915643
Statut En instance
Date de dépôt 2024-12-20
Propriétaire Autodesk, Inc. ()
Classes de Nice  ?
  • 35 - Publicité; Affaires commerciales
  • 38 - Services de télécommunications

Produits et services

Providing a website featuring news and information in the field of computer software design and development; administration of a membership program that enables participants to share knowledge, best practices, expertise, and participate in exclusive meetings and events relating to software in the fields of computer aided design, graphics, construction management, architectural design and computer software usage; arranging, organizing and conducting meetups and events in the field of computer software design Providing online chatrooms and electronic bulletin boards for transmission of messages among users in the field of computer software design and development; computer services, namely providing online facilities for real-time interaction with others concerning design and development of software in the fields of computer aided design, graphics, construction management, architectural design and computer software usage; transmission of podcasts

6.

INTERACTIVE GENERATIVE DESIGN WITH SENSITIVITY ANALYSIS AND PROBABILITY VISUALIZATION FOR CATEGORICAL DESIGN VARIABLES

      
Numéro d'application 18414322
Statut En instance
Date de dépôt 2024-01-16
Date de la première publication 2024-12-12
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Ebrahimi, Mehran
  • Cheong, Hyunmin
  • Jayaraman, Pradeep Kumar

Abrégé

Techniques for interactive generative design with sensitivity analysis and probability visualization for categorical design variables include a computer-implemented method for evaluating an impact of categorical design variables on a design problem solution comprises receiving information regarding choices for one or more categorical design variables associated with each of a plurality of design members of a design problem, determining a respective sensitivity of an objective function to the choices for the one or more categorical design variables for each design member of the plurality of design members, determining a respective visual aspect for each design member based on the respective sensitivity, displaying, on a user interface, a graphical depiction of the plurality of design members, wherein each design member is displayed using the respective visual aspect, and displaying, on the user interface, a key for interpreting the respective visual aspects.

Classes IPC  ?

  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p.ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO

7.

INTERACTIVE GENERATIVE DESIGN WITH SENSITIVITY ANALYSIS AND PROBABILITY VISUALIZATION FOR CATEGORICAL DESIGN VARIABLES

      
Numéro d'application 18414348
Statut En instance
Date de dépôt 2024-01-16
Date de la première publication 2024-12-12
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Ebrahimi, Mehran
  • Cheong, Hyunmin
  • Jayaraman, Pradeep Kumar

Abrégé

Techniques for generative design include a computer-implemented method for solving a design problem comprising initializing values for one or more categorical and continuous design variables, and performing a design iteration by generating sample vectors for each of one or more categorical design variables based on the categorical design variable probabilities, solving one or more governing equations for the design problem based on values of the continuous design variables and the sample vectors, computing a value of one or more constraint functions and an objective function, computing first gradients of the objective function and the constraint functions with respect to each of the continuous design variables, computing second gradients of the objective function and the constraint functions with respect to the categorical design variable probabilities, and updating values for the continuous design variables based on the first gradients and values for the categorical design variable probabilities based on the second gradients.

Classes IPC  ?

  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • G06N 7/01 - Modèles graphiques probabilistes, p.ex. réseaux probabilistes

8.

INTERACTIVE GENERATIVE DESIGN WITH SENSITIVITY ANALYSIS AND PROBABILITY VISUALIZATION FOR CATEGORICAL DESIGN VARIABLES

      
Numéro d'application 18414350
Statut En instance
Date de dépôt 2024-01-16
Date de la première publication 2024-12-12
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Ebrahimi, Mehran
  • Cheong, Hyunmin
  • Jayaraman, Pradeep Kumar

Abrégé

Techniques for generative design include a computer-implemented method for solving a design problem comprising initializing values for one or more categorical design variable probabilities and one or more continuous design variables, and performing a design iteration by performing one or more iterations to update the categorial design variable probabilities by generating sample vectors for each of one or more categorical design variables based on the categorical design variable probabilities, computing first gradients of an objective function and one or more constraint functions with respect to the categorical design variable probabilities, and updating values for the categorical design variable probabilities based on the first gradients, then updating the sample vectors based on the updated categorical design variable probability values, computing second gradients of the objective and constraint functions with respect to each of the continuous design variables, and updating values for the continuous design variables based on the second gradients.

Classes IPC  ?

  • G06F 30/13 - Conception architecturale, p.ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes

9.

ITERATIVE SHAPE MODIFICATION PROVIDING MAXIMUM SUSTAINABLE LOADS DURING COMPUTER AIDED GENERATIVE DESIGN

      
Numéro d'application 18321628
Statut En instance
Date de dépôt 2023-05-22
Date de la première publication 2024-11-28
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Meshkat, Siavash Navadeh
  • Rodriguez, Jesus
  • Eom, Jaesung
  • Weiss, Benjamin Mckittrick
  • Burla, Ravi Kumar
  • Morrison, Andrew Allan

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of physical structures include: obtaining a design space for a modeled object and boundary conditions including a location where load is applied; checking whether, the boundary conditions include a specified direction for the load; assigning a direction for the load at the location when no specified direction is included; iteratively modifying a three dimensional shape in the design space in accordance with a physical response of the modeled object determined by a numerical simulation employing a linear analysis, where the iterative modification comprises determining a respective maximum sustainable load for each of two or more versions of the modified three dimensional shape; presenting to a user the two or more versions of the modeled object having different shapes; and receiving a user selection of one of the two or more versions of the modeled object.

Classes IPC  ?

  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • B29C 64/393 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive
  • B33Y 50/02 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive
  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p.ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO
  • G06F 111/10 - Modélisation numérique
  • G06F 113/10 - Fabrication additive, p.ex. impression en 3D
  • G06F 119/14 - Analyse des forces ou optimisation des forces, p.ex. forces statiques ou dynamiques
  • G06F 119/18 - Analyse de fabricabilité ou optimisation de fabricabilité

10.

USER FEEDBACK MECHANISM FOR SOFTWARE APPLICATIONS

      
Numéro d'application 18784690
Statut En instance
Date de dépôt 2024-07-25
Date de la première publication 2024-11-21
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Wannamaker, Kendra Ann
  • Matejka, Justin Frank
  • Vermeulen, Jo Karel
  • Fitzmaurice, George

Abrégé

A feedback mechanism that reports software issues between users of software applications and the developers of the software applications. The feedback mechanism generates feedback logs that capture moments of user frustration at the moment a user encounters issues with using a particular software application executing on a client device. The feedback mechanism is triggered to generate a feedback log by the user via a predetermined set of user inputs. Once generated, the feedback log captures an associated importance level, a user description, and/or context information (such as application and command activity information) for the particular software application and one or more other software applications that interacted with the particular software application executing on the client device. The feedback log can also capture multimedia content such as audio, images, and videos. The feedback log is then transmitted to a server of a developer of the particular software application.

Classes IPC  ?

  • G06F 11/36 - Prévention d'erreurs en effectuant des tests ou par débogage de logiciel
  • G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p.ex. des interruptions ou des opérations d'entrée–sortie

11.

PROJECTING COST METRICS FROM AN ENGINEERING MODEL TO AN ARCHITECTURAL MODEL

      
Numéro d'application 18141206
Statut En instance
Date de dépôt 2023-04-28
Date de la première publication 2024-11-07
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Bandara, Konara Mudiyanselage Kosala
  • Abdul Majeed, Musabbir
  • Kellner, Hans

Abrégé

A computer-implemented method includes obtaining an engineering model of a physical structure, the engineering model specifying structural elements distributed among different levels of the structure; obtaining a value of a cost metric for each of the structural elements; determining an accumulated value of the cost metric for at least one area of an architectural massing model of the structure, the at least one area being associated with a predetermined level of the different levels of the structure, the determining including calculating a direct contribution to the accumulated value of the cost metric, and calculating an indirect contribution to the accumulated value of the cost metric; and displaying the accumulated value of the cost metric for the at least one area of the architectural massing model of the structure.

Classes IPC  ?

  • G06Q 10/0631 - Planification, affectation, distribution ou ordonnancement de ressources d’entreprises ou d’organisations

12.

EFFICIENT MODELING OF ASSEMBLIES USING GENERATIVE DESIGN

      
Numéro d'application 18348303
Statut En instance
Date de dépôt 2023-07-06
Date de la première publication 2024-10-17
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Rodriguez, Jesus
  • Burla, Ravi Kumar
  • Eom, Jaesung
  • Meshkat, Siavash Navadeh
  • Weiss, Benjamin Mckittrick

Abrégé

One embodiment of the present invention sets forth a technique for modeling assemblies using generative design techniques. The technique includes determining a portion of an assembly to model as a superelement and computing a mathematical model representing the superelement. The technique further includes eliminating one or more interior degrees of freedom from the mathematical model and computing a reduced stiffness matrix corresponding to the superelement by solving one or more equations associated with the mathematical model using an iterative sparse matrix solver.

Classes IPC  ?

  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu

13.

DIVERSITY-BASED OPTIMIZATION OF GENERATIVE GEOMETRY SYSTEMS

      
Numéro d'application 18301888
Statut En instance
Date de dépôt 2023-04-17
Date de la première publication 2024-10-17
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Gaier, Adam James
  • Stoddart, James
  • Villaggi, Lorenzo

Abrégé

One embodiment of the present invention sets forth a technique for generating a modular design for a construction project. The technique includes determining a first set of candidate designs for the construction project. The technique also includes for each candidate design included in the first set of candidate designs, generating a set of design options based on one or more portions of the candidate design and determining a set of performance metrics and a set of attributes associated with the set of design options. The technique further includes generating a second set of candidate designs for the construction project based on the sets of design options associated with the first set of candidate designs, the sets of performance metrics associated with the sets of design options, and the sets of attributes associated with the sets of design options.

Classes IPC  ?

  • G06F 30/13 - Conception architecturale, p.ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes

14.

TECHNIQUES FOR AUTOMATICALLY GENERATING DESIGNS HAVING CHARACTERISTIC TOPOLOGIES FOR URBAN DESIGN PROJECTS

      
Numéro d'application 18595173
Statut En instance
Date de dépôt 2024-03-04
Date de la première publication 2024-10-17
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Benjamin, David
  • Stoddart, James
  • Villaggi, Lorenzo
  • Nagy, Danil

Abrégé

An urban design pipeline automatically generates design options for an urban design project. The urban design pipeline includes a geometry engine and an evaluation engine. The geometry engine analyzes design criteria, design objectives, and design heuristics associated with the urban design project and then generates numerous candidate designs. The design criteria specify a property boundary associated with a region of land to be developed. The design objectives indicate a specific type of topology that is derived from an existing urban layout. The design heuristics include different sets of construction rules for generating designs with specific types of topologies. The geometry engine generates candidate designs that conform to the property boundary and have topological characteristics in common with the existing urban layout.

Classes IPC  ?

  • G06F 30/13 - Conception architecturale, p.ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes
  • G06F 3/04815 - Interaction s’effectuant dans un environnement basé sur des métaphores ou des objets avec un affichage tridimensionnel, p.ex. modification du point de vue de l’utilisateur par rapport à l’environnement ou l’objet
  • G06F 3/04847 - Techniques d’interaction pour la commande des valeurs des paramètres, p.ex. interaction avec des règles ou des cadrans
  • G06F 111/02 - CAO dans un environnement de réseau, p.ex. CAO coopérative ou simulation distribuée
  • G06F 111/04 - CAO basée sur les contraintes
  • G06F 111/06 - Optimisation multi-objectif, p.ex. optimisation de Pareto utilisant le recuit simulé, les algorithmes de colonies de fourmis ou les algorithmes génétiques
  • G06F 111/20 - CAO de configuration, p.ex. conception par assemblage ou positionnement de modules sélectionnés à partir de bibliothèques de modules préconçus
  • G06N 3/126 - Algorithmes évolutionnaires, p.ex. algorithmes génétiques ou programmation génétique
  • G06Q 10/0631 - Planification, affectation, distribution ou ordonnancement de ressources d’entreprises ou d’organisations
  • G06Q 40/12 - Comptabilité
  • G06Q 50/16 - Immobilier
  • G06T 15/00 - Rendu d'images tridimensionnelles [3D]
  • G06T 17/05 - Modèles géographiques

15.

MACHINE LEARNING TECHNIQUES FOR SKETCH-TO-3D SHAPE GENERATION

      
Numéro d'application 18488383
Statut En instance
Date de dépôt 2023-10-17
Date de la première publication 2024-10-03
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Atherton, Evan Patrick
  • Asgari Taghanaki, Saeid
  • Jayaraman, Pradeep Kumar
  • Lambourne, Joseph George
  • Rampini, Arianna
  • Sanghi, Aditya
  • Shayani, Hooman

Abrégé

One embodiment of the present invention sets forth a technique for performing 3D shape generation. This technique includes generating semantic features associated with an input sketch. The technique also includes generating, using a generative machine learning model, a plurality of predicted shape embeddings from a set of fully masked shape embeddings based on the semantic features associated with the input sketch. The technique further includes converting the predicted shape embeddings into one or more 3D shapes. The input sketch may be a casual doodle, a professional illustration, or a 2D CAD software rendering. Each of the one or more 3D shapes may be a voxel representation, an implicit representation, or a 3D CAD software representation.

Classes IPC  ?

  • G06T 17/00 - Modélisation tridimensionnelle [3D] pour infographie
  • G06T 11/20 - Traçage à partir d'éléments de base, p.ex. de lignes ou de cercles
  • G06V 10/44 - Extraction de caractéristiques locales par analyse des parties du motif, p.ex. par détection d’arêtes, de contours, de boucles, d’angles, de barres ou d’intersections; Analyse de connectivité, p.ex. de composantes connectées

16.

PROVIDING AWARENESS OF PRIVACY-RELATED ACTIVITIES IN VIRTUAL AND REAL-WORLD ENVIRONMENTS

      
Numéro d'application 18458924
Statut En instance
Date de dépôt 2023-08-30
Date de la première publication 2024-10-03
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Do, Youngwook
  • Anderson, Fraser
  • Brudy, Frederik
  • Fitzmaurice, George William

Abrégé

One embodiment of the present invention sets forth a technique for providing awareness of privacy-related activities. The technique includes determining a privacy level associated with a user of an extended reality environment. The technique also includes presenting, using an internal display of a headset, one or more internal indicators identifying a location of a bystander located in a real-world environment, wherein a level of detail of each internal indicator is based on the privacy level associated with the user. The technique further includes presenting, using an external display, one or more external indicators that include a monitoring indicator representing being captured by the headset and presented to the user via the headset, and further include a user activity indicator representing one or more activities of the user, wherein a level of detail of the user activity indicator is based on the privacy level associated with the user.

Classes IPC  ?

  • G06T 17/00 - Modélisation tridimensionnelle [3D] pour infographie
  • G02B 27/01 - Dispositifs d'affichage "tête haute"

17.

INTEGRATION OF A TWO-DIMENSIONAL INPUT DEVICE INTO A THREE-DIMENSIONAL COMPUTING ENVIRONMENT

      
Numéro d'application 18732106
Statut En instance
Date de dépôt 2024-06-03
Date de la première publication 2024-09-26
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Zhou, Qian
  • Anderson, Fraser
  • Fitzmaurice, George

Abrégé

A workstation enables operation of a 2D input device with a 3D interface. A cursor position engine determines the 3D position of a cursor controlled by the 2D input device as the cursor moves within a 3D scene displayed on a 3D display. The cursor position engine determines the 3D position of the cursor for a current frame of the 3D scene based on a current user viewpoint, a current mouse movement, a CD gain value, a Voronoi diagram, and an interpolation algorithm, such as the Laplacian algorithm. A CD gain engine computes CD gain optimized for the 2D input device operating with the 3D interface. The CD gain engine determines the CD gain based on specifications for the 2D input device and the 3D display. The techniques performed by the cursor position engine and the techniques performed by the CD gain engine can be performed separately or in conjunction.

Classes IPC  ?

  • G06F 3/0346 - Dispositifs de pointage déplacés ou positionnés par l'utilisateur; Leurs accessoires avec détection de l’orientation ou du mouvement libre du dispositif dans un espace en trois dimensions [3D], p.ex. souris 3D, dispositifs de pointage à six degrés de liberté [6-DOF] utilisant des capteurs gyroscopiques, accéléromètres ou d’inclinaiso
  • G02B 30/50 - Systèmes ou appareils optiques pour produire des effets tridimensionnels [3D], p.ex. des effets stéréoscopiques l’image étant construite à partir d'éléments d'image répartis sur un volume 3D, p.ex. des voxels
  • G06F 3/038 - Dispositions de commande et d'interface à cet effet, p.ex. circuits d'attaque ou circuits de contrôle incorporés dans le dispositif
  • G06T 19/00 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie

18.

GENERATIVE SHELL DESIGN FOR SIMULATIONS

      
Numéro d'application 18670377
Statut En instance
Date de dépôt 2024-05-21
Date de la première publication 2024-09-19
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Grau, Michael
  • Harris, Andrew John

Abrégé

A method and system provide the ability to generate models. A generative shelled base is created as a hollow computer-aided design (CAD) design. A t-spline mid-surface shell is created from the generative shelled base, which is then used to create a shell mesh model. A t-spline solid body is created from the generative shelled base, which is used to create an internal support structure that is converted into a shell CAD geometry, which is used to create a support structure mid-surface shell. The support structure mid-surface shell is combined with the shell mesh model into a generative mid-surface mesh that is used in a computer-aided engineering (CAE) crash simulation. The generated shelled base is combined with the shell CAD geometry into a generative shelled solid that is utilized in an additive build simulation.

Classes IPC  ?

  • G06F 30/15 - Conception de véhicules, d’aéronefs ou d’embarcations
  • B33Y 10/00 - Procédés de fabrication additive
  • B33Y 50/00 - Acquisition ou traitement de données pour la fabrication additive
  • G05B 19/4099 - Usinage de surface ou de courbe, fabrication d'objets en trois dimensions 3D, p.ex. fabrication assistée par ordinateur
  • G06F 30/00 - Conception assistée par ordinateur [CAO]
  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p.ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO
  • G06F 30/17 - Conception mécanique paramétrique ou variationnelle
  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • G06F 30/23 - Optimisation, vérification ou simulation de l’objet conçu utilisant les méthodes des éléments finis [MEF] ou les méthodes à différences finies [MDF]
  • G06T 17/20 - Description filaire, p.ex. polygonalisation ou tessellation

19.

DETERMINING DRAINAGE CONSTRAINTS AND GEOMETRIES IN A TRIANGULAR MESH

      
Numéro d'application 18671780
Statut En instance
Date de dépôt 2024-05-22
Date de la première publication 2024-09-19
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Koch, Valentin R.
  • Hu, Weiwei

Abrégé

A method and system provide the ability to design a terrain surface. A triangular surface mesh representative of an existing surface is obtained and consists of triangles that are connected by vertices and edges. A drain intention is specified for the terrain surface through a geometry that is a point or line. The drain intention defines a drainage flow that influences a shape of the terrain surface. The mesh is modified to prevent a drain conflict between mesh triangles. A drain direction is autonomously determined for each of the mesh triangles based on the drain intention. The determination generates a drain pattern that is used to shape the terrain surface.

Classes IPC  ?

  • G06T 17/20 - Description filaire, p.ex. polygonalisation ou tessellation
  • G06F 30/13 - Conception architecturale, p.ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes
  • G06F 111/04 - CAO basée sur les contraintes
  • G06T 17/05 - Modèles géographiques
  • G06T 19/20 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie Édition d'images tridimensionnelles [3D], p.ex. modification de formes ou de couleurs, alignement d'objets ou positionnements de parties

20.

MACHINE LEARNING TECHNIQUES FOR DIRECT BOUNDARY REPRESENTATION SYNTHESIS

      
Numéro d'application 18407327
Statut En instance
Date de dépôt 2024-01-08
Date de la première publication 2024-08-29
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Jayaraman, Pradeep Kumar
  • Desai, Nishkrit
  • Lambourne, Joseph George
  • Morris, Nigel Jed Wesley
  • Sanghi, Aditya
  • Willis, Karl D. D.

Abrégé

One embodiment of the present invention sets forth a technique for generating 3D CAD model representations of three-dimensional objects. The technique includes generating a vertex list that includes a first ordered list of elements representing vertex coordinates and sampling a first index from the vertex list based on a first probability distribution. The technique also includes generating an edge list and sampling a second index from one or more indices into the edge list. The technique further includes generating an element in a face list, dereferencing the element in the face list to retrieve an element in the edge list, and dereferencing an element in the edge list to retrieve a vertex coordinate from an element in the vertex list. The technique further includes generating an indexed boundary representation for the 3D CAD model based on at least the vertex list, the edge list, and the face list.

Classes IPC  ?

  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p.ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO
  • G06N 7/01 - Modèles graphiques probabilistes, p.ex. réseaux probabilistes

21.

MACHINE LEARNING TECHNIQUES FOR DIRECT BOUNDARY REPRESENTATION SYNTHESIS

      
Numéro d'application 18407320
Statut En instance
Date de dépôt 2024-01-08
Date de la première publication 2024-08-29
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Jayaraman, Pradeep Kumar
  • Desai, Nishkrit
  • Lambourne, Joseph George
  • Morris, Nigel Jed Wesley
  • Sanghi, Aditya
  • Willis, Karl D. D.

Abrégé

One embodiment of the present invention sets forth a technique for generating 3D CAD model representations of three-dimensional objects in boundary representation format. The technique includes generating an indexed boundary representation of the generated 3D CAD model. The indexed boundary representation includes ordered lists of vertices, edges, and faces defining the generated 3D CAD model, where the edges are encoded as references to vertices in the vertex list and the face are encoded as references to edges in the edge list. The technique further includes converting the indexed boundary representation of the generated 3D CAD model into a boundary representation of the 3D CAD model through the application of heuristic algorithms to the indexed boundary representation. The technique is optionally guided by conditional data associated with the 3D CAD model to be generated, including a 2D image, a 3D collection of volume elements, or a 3D point cloud.

Classes IPC  ?

22.

CONSTRAINT-ORIENTED PROGRAMMING APPROACH TO MECHANICAL ASSEMBLY DESIGN

      
Numéro d'application 18642546
Statut En instance
Date de dépôt 2024-04-22
Date de la première publication 2024-08-15
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Cheong, Hyunmin
  • Ebrahimi, Mehran
  • Iorio, Francesco
  • Butscher, Adrian

Abrégé

A design engine systematically explores a design space associated with a design problem related to mechanical assemblies. The design engine implements a constraint programming approach to produce mechanical assembly configurations that adhere to a set of design constraints. For each feasible configuration, the design engine then optimizes various parameters to generate design options that meet a set of design objectives. With these techniques, the design space can be explored very quickly to generate significantly more feasible design options for the mechanical assembly than possible with conventional manual approaches. Accordingly, numerous design options can be generated that may otherwise never be produced using those conventional approaches.

Classes IPC  ?

  • G06F 30/17 - Conception mécanique paramétrique ou variationnelle
  • G06F 30/15 - Conception de véhicules, d’aéronefs ou d’embarcations
  • G06F 111/04 - CAO basée sur les contraintes

23.

TECHNIQUES FOR TRIAL-AND-ERROR LEARNING IN COMPLEX APPLICATION ENVIRONMENTS

      
Numéro d'application 18642624
Statut En instance
Date de dépôt 2024-04-22
Date de la première publication 2024-08-15
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Masson, Damien Paul Andre
  • Vermeulen, Jo Karel
  • Fitzmaurice, George William
  • Matejka, Justin Frank

Abrégé

One embodiment of a computer-implemented method for automatically generating command recommendations for a software workflow comprises identifying a plurality of command sequences stored in a database based on a current command being interacted with in a graphical user interface; computing a score for each command sequence included in the plurality of command sequences based on one or more commands included in the command sequence and one or more commands included in a command history; determining at least one command sequence included in the plurality of command sequences to output based on the scores; and outputting the at least one command sequence for display.

Classes IPC  ?

  • G06F 11/14 - Détection ou correction d'erreur dans les données par redondance dans les opérations, p.ex. en utilisant différentes séquences d'opérations aboutissant au même résultat
  • G06F 3/0482 - Interaction avec des listes d’éléments sélectionnables, p.ex. des menus
  • G06F 3/0484 - Techniques d’interaction fondées sur les interfaces utilisateur graphiques [GUI] pour la commande de fonctions ou d’opérations spécifiques, p.ex. sélection ou transformation d’un objet, d’une image ou d’un élément de texte affiché, détermination d’une valeur de paramètre ou sélection d’une plage de valeurs
  • G06F 9/38 - Exécution simultanée d'instructions
  • G06F 9/451 - Dispositions d’exécution pour interfaces utilisateur
  • G06F 9/48 - Lancement de programmes; Commutation de programmes, p.ex. par interruption
  • G09B 19/00 - Enseignement non couvert par d'autres groupes principaux de la présente sous-classe

24.

SEAMLESS THREE-DIMENSIONAL DESIGN COLLABORATION

      
Numéro d'application 18637139
Statut En instance
Date de dépôt 2024-04-16
Date de la première publication 2024-08-08
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Reddy, Shatakirti
  • Nirupam, Nirupam
  • Kumar, Pradeep
  • Chauhan, Sandip Mansukhlal

Abrégé

A method, system, and article of manufacture provide for multi-user collaboration on a three-dimensional (3D) design. The 3D design is acquired in a computer-aided design (CAD) application. A commenting process for a comment to be associated with a selected part of the 3D design is activated. Textual user input for the comment is dynamically processed as the comment is received. The processing recognizes that the text relates to creating or modifying the selected part, retrieves a list of alternative parts (based on similarities between the alternative parts and the selected part), and displays a graphic representation of an alternative part. An alternative part is selected and inserted in the comment as a proposed replacement part. The comment including the proposed replacement part is provided to another user.

Classes IPC  ?

  • G06F 30/00 - Conception assistée par ordinateur [CAO]
  • G06F 40/205 - Analyse syntaxique
  • G06F 40/284 - Analyse lexicale, p.ex. segmentation en unités ou cooccurrence
  • G06F 40/30 - Analyse sémantique
  • G06F 111/02 - CAO dans un environnement de réseau, p.ex. CAO coopérative ou simulation distribuée
  • G06F 111/20 - CAO de configuration, p.ex. conception par assemblage ou positionnement de modules sélectionnés à partir de bibliothèques de modules préconçus

25.

DATA-DRIVEN MAPPING FUNCTION FOR VISUAL EFFECTS APPLICATIONS USING MESH SEGMENTATION

      
Numéro d'application US2024012582
Numéro de publication 2024/158791
Statut Délivré - en vigueur
Date de dépôt 2024-01-23
Date de publication 2024-08-02
Propriétaire AUTODESK, INC. (USA)
Inventeur(s) Roy, Bruno

Abrégé

A volumetric based three-dimensional (3D) object is segmented. A training dataset of 3D training objects is acquired. A neural network is defined by multiple layers including a linear layer and a graph layer. The linear layer operates on 2D objects and provides inputs to the graph layer that performs convolution operations on vertices of the 3D objects. A model, that approximates a shape diameter function (SDF) determines neighborhood diameters including a distance from a vertex of the 3D objects to an antipodal vertex. The model is generated by iterating through the 3D objects using the neural network to converge on weights of SDF features. An input mesh is acquired and the converged weights are used to approximate SDF values. The SDF values are input to a graph cut algorithm that generates vertex clusters defining a segmented part of the input mesh. The segmented part is visually displayed or provided.

Classes IPC  ?

  • G06T 7/10 - Découpage; Détection de bords
  • G06T 15/00 - Rendu d'images tridimensionnelles [3D]
  • G06N 3/08 - Méthodes d'apprentissage
  • G06F 30/10 - CAO géométrique
  • G06N 3/04 - Architecture, p.ex. topologie d'interconnexion
  • H04N 13/00 - Systèmes vidéo stéréoscopiques; Systèmes vidéo multi-vues; Leurs détails

26.

AGENT-BASED SLICING FOR 3D OBJECT MODELS

      
Numéro d'application 18629686
Statut En instance
Date de dépôt 2024-04-08
Date de la première publication 2024-08-01
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Atherton, Evan Patrick
  • Thomasson, David
  • Conti, Maurice Ugo
  • Kerrick, Heather
  • Cote, Nicholas
  • Li, Hui

Abrégé

An agent engine allocates a collection of agents to scan the surface of an object model. Each agent operates autonomously and implements particular behaviors based on the actions of nearby agents. Accordingly, the collection of agents exhibits swarm-like behavior. Over a sequence of time steps, the agents traverse the surface of the object model. Each agent acts to avoid other agents, thereby maintaining a relatively consistent distribution of agents across the surface of the object model over all time steps. At a given time step, the agent engine generates a slice through the object model that intersects each agent in a group of agents. The slice associated with a given time step represents a set of locations where material should be deposited to fabricate a 3D object. Based on a set of such slices, a robot engine causes a robot to fabricate the 3D object.

Classes IPC  ?

  • G05B 19/4099 - Usinage de surface ou de courbe, fabrication d'objets en trois dimensions 3D, p.ex. fabrication assistée par ordinateur
  • B22D 23/00 - Procédés de coulée non prévus dans les groupes
  • B23K 9/04 - Soudage pour d'autres buts que l'assemblage de pièces, p.ex. soudage de rechargement
  • B33Y 50/00 - Acquisition ou traitement de données pour la fabrication additive

27.

COMPUTER-AIDED TECHNIQUES FOR DESIGNING 3D SURFACES BASED ON GRADIENT SPECIFICATIONS

      
Numéro d'application 18419443
Statut En instance
Date de dépôt 2024-01-22
Date de la première publication 2024-07-18
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Banadyha, Andriy
  • Davis, Mark Thomas

Abrégé

In various embodiments, a gradient modeling application automatically generates designs of three-dimensional (3D) objects. The gradient modeling application generates a set of points based on a resolution and a perimeter. The gradient modeling application computes a set of displacement values based on the set of points, a first two-dimensional (2D) border, and a first displacement parameter that is associated with the first 2D border. Based on the set of displacement values, the gradient modeling application generates a 3D object design.

Classes IPC  ?

  • G06T 17/20 - Description filaire, p.ex. polygonalisation ou tessellation
  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p.ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO

28.

TRAINING MACHINE LEARNING MODELS FOR CONTRASTIVE MULTI-FORMAT SHAPE SIMILARITY AND SEARCH

      
Numéro d'application 18150135
Statut En instance
Date de dépôt 2023-01-04
Date de la première publication 2024-07-04
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Schreiber, Andre Maurice
  • Zhang, Ran

Abrégé

One embodiment of the present invention sets forth a technique for training machine learning models to generate embeddings for different shapes. The technique includes executing two or more machine learning models to generate embeddings from shapes associated with multiple formats. The technique also includes computing a first plurality of similarities between positive pairs of embeddings that include two different embeddings for the same shape, and computing a second plurality of similarities between negative pairs of embeddings that include embeddings for different shapes. The technique further includes training the machine learning models based on the computed similarities.

Classes IPC  ?

29.

CONTRASTIVE MULTI-FORMAT SHAPE SIMILARITY AND SEARCH

      
Numéro d'application 18150129
Statut En instance
Date de dépôt 2023-01-04
Date de la première publication 2024-07-04
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Schreiber, Andre Maurice
  • Zhang, Ran

Abrégé

One embodiment of the present invention sets forth a technique for analyzing similarities associated with a plurality of shapes. The technique includes determining a first embedding for a first query shape associated with a first format and a first plurality of embeddings for a first plurality of shapes associated with a second format, wherein the first embedding and the first plurality of embeddings are generated by one or more trained machine learning models based on the first query shape and the first plurality of shapes. The technique also includes matching, based on the first embedding and the first plurality of embeddings, the first query shape to one or more shapes included in the first plurality of shapes. The technique further includes outputting the one or more shapes in a first response associated with the first query shape.

Classes IPC  ?

  • G06F 16/532 - Formulation de requêtes, p.ex. de requêtes graphiques
  • G06F 16/54 - Navigation; Visualisation à cet effet

30.

DUAL LATTICE REPRESENTATION FOR CRASH SIMULATION AND MANUFACTURING

      
Numéro d'application 18589372
Statut En instance
Date de dépôt 2024-02-27
Date de la première publication 2024-06-20
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Grau, Michael
  • Gibbe, Klaus

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for designing and manufacturing physical objects including lattice structures include, in one aspect, a method including: providing a three-dimensional model including a dual representation of a lattice structure, wherein both a shell mesh model and a solid body model of the lattice structure are producible from an additional model of the lattice structure, and beams of the lattice structure in the solid body model are hollow; performing numerical simulation using at least the shell mesh model of the dual representation to produce a current numerical assessment; modifying the additional model of the dual representation based on the current numerical assessment; repeating the performing and the modifying one or more times until the numerical simulation indicates the lattice structure satisfies at least one response requirement; and providing at least the solid body model for use in manufacturing the lattice structure.

Classes IPC  ?

  • G05B 19/4099 - Usinage de surface ou de courbe, fabrication d'objets en trois dimensions 3D, p.ex. fabrication assistée par ordinateur
  • G06F 30/10 - CAO géométrique
  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • G06F 111/10 - Modélisation numérique
  • G06F 113/10 - Fabrication additive, p.ex. impression en 3D

31.

CUSTOMIZABLE REINFORCEMENT LEARNING OF COLUMN PLACEMENT IN STRUCTURAL DESIGN

      
Numéro d'application 18595179
Statut En instance
Date de dépôt 2024-03-04
Date de la première publication 2024-06-20
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Wang, Yi
  • Nourbakhsh, Medhi

Abrégé

One embodiment of the present invention sets forth a technique for performing machine learning. The technique includes applying one or more placement rules to a floorplan of a building to generate a set of candidate column locations in the floorplan. The technique also includes selecting, using a first reinforcement learning (RL) agent, one or more column locations from the set of candidate column locations based on a structural stability of the one or more column locations. The technique further includes outputting the floorplan that includes the one or more column locations as a structural design for the building.

Classes IPC  ?

  • G06F 30/13 - Conception architecturale, p.ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes
  • G06F 30/27 - Optimisation, vérification ou simulation de l’objet conçu utilisant l’apprentissage automatique, p.ex. l’intelligence artificielle, les réseaux neuronaux, les machines à support de vecteur [MSV] ou l’apprentissage d’un modèle
  • G06N 20/00 - Apprentissage automatique

32.

ACTIVE AND PASSIVE QUERYING OF SPATIAL RECORDINGS

      
Numéro d'application 18085386
Statut En instance
Date de dépôt 2022-12-20
Date de la première publication 2024-06-20
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Mahadevan, Karthik
  • Grossman, Tovi
  • Anderson, Fraser
  • Fitzmaurice, George William
  • Zhou, Qian

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for searching through spatial recordings by constructing queries. One of the methods include constructing a query based on input received at a three-dimensional (3D) space displayed at a visual programming interface, wherein the input includes positioning of objects at 3D positions within the 3D space over time, wherein the input defines at least one spatial orientation between at least two objects from the objects in the 3D space; executing the query to search a database of 3D recordings to find at least one segment from at least one 3D recording that includes the at least two objects and matches the spatial orientation between the at least two objects, as defined in the input, at a specific point in time; and presenting the at least one segment from the at least one 3D recording via the visual programming interface.

Classes IPC  ?

  • G06F 16/9032 - Formulation de requêtes
  • G06T 19/20 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie Édition d'images tridimensionnelles [3D], p.ex. modification de formes ou de couleurs, alignement d'objets ou positionnements de parties

33.

HYBRID SURFACE MODELLING WITH SUBDIVISION SURFACES AND NURBS SURFACES

      
Numéro d'application 18429258
Statut En instance
Date de dépôt 2024-01-31
Date de la première publication 2024-06-06
Propriétaire Autodesk, Inc. (USA)
Inventeur(s) Lupas, Dan Mircea

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of structures include, in one aspect, a method including: providing a hybrid surface model including a subdivision surface, a set of NURBS surfaces (which are directly editable using NURBS modeling tools) representing a limit surface of the subdivision surface, and topological information for the limit surface, where a modified NURBS surface has an associated history procedure specifying a previous direct edit of the modified NURBS surface; receiving input to modify the subdivision surface; obtaining an updated limit surface for the subdivision surface responsive to the input; finding the modified NURBS surface, which has a replacement NURBS surface for the updated limit surface, using the topological information; updating the modified NURBS surface with the replacement NURBS surface; and applying the previous direct edit to the replacement NURBS surface using the associated history procedure.

Classes IPC  ?

  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p.ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO
  • B29C 64/386 - Acquisition ou traitement de données pour la fabrication additive
  • B33Y 50/00 - Acquisition ou traitement de données pour la fabrication additive
  • G06T 11/20 - Traçage à partir d'éléments de base, p.ex. de lignes ou de cercles
  • G06T 17/30 - Description de surfaces, p.ex. description de surfaces polynomiales

34.

DUAL MODEL SHAPE SYNTHESIS

      
Numéro d'application 17990301
Statut En instance
Date de dépôt 2022-11-18
Date de la première publication 2024-05-23
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Morris, Nigel Jed Wesley
  • Butscher, Adrian Adam Thomas
  • Jayaraman, Pradeep Kumar

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products include: obtaining a design space for a modeled object, for which a corresponding physical structure is to be manufactured, and one or more design criteria for the modeled object; iteratively modifying a first three-dimensional shape of the modeled object in the design space in accordance with the one or more design criteria, the iteratively modifying includes forming a second three-dimensional shape of the modeled object based on the first three-dimensional shape of the modeled object, where the second three-dimensional shape conforms to a predefined shape-type requirement, and penalizing modifications of the first three-dimensional shape that deviate from the second three-dimensional shape; and providing the first or second three dimensional shape of the modeled object for use in manufacturing the physical structure using one or more computer-controlled manufacturing systems.

Classes IPC  ?

  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p.ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO

35.

PROCESS-AWARE ADDITIVE COMPUTER AIDED MANUFACTURING

      
Numéro d'application 17990521
Statut En instance
Date de dépôt 2022-11-18
Date de la première publication 2024-05-23
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Tlegenov, Yedige
  • Gibbe, Klaus

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for providing instructions for printing of 3D objects. One of the methods includes obtaining i) information regarding one or more geometric features of a 3D model of an object to be printed by an extrusion-based 3D printer and ii) process parameters for use in printing; generating, by the computer-aided manufacturing environment, print instructions for the printing of the 3D object by the extrusion-based 3D printer in a series of multiple layers, wherein modified process parameters are generated as part of the print instructions by modifying the obtained process parameters for a proper subset of layers based on the information regarding the one or more geometric features of the 3D model of the object; and providing, by the computer-aided manufacturing environment, the print instructions comprising the modified process parameters to operate the extrusion-based 3D printer to print the object.

Classes IPC  ?

  • B29C 64/393 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive
  • B29C 64/118 - Procédés de fabrication additive n’utilisant que des matériaux liquides ou visqueux, p.ex. dépôt d’un cordon continu de matériau visqueux utilisant un matériau filamentaire mis en fusion, p.ex. modélisation par dépôt de fil en fusion [FDM]
  • B33Y 30/00 - Appareils pour la fabrication additive; Leurs parties constitutives ou accessoires à cet effet
  • B33Y 50/02 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive

36.

UV MAPPING ON 3D OBJECTS WITH THE USE OF ARTIFICIAL INTELLIGENCE

      
Numéro d'application 18429283
Statut En instance
Date de dépôt 2024-01-31
Date de la première publication 2024-05-23
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Casallas Suarez, Juan Sebastian
  • Lepretre, Sacha
  • Vivona, Salvatore Giuliano
  • Macdonald, Joseph David
  • Villeneuve, Bryan
  • Thakar, Viral Bankimbhai
  • Roy, Bruno
  • Lange, Hervé Michel
  • Teimury, Fatemeh

Abrégé

Various embodiments set forth systems and techniques for generating seams for a 3D model. The techniques include generating, based on the 3D model, one or more inputs for one or more trained machine learning models; providing the one or more inputs to the one or more trained machine learning models; receiving, from the one or more trained machine learning models, seam prediction data generated based on the one or more inputs; and placing one or more predicted seams on the 3D model based on the seam prediction data.

Classes IPC  ?

  • G06T 15/20 - Calcul de perspectives
  • G06F 18/214 - Génération de motifs d'entraînement; Procédés de Bootstrapping, p.ex. ”bagging” ou ”boosting”
  • G06N 20/00 - Apprentissage automatique
  • G06T 15/04 - Mappage de texture
  • G06T 17/10 - Description de volumes, p.ex. de cylindres, de cubes ou utilisant la GSC [géométrie solide constructive]
  • G06T 19/00 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie

37.

CONVERSION OF MESH GEOMETRY TO EDITABLE AND WATERTIGHT BOUNDARY REPRESENTATION IN COMPUTER AIDED DESIGN

      
Numéro d'application 18537713
Statut En instance
Date de dépôt 2023-12-12
Date de la première publication 2024-05-23
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Marinov, Martin Cvetanov
  • Charrot, Peter Hugh
  • Furuta, Suguru
  • Santhanam, Nandakumar
  • Hallet, Justin Nicholas
  • Barley, Stephen Alan
  • Flower, Jean Alison
  • Finnigan, Gordon Thomas
  • Meshkat, Siavash Navadeh
  • Henley, Iain Edward
  • Barback, Tristan Ward
  • Sapun, Maciej
  • Amagliani, Marco
  • Wolski, Pawel

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of physical structures include, in at least one aspect, a fully automatic method of converting a generative design into an editable, watertight B-Rep by leveraging the generative solver input and representation to: (1) embed the exact input solid boundary surfaces where the design coincides with the input, (2) approximate everywhere else the design boundary with globally smooth, editable “organic” surfaces, and (3) join all surfaces to form a generative design output B-Rep.

Classes IPC  ?

  • G05B 19/4099 - Usinage de surface ou de courbe, fabrication d'objets en trois dimensions 3D, p.ex. fabrication assistée par ordinateur
  • B23Q 3/16 - Dispositifs permettant de maintenir, supporter ou positionner les pièces ou les outils, ces dispositifs pouvant normalement être démontés de la machine à commande liée au travail de l'outil
  • B29C 64/393 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive
  • B33Y 50/00 - Acquisition ou traitement de données pour la fabrication additive
  • B33Y 50/02 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive
  • G06F 30/10 - CAO géométrique

38.

COMPUTER AIDED SHAPE SYNTHESIS WITH CONNECTIVITY FILTERING

      
Numéro d'application 18240185
Statut En instance
Date de dépôt 2023-08-30
Date de la première publication 2024-04-18
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Burla, Ravi Kumar
  • Liang, Lihao
  • Weiss, Benjamin Mckittrick
  • Morrison, Andrew Allan

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design with connectivity filtering during shape synthesis, include: a three-dimensional modeling program configured to provide disconnection detection, shape synthesis, and/or connectivity filtering during shape and/or topology optimization. The three-dimensional modeling program can be an architecture, engineering and/or construction program (e.g., building information management program), a product design and/or manufacturing program (e.g., a CAM program), and/or a media and/or entertainment production program (e.g., an animation production program).

Classes IPC  ?

  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p.ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO

39.

GENERATING COOLING CHANNELS FOR COOLING MOLDS

      
Numéro d'application 17958157
Statut En instance
Date de dépôt 2022-09-30
Date de la première publication 2024-04-11
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Liang, Lihao
  • Kietzmann, Clinton Van Lingen
  • Markovic, Nikola Marko
  • Bin Abu Bakar, Akmal Ariff
  • Astbury, David Ross

Abrégé

A three-dimensional discretized computer model of a part in a three-dimensional discretized design space comprising three-dimensional geometrical elements is obtained. A signed distance field based on a geometry of the three-dimensional discretized computer model of the part as represented in the three-dimensional geometrical elements of the three-dimensional discretized design space is produced. At least one non-branching cooling channel in a portion of the three-dimensional discretized design space is generated.

Classes IPC  ?

  • G06F 30/17 - Conception mécanique paramétrique ou variationnelle

40.

VRED

      
Numéro d'application 1783216
Statut Enregistrée
Date de dépôt 2024-01-30
Date d'enregistrement 2024-01-30
Propriétaire Autodesk, Inc. (USA)
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Providing online non-downloadable computer software for use in creating digital prototypes, virtual prototypes, 3D product presentations and renderings, and 3D design reviews and for streaming 3D data.

41.

REPOSITIONING COOLING CHANNELS IN COOLING MOLDS

      
Numéro d'application 17958145
Statut En instance
Date de dépôt 2022-09-30
Date de la première publication 2024-04-04
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Markovic, Nikola Marko
  • Bin Abu Bakar, Akmal Ariff
  • Astbury, David Ross
  • Kietzmann, Clinton Van Lingen
  • Yu, Huagang

Abrégé

A three-dimensional computer model of a cooling mold for a part and a specification of an initial layout of one or more cooling channels integrated into the cooling mold is obtained. Data regarding temperatures of a cavity surface of the cooling mold in contact with the part is produced. Individual portions of the one or more cooling channels are moved toward hotter portions of the cavity surface, without moving any branch junctions of the one or more cooling channels and while keeping one or more diameters of the one or more cooling channels constant.

Classes IPC  ?

  • B29C 45/73 - Chauffage ou refroidissement du moule
  • B29C 45/80 - Mesure, commande ou régulation de la position relative des parties de moule

42.

NAVIGATION AND VIEW SHARING SYSTEM FOR REMOTE COLLABORATION

      
Numéro d'application 18240646
Statut En instance
Date de dépôt 2023-08-31
Date de la première publication 2024-03-28
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Menon, Ajay Vijayabalan
  • Morel, Sebastien
  • Casallas Suarez, Juan Sebastian
  • Scannell, Brent
  • Ghoussoub, Akram
  • Fonta, Nicolas

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of physical structures include: displaying, in an extended reality (XR) environment of an interconnected cross-review collaboration application, a shared three-dimensional (3D) model in a first spatial review mode; receiving, in the XR environment of the interconnected cross-review collaboration application and by a first user, an indication specifying a first location within the shared 3D model, the indication being defined using either 2D data or 3D data associated with the 3D model; and displaying, in the XR environment of the interconnected cross-review collaboration application, a portion of the 3D model in a second one-to-one scale review mode, the portion of the 3D model being displayed from a perspective associated with the specified first location, wherein the first spatial review mode and the second one-to-one scale review mode are interconnected.

Classes IPC  ?

43.

TECHNIQUES FOR USING MULTIMODAL MACHINE LEARNING MODELS TO GENERATE DESIGN ALTERNATIVES FOR THREE-DIMENSIONAL OBJECTS

      
Numéro d'application 18446339
Statut En instance
Date de dépôt 2023-08-08
Date de la première publication 2024-03-28
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Liu, Vivian
  • Vermeulen, Jo Karel
  • Fitzmaurice, George William
  • Matejka, Justin Frank

Abrégé

In various embodiments, a design exploration application generates images that represent design alternatives for three-dimensional (3D) objects. The design exploration application generates a keyword prompt based on design intent text that describes a 3D object. The design exploration application executes a first machine learning model on the keyword prompt to generate a first set of keywords. The design exploration application generates a rephrase prompt based on a second set of keywords that includes at least one keyword from the first set of keywords. The design exploration application executes the first machine learning model on the rephrase prompt to generate a final text prompt. The design exploration application executes a second machine learning model on the final text prompt to generate a set of images.

Classes IPC  ?

  • G06F 30/27 - Optimisation, vérification ou simulation de l’objet conçu utilisant l’apprentissage automatique, p.ex. l’intelligence artificielle, les réseaux neuronaux, les machines à support de vecteur [MSV] ou l’apprentissage d’un modèle

44.

AGENT-BASED OPTIMIZATION OF MULTI-BUILDING SITE LAYOUTS

      
Numéro d'application 18167032
Statut En instance
Date de dépôt 2023-02-09
Date de la première publication 2024-03-28
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Stoddart, James
  • Villaggi, Lorenzo

Abrégé

One embodiment of the present invention sets forth a technique for generating a multi-building layout for a site. The technique includes instantiating a plurality of agents representing a plurality of buildings located on the site based on a set of boundary conditions associated with the site. The techniques also include iteratively updating a plurality of states associated with the plurality of agents based on the set of boundary conditions and a plurality of behaviors associated with the plurality of agents. The techniques further include generating a layout for the site based on the plurality of states, wherein the layout comprises a plurality of building footprints for the plurality of buildings.

Classes IPC  ?

  • G06F 30/13 - Conception architecturale, p.ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes
  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu

45.

MODULAR GENERATION AND OPTIMIZATION OF BUILDING DESIGNS

      
Numéro d'application 18167033
Statut En instance
Date de dépôt 2023-02-09
Date de la première publication 2024-03-28
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Stoddart, James
  • Davis, Mark Thomas
  • Villaggi, Lorenzo

Abrégé

One embodiment of the present invention sets forth a technique for generating a layout for a building. The technique includes determining a space occupied by the building and one or more rules associated with one or more example building layouts. The technique also includes iteratively assigning one or more sets of cells within the space to one or more building modules based on the one or more rules, where the one or more building modules represent one or more types of interior space within the building. The technique further includes generating the layout for the building based on the one or more sets of cells assigned to the one or more building modules.

Classes IPC  ?

  • G06F 30/13 - Conception architecturale, p.ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes
  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu

46.

MULTI-SCALE GENERATIVE DESIGN FOR MODULAR CONSTRUCTION

      
Numéro d'application 18167036
Statut En instance
Date de dépôt 2023-02-09
Date de la première publication 2024-03-28
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Stoddart, James
  • Davis, Mark Thomas
  • Villaggi, Lorenzo

Abrégé

One embodiment of the present invention sets forth a technique for generating a modular design for a construction project. The technique includes executing generating a plurality of design options for the construction project, where each design option includes a site layout and a set of building designs for a set of buildings included in the site layout. The technique also includes computing a first set of performance metrics for the site layout associated with each design option and a second set of performance metrics for the set of building designs associated with each design option, and aggregating the first and second sets of performance metrics into a set of overall performance metrics for each design option. The technique further includes generating a set of candidate designs for the construction project based on the plurality of design options and the overall performance metrics associated with the plurality of design options.

Classes IPC  ?

  • G06F 30/13 - Conception architecturale, p.ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes
  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu

47.

TECHNIQUES INCORPORATED INTO DESIGN SOFTWARE FOR GENERATING SUSTAINABILITY INSIGHTS

      
Numéro d'application 18329497
Statut En instance
Date de dépôt 2023-06-05
Date de la première publication 2024-03-21
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Brudy, Frederik
  • Szkurlat, Dagmara Lilianna
  • Benipal, Vikram-Jit Singh
  • Fan, Michael Ziye
  • Jones, Andrew Gareth Lewis
  • Matejka, Justin Frank
  • Bezpalko, Zoé Samiha Valentine
  • Villaggi, Lorenzo
  • Anderson, Fraser
  • Fitzmaurice, George
  • Nadeau, Patrick
  • Thompson, Benjamin James
  • Noviello, Daniel
  • Harsuvanakit, Arthur

Abrégé

In various embodiments a computer-implemented method for providing sustainability insights to a user designing an object. The method includes determining a first value of a sustainability metric associated with a design of an object, displaying, via a graphical user interface (GUI), a visual indication of the first value of the sustainability metric, and detecting a change to the design of the object. The method further includes, in response to detecting the change to the design of the object, determining a second value of the sustainability metric and displaying, via the GUI, a visual indication of the second value of the sustainability metric.

Classes IPC  ?

  • G06F 30/13 - Conception architecturale, p.ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes
  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p.ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO

48.

TECHNIQUES INCORPORATED INTO DESIGN SOFTWARE FOR GENERATING SUSTAINABILITY INSIGHTS

      
Numéro d'application 18329502
Statut En instance
Date de dépôt 2023-06-05
Date de la première publication 2024-03-21
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Brudy, Frederik
  • Szkurlat, Dagmara Lilianna
  • Benipal, Vikram-Jit Singh
  • Fan, Michael Ziye
  • Jones, Andrew Gareth Lewis
  • Matejka, Justin Frank
  • Bezpalko, Zoé Samiha Valentine
  • Villaggi, Lorenzo
  • Anderson, Fraser
  • Fitzmaurice, George
  • Nadeau, Patrick
  • Thompson, Benjamin James
  • Noviello, Daniel
  • Harsuvanakit, Arthur

Abrégé

In various embodiments a computer-implemented method for providing sustainability insights to a user designing an object. The method includes determining a value of a sustainability metric associated with a design of an object; determining a target value for the sustainability metric; determining an amount of progress made towards achieving the target value for the sustainability metric based on the value of the sustainability metric and the target value for the sustainability metric; and displaying, via a graphical user interface (GUI), a visual indication of the amount of progress made towards achieving the target value for the sustainability metric.

Classes IPC  ?

  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p.ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO
  • G06F 3/0481 - Techniques d’interaction fondées sur les interfaces utilisateur graphiques [GUI] fondées sur des propriétés spécifiques de l’objet d’interaction affiché ou sur un environnement basé sur les métaphores, p.ex. interaction avec des éléments du bureau telles les fenêtres ou les icônes, ou avec l’aide d’un curseur changeant de comport
  • G06F 3/04842 - Sélection des objets affichés ou des éléments de texte affichés
  • G06T 3/40 - Changement d'échelle d'une image entière ou d'une partie d'image
  • G06T 11/00 - Génération d'images bidimensionnelles [2D]

49.

COMPUTER AIDED GENERATIVE DESIGN WITH LAYER BOUNDARY DETERMINATION TO FACILITATE 2.5-AXIS SUBTRACTIVE MANUFACTURING PROCESSES

      
Numéro d'application 18363327
Statut En instance
Date de dépôt 2023-08-01
Date de la première publication 2024-03-14
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Weinberg, David Jon
  • Kim, Nam Ho

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, include: obtaining one or more design criteria for a modeled object; iteratively modifying a three-dimensional shape of the modeled object in accordance with the one or more design criteria, determining layer boundaries between three or more discrete layers for the three-dimensional shape based on differences among multiple milling depths identified for respective milling lines in a density-based representation of the three-dimensional shape, including adjusting the density-based representation of the three-dimensional shape to reassign milling depths for at least a portion of the milling lines such that the milling depths for the milling lines correspond to the layer boundaries between the three or more discrete layers for the three-dimensional shape, thereby changing the three-dimensional shape of the modeled object; and providing the three-dimensional shape of the modeled object for use in manufacturing a physical structure using a 2.5-axis subtractive manufacturing process.

Classes IPC  ?

  • G05B 19/4099 - Usinage de surface ou de courbe, fabrication d'objets en trois dimensions 3D, p.ex. fabrication assistée par ordinateur
  • G06F 30/13 - Conception architecturale, p.ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes

50.

PREDICTIVE MODELING AND CONTROL FOR WATER RESOURCE INFRASTRUCTURE

      
Numéro d'application 18509091
Statut En instance
Date de dépôt 2023-11-14
Date de la première publication 2024-03-14
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Gaffoor, Thouheed Abdul
  • Suthar, Megh
  • Mohamed, Yousra Hazem Khalil Helmy

Abrégé

A system and method control a water resource infrastructure (WRI). The WRI has infrastructure components that are actuatable to cause a change to the WRI. A monitoring system has sensors that collect operating data that describes a state of the infrastructure components. A disturbance data provider provides disturbance data that may be expected to have an impact on operational parameters of the infrastructure components. A control mechanism scheduler receives the disturbance data and the operating data, trains to generate a schedule of setpoints for a control system in accordance with approaching a predetermined objective, and retrieves and outputs the schedule of setpoints in response to receiving real-time operational data. A control system receives the schedule of setpoints controls the infrastructure components based thereon.

Classes IPC  ?

  • G05B 13/04 - Systèmes de commande adaptatifs, c. à d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques impliquant l'usage de modèles ou de simulateurs
  • G05B 13/02 - Systèmes de commande adaptatifs, c. à d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques
  • G06N 5/04 - Modèles d’inférence ou de raisonnement
  • G06N 20/00 - Apprentissage automatique

51.

MACHINE LEARNING TECHNIQUES FOR GENERATING INVERSE KINEMATIC MODELS FOR CHARACTER ANIMATION

      
Numéro d'application 17822106
Statut En instance
Date de dépôt 2022-08-24
Date de la première publication 2024-02-29
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Atherton, Evan Patrick
  • Tran, Dieu Linh

Abrégé

In various embodiments, an inverse kinematic (IK) modeling application generates models that are used to solve IK problems for object animations. The IK modeling application generates configuration vectors based on a set of joint parameters associated with a joint chain. The IK modeling application executes forward kinematic operation(s) on the joint chain based on the configuration vectors to generate target vectors. Each target vector includes data associated with at least one of a position or an orientation for an end-effector associated with the joint chain. The IK modeling application performs one or more machine learning (ML) operations on an ML model based on the configuration vectors and the target vectors to generate a trained ML model that computes a predicted joint vector associated with the joint chain based on at least one of a target position or a target orientation for the end-effector.

Classes IPC  ?

52.

TECHNIQUES FOR SOLVING INVERSE KINEMATIC PROBLEMS USING TRAINED MACHINE LEARNING MODELS

      
Numéro d'application 17822108
Statut En instance
Date de dépôt 2022-08-24
Date de la première publication 2024-02-29
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Atherton, Evan Patrick
  • Tran, Dieu Linh

Abrégé

In various embodiments, a computer animation application automatically solves inverse kinematic problems when generating object animations. The computer animation application determines a target vector based on a target value for a joint parameter associated with a joint chain and at least one of a target position or a target orientation for an end-effector associated with the joint chain. The computer animation application executes a trained machine learning model on the target vector to generate a predicted vector that includes data associated with multiple joint parameters associated with the joint chain.

Classes IPC  ?

  • G06T 13/40 - Animation tridimensionnelle [3D] de personnages, p.ex. d’êtres humains, d’animaux ou d’êtres virtuels

53.

ADVANCED BUILDING SYSTEMS AND ELEMENTS FOR SPACE DESIGN

      
Numéro d'application 17822855
Statut En instance
Date de dépôt 2022-08-29
Date de la première publication 2024-02-29
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Wold, Espen Kristian Wulff
  • Hallén, Martin
  • Karlsen, Markus Reppen
  • Chaudhry, Bilal Zia
  • Vatn, Klara Kristina
  • Bjelland, Arne Folkestad

Abrégé

A method and system provide the ability to design a space in a computer-aided design (CAD) application. A 3D model is acquired. The space is designed by defining Elements including a parent and a child element. Each Element encapsulates a geometric model, and consists of metadata that provides a summary of contents in each Element that enables an outside process to handle each Element without access to the encapsulated geometric model. An arbitrary logic Program is structured to generate a list of the child Elements. The 3D model is edited and updated in real time. During the updating, the Program is reexecuted to update the child elements while attempting to conserve a hierarchical structure of the Elements. The updated 3D model is provided via a graphical user interface that enables editing of the geometric model and the Elements in the space.

Classes IPC  ?

  • G06F 30/13 - Conception architecturale, p.ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes
  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p.ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO

54.

PERCENTILE-BASED PSEUDO-LABEL SELECTION FOR MULTI-LABEL SEMI-SUPERVISED CLASSIFICATION

      
Numéro d'application 18452780
Statut En instance
Date de dépôt 2023-08-21
Date de la première publication 2024-02-29
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Huang, Junxiang
  • Huang, Alexander
  • Guerra, Beatriz Chinelato
  • Yu, Yen-Yun

Abrégé

A method and system provide for augmenting a photograph. An unlabeled photograph is obtained. A weakly augmented photograph and a strongly augmented photograph are obtained from the unlabeled photograph based on different types of data augmentation methods. The weakly augmented photograph is processed through a model to generate multiple weakly augmented photograph class predictions (with assigned probabilities). The multiple weakly augmented photograph class predictions are converted into positive pseudo-labels (indicating a presence of a class) or negative pseudo-labels (indicating absence of a class) using different fixed percentile thresholds. The strongly augmented photograph is processed through the model to generate a strongly augmented photograph class prediction. The model is trained to make the strongly augmented photograph label prediction match the positive pseudo-label via a cross-entropy loss. The trained model is then utilized to label the unlabeled photograph with multiple labels.

Classes IPC  ?

  • G06V 10/774 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p.ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]; Séparation aveugle de source méthodes de Bootstrap, p.ex. "bagging” ou “boosting”
  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p.ex. des objets vidéo

55.

TOOLPATH GENERATION BY REINFORCEMENT LEARNING FOR COMPUTER AIDED MANUFACTURING

      
Numéro d'application 18240703
Statut En instance
Date de dépôt 2023-08-31
Date de la première publication 2024-02-22
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Lovell, David Patrick
  • Bin Abu Bakar, Akmal Ariff
  • Mehan, Saaras

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design and manufacture of physical structures using toolpaths generated by reinforcement learning for use with subtractive manufacturing systems and techniques, include: obtaining, in a computer aided design or manufacturing program, a three dimensional model of a manufacturable object; generating toolpaths that are usable by a computer-controlled manufacturing system to manufacture at least a portion of the manufacturable object by providing at least a portion of the three dimensional model to a machine learning algorithm that employs reinforcement learning, wherein the machine learning algorithm includes one or more scoring functions that include rewards that correlate with desired toolpath characteristics comprising toolpath smoothness, toolpath length, and avoiding collision with the three dimensional model; and providing the toolpaths to the computer-controlled manufacturing system to manufacture at least the portion of the manufacturable object.

Classes IPC  ?

  • G05B 13/02 - Systèmes de commande adaptatifs, c. à d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques
  • G06F 30/27 - Optimisation, vérification ou simulation de l’objet conçu utilisant l’apprentissage automatique, p.ex. l’intelligence artificielle, les réseaux neuronaux, les machines à support de vecteur [MSV] ou l’apprentissage d’un modèle
  • G05B 19/4097 - Commande numérique (CN), c.à d. machines fonctionnant automatiquement, en particulier machines-outils, p.ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'u caractérisée par l'utilisation de données de conception pour commander des machines à commande numérique [CN], p.ex. conception et fabrication assistées par ordinateur CFAO
  • G06F 30/10 - CAO géométrique
  • G06N 3/045 - Combinaisons de réseaux

56.

CONSTRAINT BASED AUTOMATIC TERRAIN SURFACE DESIGN

      
Numéro d'application 18487765
Statut En instance
Date de dépôt 2023-10-16
Date de la première publication 2024-02-22
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Koch, Valentin R.
  • Bergeron, Patrick A.
  • Zeeben, Nicholas James
  • Xue, Qing
  • Hu, Weiwei

Abrégé

A method and system provide the ability to design a terrain surface. A triangular surface mesh in three-dimensions representative of an existing surface is obtained. One or more constraints to control the triangular surface mesh are specified. The specifying includes defining multiple basic grading element constraints that are constraints on surface points of the existing surface, and combining such constraints into a complex grading element constraint that matches a real world grading behavior. Drainage for the triangular surface mesh is automatically determined based on the complex grading element constraint.

Classes IPC  ?

  • G06F 30/13 - Conception architecturale, p.ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes
  • G06T 17/20 - Description filaire, p.ex. polygonalisation ou tessellation
  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p.ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO

57.

Navigation and view sharing system for remote collaboration

      
Numéro d'application 17887371
Numéro de brevet 12170860
Statut Délivré - en vigueur
Date de dépôt 2022-08-12
Date de la première publication 2024-02-15
Date d'octroi 2024-12-17
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Brudy, Frederik
  • Miller, Matthew K.
  • Grossman, Tovi
  • Fitzmaurice, George William
  • Anderson, Fraser

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for collaboration and view sharing between users when performing editing operations over a shared document. A first portion of a shared document is displayed to a first user in a user interface of a first instance of a collaboration application of a first user. The displayed first portion comprises a first location of the first user within the shared document. In the user interface, an indication specifying a relative locational direction from the first location towards a second location of a second user within the shared document is provided. A second portion of the shared document is being displayed to the second user through a second instance of the collaboration application during a conference call between a set of users, where the displayed second portion includes the second location of the second user within the shared document.

Classes IPC  ?

  • G06F 3/14 - Sortie numérique vers un dispositif de visualisation
  • H04N 7/15 - Systèmes pour conférences

58.

VRED

      
Numéro d'application 231959200
Statut En instance
Date de dépôt 2024-01-30
Propriétaire Autodesk, Inc. (USA)
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

(1) Providing online non-downloadable computer software for use in creating digital prototypes, virtual prototypes, 3D product presentations and renderings, and 3D design reviews and for streaming 3D data.

59.

VRED

      
Numéro de série 98381269
Statut En instance
Date de dépôt 2024-01-29
Propriétaire Autodesk, Inc. ()
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Providing online non-downloadable computer software for use in creating digital prototypes, virtual prototypes, 3D product presentations and renderings, and 3D design reviews and for streaming 3D data

60.

AUTOMATED DESIGN OF ARCHITECTURAL STRUCTURES FOR FABRICATION WITH STANDARD COMPONENTS

      
Numéro d'application 17894978
Statut En instance
Date de dépôt 2022-08-24
Date de la première publication 2024-01-25
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Wang, Rui
  • Benjamin, David
  • Jayaraman, Pradeep Kumar
  • Morris, Nigel Jed Wesley

Abrégé

A generative design system includes a solver and a modeling tool comprising a visual programming interface and a design workflow script. The visual programming interface enables the user to specify a design problem including design constraints comprising parameters associated with standard building components, such as beams and joints. After the design problem is specified by the user, the modeling tool executes the design workflow script to automatically perform a design workflow that generates a design solution for the design problem. The design workflow script controls the operations of the modeling tool and the solver to interact in a collaborative manner to execute the design workflow comprising an ordered sequence of operations. The design solution comprises a 3D model of a modular beam structure that can be easily fabricated using standard building components, such as standardized beams and joints.

Classes IPC  ?

  • G06F 30/13 - Conception architecturale, p.ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes

61.

TECHNIQUES FOR DESIGN SPACE EXPLORATION IN A MULTI-USER COLLABORATION SYSTEM

      
Numéro d'application 17889287
Statut En instance
Date de dépôt 2022-08-16
Date de la première publication 2024-01-25
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Zhao, Dale
  • Benjamin, David
  • Wang, Rui

Abrégé

One embodiment of a computer-implemented method for generating design solutions to one or more design problems comprises receiving a first design model that is associated with a first design problem; generating a first multi-dimensional data point based on the first design model; mapping the first design model to a first node of a trained self-organizing map based on the first multi-dimensional data point, wherein the first node corresponds to a first location within a design space; and displaying a visual representation of the first design model residing at the first location within the design space based on the first node.

Classes IPC  ?

  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • G06T 15/00 - Rendu d'images tridimensionnelles [3D]

62.

MAKE ANYTHING

      
Numéro d'application 231178200
Statut En instance
Date de dépôt 2024-01-23
Propriétaire Autodesk, Inc. (USA)
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

(1) Computer software computer aided design/computer-aided manufacturing (CAD/CAM) for machine control and general use; computer aided design (CAD) software for general use; computer aided manufacturing (CAM) software for machine control and general use; computer game software; computer graphics software; computer software for architecture, digital prototyping, graphic design, multimedia production, viewing of video entertainment, special effects, film editing, project management, image manipulation, home design, simulation, visualization, rendering of digital objects and images, and, data management; computer software for architecture, digital prototyping, graphic design, multimedia production, viewing of video entertainment, special effects, film editing, project management, image manipulation, home design, simulation, visualization, rendering of digital objects and images, and, data management and that may be downloaded from a global computer network; educational software featuring instruction in design, art, multimedia, image manipulation and architecture; software for processing images, graphics and text; computer software for aiding, operating, and controlling devices for printing of three-dimensional (3D) objects; computer aided design (CAD) software for designing and/or printing of three-dimensional objects; computer software for scanning and processing of three-dimensional (3D) objects; computer software for designing, creating, visualizing, editing, optimizing, and analyzing 3D meshes, 3D models, 3D point clouds, and orthographic projections and views; computer software for designing, creating, visualizing, editing, optimizing, and analyzing 3D meshes and 3D models; computer software for use in creating digital prototypes, virtual prototypes, 3D product presentations and renderings, and 3D design reviews and for streaming 3D data; computer software for use in manufacturing and 3D printing; computer software for use in electronic design automation and for designing and manufacturing printed circuit boards; computer software development tools. (1) Cloud computing featuring software for computer aided design, graphics design, multimedia production, project management, image manipulation and home design for use by architects, interior designers, civil engineers, construction managers, computer aided designers, multimedia manipulators, prototype creators, and graphics professionals; computer aided graphic design; computer project management services; computer services, namely, hosting a website featuring an on-line community for registered users to publish and share their own content and images online; hosting a website featuring a secure electronic online system featuring technology which allows users to create, publish, modify, share and produce personalized things from digital content, models and designs; hosting a web site featuring technology that enables users to design their own home layouts, three dimensional objects and construction projects; hosting a web site featuring temporary use of non-downloadable software for tools for image editing, simulation, visualization, rendering of digital objects and images, data management, construction projects, home design, object design and computer graphics; providing an Internet website portal offering information in the field of computer aided design (terms considered too vague by the International Bureau - rule 13 (2) (b) of the Common Regulations); cloud computing featuring software for aiding, operating, and controlling devices for printing of three-dimensional (3D) objects; software as a service (SAAS) services featuring software for use in designing, creating, visualizing, editing, optimizing, and analyzing 3D meshes, 3D models, 3D point clouds, and orthographic projections and views; providing temporary use of on-line non-downloadable software for use in designing, creating, visualizing, editing, optimizing, and analyzing 3D meshes, 3D models, 3D point clouds, and orthographic projections and views; platform as a service (PAAS) featuring computer software platforms providing services, application programming interfaces, and software development kits to enable software developers and businesses, to develop software applications, products, and services; providing an internet website portal offering information on software development (terms considered too vague by the International Bureau - rule 13 (2) (b) of the Common Regulations); software development consulting; technical support services in the field of software development; software as a service (SAAS) services featuring software for use in manufacturing and 3D printing; providing temporary use of on-line non- downloadable software for use in manufacturing and 3D printing; software as a service (SAAS) services featuring software for use in electronic design automation and for designing and manufacturing printed circuit boards; providing temporary use of on-line non-downloadable software for use in electronic design automation and for designing and manufacturing printed circuit boards.

63.

MODELLING FLUID FLOW

      
Numéro d'application 17849483
Statut En instance
Date de dépôt 2022-06-24
Date de la première publication 2023-12-28
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Costa, Franco
  • Han, Sejin

Abrégé

A digital 3D model of a component to be analyzed is obtained. The component includes regularly patterned holes. A first portion of the model is identified. The first portion includes the regularly patterned holes. A second portion of the model is identified. The second portion includes parts of the model lacking the regularly patterned holes. A flow factor of the first portion is determined. The flow factor indicates flow characteristics of fluid flowing through the first portion with the regularly patterned holes. A numerical fluid simulation is performed using a mesh representative of the component geometry. Performing the numerical fluid simulation includes modifying a flow property of the fluid simulation in the first portion based at least in part on the flow factor.

Classes IPC  ?

  • G06F 30/28 - Optimisation, vérification ou simulation de l’objet conçu utilisant la dynamique des fluides, p.ex. les équations de Navier-Stokes ou la dynamique des fluides numérique [DFN]

64.

BUILDING INFORMATION MODEL (BIM) ELEMENT EXTRACTION FROM FLOOR PLAN DRAWINGS USING MACHINE LEARNING

      
Numéro d'application 18457603
Statut En instance
Date de dépôt 2023-08-29
Date de la première publication 2023-12-21
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Gallo, Emmanuel
  • Fu, Yan
  • Alfaro, Keith
  • Alonso, Manuel Martinez
  • Kohli, Simranjit Singh
  • Amour, Graceline Regala

Abrégé

A method and system provide a workflow for extracting building information model (BIM) elements for a floor plan drawing. A design drawing area of an image of the floor plan drawing is determined. Elements are extracted from the design drawing area. A synthetic floor plan design drawing dataset is obtained with known synthetic symbol labels and known synthetic symbol locations. Based on the extracted elements and the synthetic floor plan design drawing dataset, a symbol represented by the extracted elements is detected. Based on the symbol, a building information model (BIM) element is fetched and placed in the floor plan drawing.

Classes IPC  ?

  • G06F 30/13 - Conception architecturale, p.ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes
  • G06N 20/00 - Apprentissage automatique
  • G06F 16/21 - Conception, administration ou maintenance des bases de données
  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p.ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO

65.

TECHNIQUES FOR GENERATING IMMERSIVE SPACES THAT ENABLE INSPIRATIONAL MATERIALS TO BE COLLECTED, DISCOVERED, AND ENVISIONED

      
Numéro d'application 18181431
Statut En instance
Date de dépôt 2023-03-09
Date de la première publication 2023-12-07
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Ivanov, Alexander Arden
  • Anderson, Fraser
  • Grossman, Tovi
  • Ledo Maira, David
  • Fitzmaurice, George

Abrégé

A computer-implemented method for generating a virtual collection of digital materials includes: generating a virtual three-dimensional (3D) design workspace; and, in response to a first operation that is associated with a first media file: automatically generating a virtual 3D representation of the first media file; and automatically incorporating the virtual 3D representation of the first media file into the virtual 3D design workspace.

Classes IPC  ?

  • G06F 3/04815 - Interaction s’effectuant dans un environnement basé sur des métaphores ou des objets avec un affichage tridimensionnel, p.ex. modification du point de vue de l’utilisateur par rapport à l’environnement ou l’objet
  • G06F 3/0486 - Glisser-déposer
  • G06F 3/04845 - Techniques d’interaction fondées sur les interfaces utilisateur graphiques [GUI] pour la commande de fonctions ou d’opérations spécifiques, p.ex. sélection ou transformation d’un objet, d’une image ou d’un élément de texte affiché, détermination d’une valeur de paramètre ou sélection d’une plage de valeurs pour la transformation d’images, p.ex. glissement, rotation, agrandissement ou changement de couleur
  • G06T 19/20 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie Édition d'images tridimensionnelles [3D], p.ex. modification de formes ou de couleurs, alignement d'objets ou positionnements de parties
  • G06T 7/90 - Détermination de caractéristiques de couleur
  • G06T 7/40 - Analyse de la texture

66.

Computer-aided techniques for designing 3D surfaces based on gradient specifications

      
Numéro d'application 17746784
Numéro de brevet 11900542
Statut Délivré - en vigueur
Date de dépôt 2022-05-17
Date de la première publication 2023-11-23
Date d'octroi 2024-02-13
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Banadyha, Andriy
  • Davis, Mark Thomas

Abrégé

In various embodiments, a gradient modeling application automatically generates designs of three-dimensional (3D) objects. The gradient modeling application generates a set of points based on a resolution and a perimeter. The gradient modeling application computes a set of displacement values based on the set of points, a first two-dimensional (2D) border, and a first displacement parameter that is associated with the first 2D border. Based on the set of displacement values, the gradient modeling application generates a 3D object design.

Classes IPC  ?

  • G06T 17/20 - Description filaire, p.ex. polygonalisation ou tessellation
  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p.ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO

67.

GENERATING PRISMATIC CAD MODELS BY MACHINE LEARNING

      
Numéro d'application 17747953
Statut En instance
Date de dépôt 2022-05-18
Date de la première publication 2023-11-23
Propriétaire Autodesk, Inc. (USA)
Inventeur(s) Lambourne, Joseph George

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design and manufacture of physical structures by generating prismatic CAD models using machine learning, include: obtaining an input embedding that encodes a representation of a target two-dimensional (2D) shape; processing the input embedding using a 2D decoder of a 2D autoencoder to obtain a decoded representation of the target 2D shape; determining a fitted 2D parametric sketch model for the input embedding, including: finding a 2D parametric sketch model for the input embedding using a search in an embedding space of the 2D autoencoder and a database of sketch models associated with the 2D autoencoder, and fitting the 2D parametric sketch model to the decoded representation of the target 2D shape; and using the fitted 2D parametric sketch model in a computer modeling program.

Classes IPC  ?

  • G06F 30/10 - CAO géométrique
  • G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p.ex. des objets vidéo

68.

HIGH FREQUENCY DATA MANAGEMENT (HFDM)

      
Numéro d'application 18348232
Statut En instance
Date de dépôt 2023-07-06
Date de la première publication 2023-11-16
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Amihod, Dov
  • Dacosta, Thiago
  • Zinke, Arno
  • Medan, Sebastian
  • Towhidi, Farzad
  • Ruiters-Christou, Roland Arthur

Abrégé

A method and system provide the ability to manage data. Property sets consisting of property set objects are created. A commit graph stores the property set objects and provides a topology of changes between states of the objects as commit nodes. Change sets represent a change between two commit nodes. Each change set specifies a basic operation that was applied on each state to get to a next state of the property set objects and each change set is reversible.

Classes IPC  ?

  • G06F 16/23 - Mise à jour
  • G06F 16/22 - Indexation; Structures de données à cet effet; Structures de stockage
  • G06F 16/2457 - Traitement des requêtes avec adaptation aux besoins de l’utilisateur
  • G06N 7/01 - Modèles graphiques probabilistes, p.ex. réseaux probabilistes
  • G06F 16/2455 - Exécution des requêtes
  • G06F 16/21 - Conception, administration ou maintenance des bases de données

69.

TECHNIQUES FOR TRAINING A MACHINE LEARNING MODEL TO MODIFY PORTIONS OF SHAPES WHEN GENERATING DESIGNS FOR THREE-DIMENSIONAL OBJECTS

      
Numéro d'application 18346754
Statut En instance
Date de dépôt 2023-07-03
Date de la première publication 2023-10-26
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Zhang, Ran
  • Fabian, Morgan
  • Ndip-Agbor, Ebot Etchu
  • Taylor, Lee Morris

Abrégé

In various embodiments, a training application trains a machine learning model to modify portions of shapes when designing 3D objects. The training application converts first structural analysis data having a first resolution to first coarse structural analysis data having a second resolution that is lower than the first resolution. Subsequently, the training application generates one or more training sets based on a first shape, the first coarse structural analysis data, and a second shape that is derived from the first shape. Each training set is associated with a different portion of the first shape. The training application then performs one or more machine learning operations on the machine learning model using the training set(s) to generate a trained machine learning model. The trained machine learning model modifies at least a portion of a shape having the first resolution based on coarse structural analysis data having the second resolution.

Classes IPC  ?

  • G06T 19/20 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie Édition d'images tridimensionnelles [3D], p.ex. modification de formes ou de couleurs, alignement d'objets ou positionnements de parties
  • G06N 3/08 - Méthodes d'apprentissage
  • G06T 3/40 - Changement d'échelle d'une image entière ou d'une partie d'image
  • G06T 17/20 - Description filaire, p.ex. polygonalisation ou tessellation

70.

User feedback mechanism for software applications

      
Numéro d'application 17969555
Numéro de brevet 12050526
Statut Délivré - en vigueur
Date de dépôt 2022-10-19
Date de la première publication 2023-10-19
Date d'octroi 2024-07-30
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Wannamaker, Kendra Ann
  • Matejka, Justin Frank
  • Vermeulen, Jo Karel
  • Fitzmaurice, George

Abrégé

A feedback mechanism that reports software issues between users of software applications and the developers of the software applications. The feedback mechanism generates feedback logs that capture moments of user frustration at the moment a user encounters issues with using a particular software application executing on a client device. The feedback mechanism is triggered to generate a feedback log by the user via a predetermined set of user inputs. Once generated, the feedback log captures an associated importance level, a user description, and/or context information (such as application and command activity information) for the particular software application and one or more other software applications that interacted with the particular software application executing on the client device. The feedback log can also capture multimedia content such as audio, images, and videos. The feedback log is then transmitted to a server of a developer of the particular software application.

Classes IPC  ?

  • G06F 11/36 - Prévention d'erreurs en effectuant des tests ou par débogage de logiciel
  • G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p.ex. des interruptions ou des opérations d'entrée–sortie

71.

Neural style transfer in three-dimensional shapes

      
Numéro d'application 18149601
Numéro de brevet 12182957
Statut Délivré - en vigueur
Date de dépôt 2023-01-03
Date de la première publication 2023-10-12
Date d'octroi 2024-12-31
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Shayani, Hooman
  • Fumero, Marco
  • Sanghi, Aditya

Abrégé

One embodiment of the present invention sets forth a technique for performing style transfer. The technique includes generating an input shape representation that includes a plurality of points near a surface of an input three-dimensional (3D) shape, where the input 3D shape includes content-based attributes associated with an object. The technique also includes determining a style code based on a difference between a first latent representation of a first 3D shape and a second latent representation of a second 3D shape, where the second 3D shape is generated by applying one or more augmentations to the first 3D shape. The technique further includes generating, based on the input shape representation and style code, an output 3D shape having the content-based attributes of the input 3D shape and style-based attributes associated with the style code, and generating a 3D model of the object based on the output 3D shape.

Classes IPC  ?

  • G06T 19/20 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie Édition d'images tridimensionnelles [3D], p.ex. modification de formes ou de couleurs, alignement d'objets ou positionnements de parties
  • G06N 3/0455 - Réseaux auto-encodeurs; Réseaux encodeurs-décodeurs
  • G06N 3/0475 - Réseaux génératifs
  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 3/092 - Apprentissage par renforcement
  • G06T 17/00 - Modélisation tridimensionnelle [3D] pour infographie
  • G06T 17/10 - Description de volumes, p.ex. de cylindres, de cubes ou utilisant la GSC [géométrie solide constructive]

72.

Generative design shape optimization using build material strength model for computer aided design and manufacturing

      
Numéro d'application 18141266
Numéro de brevet 12147740
Statut Délivré - en vigueur
Date de dépôt 2023-04-28
Date de la première publication 2023-10-12
Date d'octroi 2024-11-19
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Harris, Andrew John
  • Groom, Allin Irving
  • Bandara, Konara Mudiyanselage Kosala
  • Butscher, Adrian Adam Thomas
  • Szkurlat, Dagmara Lilianna

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of physical structures using generative design processes. A method includes obtaining one or more load cases and one or more design criteria for a modeled object, the one or more design criteria comprising a build material strength model indicating strength relationships between thickness of an object feature and build angle for that object feature resulting from additive manufacturing; iteratively modifying a three dimensional shape of the modeled object in accordance with the one or more design criteria and the one or more load cases, including applying the strength relationships between the thickness of the object feature and the build angle for that object feature on a per-element basis during numerical simulation of the modeled object; and providing the three dimensional shape of the modeled object for use in manufacturing a physical structure.

Classes IPC  ?

  • G06T 15/00 - Rendu d'images tridimensionnelles [3D]
  • B29C 64/393 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive
  • G06F 30/10 - CAO géométrique
  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • G06T 17/10 - Description de volumes, p.ex. de cylindres, de cubes ou utilisant la GSC [géométrie solide constructive]

73.

Generative design shape optimization with singularities and disconnection prevention for computer aided design and manufacturing

      
Numéro d'application 18141218
Numéro de brevet 12085917
Statut Délivré - en vigueur
Date de dépôt 2023-04-28
Date de la première publication 2023-10-12
Date d'octroi 2024-09-10
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Bandara, Konara Mudiyanselage Kosala
  • Ruto, Anthony Christopher Kipkirui Yegon
  • Morris, Nigel Jed Wesley
  • Jones, Andrew Gareth Lewis

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of physical structures using generative design processes. A method includes obtaining one or more load cases and one or more design criteria for a modeled object; iteratively modifying a three dimensional shape of the modeled object in accordance with the one or more design criteria and the one or more load cases, the iteratively modifying comprising regulating shape change velocities for an implicit surface representation of the three dimensional shape that exceed a reference velocity, where the reference velocity is set based on a mean and a standard deviation of a shape derivative on the implicit surface; and providing the three dimensional shape of the modeled object for use in manufacturing a physical structure corresponding to the modeled object using one or more computer-controlled manufacturing systems.

Classes IPC  ?

  • G05B 19/4099 - Usinage de surface ou de courbe, fabrication d'objets en trois dimensions 3D, p.ex. fabrication assistée par ordinateur
  • B22F 10/80 - Acquisition ou traitement des données
  • B33Y 50/00 - Acquisition ou traitement de données pour la fabrication additive
  • G05B 19/41 - Commande numérique (CN), c.à d. machines fonctionnant automatiquement, en particulier machines-outils, p.ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'u caractérisée par l'interpolation, p.ex. par le calcul de points intermédiaires entre les points extrêmes programmés pour définir le parcours à suivre et la vitesse du déplacement le long de ce parcours
  • G06F 30/10 - CAO géométrique
  • G06F 111/10 - Modélisation numérique
  • G06F 119/18 - Analyse de fabricabilité ou optimisation de fabricabilité

74.

GENERATING STYLES FOR NEURAL STYLE TRANSFER IN THREE-DIMENSIONAL SHAPES

      
Numéro d'application 18149609
Statut En instance
Date de dépôt 2023-01-03
Date de la première publication 2023-10-12
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Shayani, Hooman
  • Fumero, Marco
  • Sanghi, Aditya

Abrégé

One embodiment of the present invention sets forth a technique for performing style transfer. The technique includes determining a distribution associated with a plurality of style codes for a plurality of three-dimensional (3D) shapes, where each style code included in the plurality of style codes represents a difference between a first 3D shape and a second 3D shape, and where the second 3D shape is generated by applying one or more augmentations to the first 3D shape. The technique also includes sampling from the distribution to generate an additional style code and executing a trained machine learning model based on the additional style code to generate an output 3D shape having style-based attributes associated with the additional style code and content-based attributes associated with an object. The technique further includes generating a 3D model of the object based on the output 3D shape.

Classes IPC  ?

  • G06T 19/20 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie Édition d'images tridimensionnelles [3D], p.ex. modification de formes ou de couleurs, alignement d'objets ou positionnements de parties
  • G06T 17/00 - Modélisation tridimensionnelle [3D] pour infographie
  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 3/0455 - Réseaux auto-encodeurs; Réseaux encodeurs-décodeurs

75.

Training machine learning models to perform neural style transfer in three-dimensional shapes

      
Numéro d'application 18149605
Numéro de brevet 12182958
Statut Délivré - en vigueur
Date de dépôt 2023-01-03
Date de la première publication 2023-10-12
Date d'octroi 2024-12-31
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Shayani, Hooman
  • Fumero, Marco
  • Sanghi, Aditya

Abrégé

One embodiment of the present invention sets forth a technique for training a machine learning model to perform style transfer. The technique includes applying one or more augmentations to a first input three-dimensional (3D) shape to generate a second input 3D shape. The technique also includes generating, via a first set of neural network layers, a style code based on a first latent representation of the first input 3D shape and a second latent representation of the second input 3D shape. The technique further includes generating, via a second set of neural network layers, a first output 3D shape based on the style code and the second latent representation, and performing one or more operations on the first and second sets of neural network layers based on a first loss associated with the first output 3D shape to generate a trained machine learning model.

Classes IPC  ?

  • G06T 19/20 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie Édition d'images tridimensionnelles [3D], p.ex. modification de formes ou de couleurs, alignement d'objets ou positionnements de parties
  • G06N 3/0455 - Réseaux auto-encodeurs; Réseaux encodeurs-décodeurs
  • G06N 3/0475 - Réseaux génératifs
  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 3/092 - Apprentissage par renforcement
  • G06T 17/00 - Modélisation tridimensionnelle [3D] pour infographie
  • G06T 17/10 - Description de volumes, p.ex. de cylindres, de cubes ou utilisant la GSC [géométrie solide constructive]

76.

AUTODESK WORKSHOP XR

      
Numéro d'application 1753422
Statut Enregistrée
Date de dépôt 2023-09-07
Date d'enregistrement 2023-09-07
Propriétaire Autodesk, Inc. (USA)
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Software as a service (SAAS) featuring software for architects, designers, engineers, and construction professionals for creating, designing, developing, rendering, manipulating, executing, viewing, revising, and displaying digital images, photographs, digital animation, graphics, and BIM data.

77.

PROEST

      
Numéro d'application 1753488
Statut Enregistrée
Date de dépôt 2023-08-18
Date d'enregistrement 2023-08-18
Propriétaire Autodesk, Inc. (USA)
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Downloadable computer software for construction project management, lead generation and management, proposal and bid creation and management, bid analysis, calculating and tracking material, labor, equipment, and other costs, pre-project management, customer communications, accounting integration, real-time collaboration, cost forecasting, construction data analytics, contract and document management, quality and safety management, construction customer relationship management, and construction reporting. Software as a service (SAAS) services featuring software for construction project management, lead generation and management, proposal and bid creation and management, bid analysis, calculating and tracking material, labor, equipment, and other costs, pre-project management, customer communications, accounting integration, real-time collaboration, cost forecasting, construction data analytics, contract and document management, quality and safety management, construction customer relationship management, and construction reporting.

78.

LIBRARY-BASED CONNECTIONS DESIGN AUTOMATION

      
Numéro d'application 17713724
Statut En instance
Date de dépôt 2022-04-05
Date de la première publication 2023-10-05
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Stancu, Mihai
  • Manoliu, Cosmin Paul
  • Peticila, Dan Florin
  • Piechnik, Pawel
  • Catalina, Mihai Vlad
  • Olaru, Dragos Leonardo
  • Pavel, Vlad
  • Berteanu, Dumitru
  • Orzea, Bogdan
  • Nita, Silviu Constantin
  • Constantin, Amalia Elena

Abrégé

A method and system provides the ability to connect steel elements. A design intent model is acquired and consists of a building information model of a skeleton of a building without connections between steel elements that have geometric characteristics. A structural analysis of the structure of the model is performed and generates output consisting of member end forces at intersections of the steel elements. Via a user interface, rules are defined, that associate a potential connection with a structural steel profile. Via a user interface, a script is defined, that dictate where connections should be placed by: identifying second geometric characteristics of the potential connection, identifying forces for steel elements to be connected, comparing the design intent model, the structural analysis output and the rules to the structural steel profile, and autonomously generating and placing, based on the comparison, connections on the BIM model at applicable intersections.

Classes IPC  ?

  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p.ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO
  • G06F 30/13 - Conception architecturale, p.ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes
  • G06F 30/17 - Conception mécanique paramétrique ou variationnelle

79.

Monetary vulnerability assessment (MVA) of a reparable infrastructure system

      
Numéro d'application 17708971
Numéro de brevet 12081398
Statut Délivré - en vigueur
Date de dépôt 2022-03-30
Date de la première publication 2023-10-05
Date d'octroi 2024-09-03
Propriétaire AUTODESK, INC. (USA)
Inventeur(s) Ro, Junje

Abrégé

A method and system provide the ability to estimate the vulnerability of a repairable infrastructure system. A survival curve is constructed for one or more assets. A rehabilitation plan is prescribed for one or more failure states of the repairable infrastructure system. A cost estimation model is constructed for costs associated with the repairs for each of the failure states. A planning basis is specified. A multiple probability simulation is conducted that estimates a potential restoration cost for a possible failure. The simulation is repeated to acquire a distribution of potential restoration costs. A vulnerability estimation is determined and provided based on the distribution.

Classes IPC  ?

  • H04L 41/08 - Gestion de la configuration des réseaux ou des éléments de réseau
  • G06Q 10/06 - Ressources, gestion de tâches, des ressources humaines ou de projets; Planification d’entreprise ou d’organisation; Modélisation d’entreprise ou d’organisation
  • G06Q 10/0637 - Gestion ou analyse stratégiques, p. ex. définition d’un objectif ou d’une cible pour une organisation; Planification des actions en fonction des objectifs; Analyse ou évaluation de l’efficacité des objectifs
  • H04L 41/0823 - Réglages de configuration caractérisés par les objectifs d’un changement de paramètres, p.ex. l’optimisation de la configuration pour améliorer la fiabilité
  • H04L 41/0826 - Réglages de configuration caractérisés par les objectifs d’un changement de paramètres, p.ex. l’optimisation de la configuration pour améliorer la fiabilité pour la réduction des coûts du réseau

80.

SEMANTIC SCRIPT LANGUAGE PROCESSING

      
Numéro d'application 17710663
Statut En instance
Date de dépôt 2022-03-31
Date de la première publication 2023-10-05
Propriétaire Autodesk, Inc. (USA)
Inventeur(s) Hotson, Clayton P.

Abrégé

A method and system provide the ability to process source computer instructions. The source computer instructions are obtained and include input statements that consist of two functions and one or more arguments. The two functions are competing with each other for consumption of the one or more arguments. For an input statement, an inherent numeric precedence weight is determined for each function and argument. All possible legal configurations of the functions and arguments are determined and consist of different groupings of the functions and arguments. A score is assigned to each grouping and consists of a sum of the weights within each different grouping. The grouping and legal configuration having the highest score is selected. The input statements are compiled into executable code using the selected different grouping.

Classes IPC  ?

81.

VOXEL-BASED APPROACH FOR DESIGN MODELS

      
Numéro d'application 17832123
Statut En instance
Date de dépôt 2022-06-03
Date de la première publication 2023-09-21
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Zhao, Dale
  • Benjamin, David
  • Wang, Rui

Abrégé

A voxel-based design approach enables the creating and modifying of a design model comprising a 3D grid of discrete voxels that is represented by a voxel data structure. The voxel data structure comprises voxel-level entries, each entry corresponding to a voxel based on the 3D location within the 3D grid. The voxel data structure includes a design-level entry for storing design-level performance metrics. The system updates the voxel data structure to reflect user modifications to the design model and renders a visualization of the updated design model. The system displays a per-voxel heat map for the design model for a selected performance metric based on the voxel data structure. The design system displays multiple optimized design solutions based on corresponding optimized voxel data structures. The system generates the multiple optimized design solutions based on a voxel-based optimization technique. The system also performs a voxel-based recommendation visualization technique.

Classes IPC  ?

  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p.ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO

82.

MULTI-USER COLLABORATION SYSTEM FOR GENERATIVE DESIGNS

      
Numéro d'application 17696340
Statut En instance
Date de dépôt 2022-03-16
Date de la première publication 2023-09-21
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Benjamin, David
  • Zhao, Dale
  • Wang, Rui

Abrégé

In various embodiments, a computer-implemented method comprises receiving, during a real-time collaboration session including a plurality of participants, a first input associated with a first selectable component from a set of pre-defined selectable components associated with a shared design model, where the first selectable component is associated with a first participant in the plurality of participants, in response to receiving a confirmation of the first input, modifying the shared design model to generate an updated shared design model, wherein the first selectable component in the updated shared design model includes the modified first selectable component, and causing the updated shared design model to be synchronized with at least one other participant in a plurality of participants included in the real-time collaboration session.

Classes IPC  ?

83.

DETERMINING COLLABORATION SCORES FOR GENERATING A SHARED DESIGN

      
Numéro d'application 17718181
Statut En instance
Date de dépôt 2022-04-11
Date de la première publication 2023-09-21
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Benjamin, David
  • Zhao, Dale
  • Wang, Rui

Abrégé

In various embodiments, a computer-implemented method comprises receiving, during a real-time collaboration session, a first input associated with a first selectable component, where the first selectable component is included in a set of pre-defined selectable components associated with a shared design model, and the first selectable component is a first component type that includes a first set of characteristics, in response to receiving a confirmation of the first input, modifying the shared design model to generate a modified shared design model, where the modified shared design model includes the first selectable component, computing, based on the modified shared design model, a set of metrics including a first behavioral metric, computing, based on the set of metrics, a first collaboration score for a first participant and at least one other participant, and displaying a design space that includes the modified shared design model and the first collaboration score.

Classes IPC  ?

  • G06Q 10/06 - Ressources, gestion de tâches, des ressources humaines ou de projets; Planification d’entreprise ou d’organisation; Modélisation d’entreprise ou d’organisation
  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p.ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO
  • G06F 30/13 - Conception architecturale, p.ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes

84.

VOXEL-BASED APPROACH FOR DESIGN MODELS

      
Numéro d'application 17832116
Statut En instance
Date de dépôt 2022-06-03
Date de la première publication 2023-09-21
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Zhao, Dale
  • Benjamin, David
  • Wang, Rui

Abrégé

A voxel-based design approach enables the creating and modifying of a design model comprising a 3D grid of discrete voxels that is represented by a voxel data structure. The voxel data structure comprises voxel-level entries, each entry corresponding to a voxel based on the 3D location within the 3D grid. The voxel data structure includes a design-level entry for storing design-level performance metrics. The system updates the voxel data structure to reflect user modifications to the design model and renders a visualization of the updated design model. The system displays a per-voxel heat map for the design model for a selected performance metric based on the voxel data structure. The design system displays multiple optimized design solutions based on corresponding optimized voxel data structures. The system generates the multiple optimized design solutions based on a voxel-based optimization technique. The system also performs a voxel-based recommendation visualization technique.

Classes IPC  ?

  • G06T 19/20 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie Édition d'images tridimensionnelles [3D], p.ex. modification de formes ou de couleurs, alignement d'objets ou positionnements de parties
  • G06T 15/08 - Rendu de volume
  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu

85.

VOXEL-BASED APPROACH FOR DESIGN MODELS

      
Numéro d'application 17832127
Statut En instance
Date de dépôt 2022-06-03
Date de la première publication 2023-09-21
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Zhao, Dale
  • Benjamin, David
  • Wang, Rui

Abrégé

A voxel-based design approach enables the creating and modifying of a design model comprising a 3D grid of discrete voxels that is represented by a voxel data structure. The voxel data structure comprises voxel-level entries, each entry corresponding to a voxel based on the 3D location within the 3D grid. The voxel data structure includes a design-level entry for storing design-level performance metrics. The system updates the voxel data structure to reflect user modifications to the design model and renders a visualization of the updated design model. The system displays a per-voxel heat map for the design model for a selected performance metric based on the voxel data structure. The design system displays multiple optimized design solutions based on corresponding optimized voxel data structures. The system generates the multiple optimized design solutions based on a voxel-based optimization technique. The system also performs a voxel-based recommendation visualization technique.

Classes IPC  ?

  • G06T 15/08 - Rendu de volume
  • G06T 19/20 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie Édition d'images tridimensionnelles [3D], p.ex. modification de formes ou de couleurs, alignement d'objets ou positionnements de parties
  • G06F 30/10 - CAO géométrique

86.

GENERATING COLLABORATIVE DESIGNS FROM MULTIPLE CONTRIBUTORS

      
Numéro d'application 17718185
Statut En instance
Date de dépôt 2022-04-11
Date de la première publication 2023-09-21
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Benjamin, David
  • Zhao, Dale
  • Wang, Rui

Abrégé

In various embodiments, a computer-implemented method for generating a multi-objective model shared between multiple participants comprises receiving a first input associated with a first selectable component in a set of pre-defined selectable components associated with a shared design model, where the first selectable component is a first component type that is associated with a first persona in a plurality of personas, and each persona includes a distinct set of design goals that the shared design model represents in a multi-objective design problem, in response to the first input, modifying the shared design model to generate a modified shared design model that includes the first selectable component, and generating, based on the modified shared design model, a set of candidate design solutions that satisfy the distinct sets of design goals, where each candidate design solution includes additional selectable components of a second component type.

Classes IPC  ?

87.

TECHNIQUES FOR TRIAL-AND-ERROR LEARNING IN COMPLEX APPLICATION ENVIRONMENTS

      
Numéro d'application 17965715
Statut En instance
Date de dépôt 2022-10-13
Date de la première publication 2023-09-14
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Masson, Damien Paul Andre
  • Vermeulen, Jo Karel
  • Fitzmaurice, George
  • Matejka, Justin Frank

Abrégé

One embodiment of a computer-implemented method for automatically tracking how extensively software application commands have been investigated comprises identifying an interaction with a first command occurring within a graphical user interface, wherein the first command is associated with one or more command parameters; updating a command history associated with the first command based on the interaction with the first command; computing a progress level associated with the first command based on the command history, wherein the progress level indicates how many command parameters included in the one or more command parameters have been modified; determining a coverage level associated with the first command based on the command history; and outputting at least one of the use level or the progress level for display in the graphical user interface.

Classes IPC  ?

  • G06F 9/48 - Lancement de programmes; Commutation de programmes, p.ex. par interruption
  • G06F 9/38 - Exécution simultanée d'instructions

88.

DEFECT REMOVAL FROM MANUFACTURED OBJECTS HAVING MORPHED SURFACES

      
Numéro d'application 18141262
Statut En instance
Date de dépôt 2023-04-28
Date de la première publication 2023-09-14
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Lovell, David Patrick
  • Sousa, Daniela Sofia Seixas
  • Cheng, Chin-Yi

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided repair of physical structures include: generating a two dimensional difference image from a first three dimensional model of at least one actual three dimensional surface of a manufactured object, and a second three dimensional model of at least one source three dimensional surface used as input to a manufacturing process that generated the manufactured object; obtaining from an image-to-image translation based machine learning algorithm, trained using pairs of input images representing deformed and deformed plus surface defected added versions of a nominal three dimensional surface, a translated version of the two dimensional image; generating from the translated version of the two dimensional image a third three dimensional model of at least one morphed three dimensional surface corresponding to the at least one source three dimensional surface. Further, defects can be removed based on the third three dimensional model.

Classes IPC  ?

  • G06N 3/08 - Méthodes d'apprentissage
  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • G05B 19/4097 - Commande numérique (CN), c.à d. machines fonctionnant automatiquement, en particulier machines-outils, p.ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'u caractérisée par l'utilisation de données de conception pour commander des machines à commande numérique [CN], p.ex. conception et fabrication assistées par ordinateur CFAO

89.

TECHNIQUES FOR TRIAL-AND-ERROR LEARNING IN COMPLEX APPLICATION ENVIRONMENTS

      
Numéro d'application 17965717
Statut En instance
Date de dépôt 2022-10-13
Date de la première publication 2023-09-14
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Masson, Damien Paul Andre
  • Vermeulen, Jo Karel
  • Fitzmaurice, George
  • Matejka, Justin Frank

Abrégé

One embodiment of a computer-implemented method for executing software application commands on practice data comprises identifying a command demonstration that is stored in a database based on a current command being interacted with in a graphical user interface, wherein the command demonstration is associated with sample application data; receiving a selection of whether to execute the command demonstration on the sample application data or current application data; causing the command demonstration to be executed on either the sample application data or a copy of current application data to generate modified data; and causing the modified data to be output within the graphical user interface.

Classes IPC  ?

  • G06F 9/451 - Dispositions d’exécution pour interfaces utilisateur
  • G06F 3/0482 - Interaction avec des listes d’éléments sélectionnables, p.ex. des menus
  • G06F 3/0484 - Techniques d’interaction fondées sur les interfaces utilisateur graphiques [GUI] pour la commande de fonctions ou d’opérations spécifiques, p.ex. sélection ou transformation d’un objet, d’une image ou d’un élément de texte affiché, détermination d’une valeur de paramètre ou sélection d’une plage de valeurs

90.

Techniques for trial-and-error learning in complex application environments

      
Numéro d'application 17965718
Numéro de brevet 11966293
Statut Délivré - en vigueur
Date de dépôt 2022-10-13
Date de la première publication 2023-09-14
Date d'octroi 2024-04-23
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Masson, Damien Paul Andre
  • Vermeulen, Jo Karel
  • Fitzmaurice, George
  • Matejka, Justin Frank

Abrégé

One embodiment of a computer-implemented method for automatically generating command recommendations for a software workflow comprises identifying a plurality of command sequences stored in a database based on a current command being interacted with in a graphical user interface; computing a score for each command sequence included in the plurality of command sequences based on one or more commands included in the command sequence and one or more commands included in a command history; determining at least one command sequence included in the plurality of command sequences to output based on the scores; and outputting the at least one command sequence for display.

Classes IPC  ?

  • G06F 11/14 - Détection ou correction d'erreur dans les données par redondance dans les opérations, p.ex. en utilisant différentes séquences d'opérations aboutissant au même résultat
  • G06F 3/0482 - Interaction avec des listes d’éléments sélectionnables, p.ex. des menus
  • G06F 3/0484 - Techniques d’interaction fondées sur les interfaces utilisateur graphiques [GUI] pour la commande de fonctions ou d’opérations spécifiques, p.ex. sélection ou transformation d’un objet, d’une image ou d’un élément de texte affiché, détermination d’une valeur de paramètre ou sélection d’une plage de valeurs
  • G06F 9/38 - Exécution simultanée d'instructions
  • G06F 9/451 - Dispositions d’exécution pour interfaces utilisateur
  • G06F 9/48 - Lancement de programmes; Commutation de programmes, p.ex. par interruption
  • G09B 19/00 - Enseignement non couvert par d'autres groupes principaux de la présente sous-classe

91.

AUTODESK WORKSHOP XR

      
Numéro d'application 228543400
Statut En instance
Date de dépôt 2023-09-07
Propriétaire Autodesk, Inc. (USA)
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

(1) Software as a service (SAAS) featuring software for architects, designers, engineers, and construction professionals for creating, designing, developing, rendering, manipulating, executing, viewing, revising, and displaying digital images, photographs, digital animation, graphics, and BIM data.

92.

COMPUTER AIDED GENERATIVE DESIGN WITH OVERALL THICKNESS CONTROL TO FACILITATE MANUFACTURING AND STRUCTURAL PERFORMANCE

      
Numéro d'application 18135055
Statut En instance
Date de dépôt 2023-04-14
Date de la première publication 2023-09-07
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Burla, Ravi Kumar
  • Eom, Jaesung
  • Rodriguez, Jesus

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of physical structures using generative design processes, where the three dimensional (3D) models of the physical structures are produced in accordance with a design criterion that limits a minimum thickness of the generatively designed 3D models, include: obtaining a design space for an object to be manufactured and one or more design criteria including a thickness constraint; iteratively modifying a generatively designed 3D shape of the modeled object in the design space in accordance with the one or more design criteria, including measuring a current thickness for the 3D shape using an overall relationship of a volume of the 3D shape with respect to a surface area of the 3D shape; and providing the generatively designed model for use in manufacturing the physical structure using one or more computer-controlled manufacturing systems.

Classes IPC  ?

  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p.ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO

93.

TECHNIQUES FOR ADAPTIVE ROBOTIC ASSEMBLY

      
Numéro d'application 18152980
Statut En instance
Date de dépôt 2023-01-11
Date de la première publication 2023-09-07
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Koga, Yoshihito Yotto
  • Chitta, Sachin
  • Kerrick, Heather

Abrégé

Techniques are disclosed for controlling robotic systems to perform assembly tasks. In some embodiments, a robot control application receives sensor data associated with one or more parts. The robot control application applies a grasp perception model to predict one or more grasp proposals indicating regions of the one or more parts that a robotic system can grasp. The robot control application causes the robotic system to grasp one of the parts based on a corresponding grasp proposal. If the pose of the grasped part needs to be changed in order to assemble the part with one or more other parts, the robot control application determines movements of the robotic system required to re-grasp the part in a different pose. In addition, the robot control application determines movements of the robot system for assembling the part with the one or more other parts based on results of a motion planning technique.

Classes IPC  ?

94.

COMPUTER-AIDED TECHNIQUES FOR AUTOMATICALLY GENERATING DESIGNS THAT REFLECT DESIGN INTENTS

      
Numéro d'application 17687535
Statut En instance
Date de dépôt 2022-03-04
Date de la première publication 2023-09-07
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Wang, Yi
  • Nourbakhsh, Mehdi
  • Zhao, Dale

Abrégé

In various embodiments, an intent-driven layout application automatically generates design for floor spaces. The intent-driven layout application generates a logic formula based on a statement of a design intent and at least one fuzzy geometric predicate. The intent-driven layout application computes, for a first spatial object, a set of desirability values for a set of candidate placements within a first design based on the logic formula. Based on the set of desirability values, the intent-driven layout application selects a first candidate placement from the set of candidate placements. Subsequently, the intent-driven layout application generates a second design based on the first design, where the first spatial object has the first candidate placement within the second design.

Classes IPC  ?

  • G06F 30/13 - Conception architecturale, p.ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes
  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p.ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO

95.

Determining drainage constraints and geometries in a triangular mesh

      
Numéro d'application 17682891
Numéro de brevet 12008715
Statut Délivré - en vigueur
Date de dépôt 2022-02-28
Date de la première publication 2023-08-31
Date d'octroi 2024-06-11
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Koch, Valentin R.
  • Hu, Weiwei

Abrégé

A method and system provide the ability to design a terrain surface. A triangular surface mesh representative of an existing surface is obtained and consists of triangles that are connected by vertices and edges. A drain intention is specified for the terrain surface through a geometry that is a point or line. The drain intention defines a drainage flow that influences a shape of the terrain surface. The mesh is modified using a Voronoi diagram that prevents a drain conflict between mesh triangles. A drain direction is autonomously determined a for each of the mesh triangles based on the drain intention. The determination generates a drain pattern that is used to shape the terrain surface.

Classes IPC  ?

  • G06T 17/20 - Description filaire, p.ex. polygonalisation ou tessellation
  • G06F 30/13 - Conception architecturale, p.ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes
  • G06T 17/05 - Modèles géographiques
  • G06T 19/20 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie Édition d'images tridimensionnelles [3D], p.ex. modification de formes ou de couleurs, alignement d'objets ou positionnements de parties
  • G06F 111/04 - CAO basée sur les contraintes

96.

Immersive analysis environment for human motion data

      
Numéro d'application 17677826
Numéro de brevet 12148081
Statut Délivré - en vigueur
Date de dépôt 2022-02-22
Date de la première publication 2023-08-24
Date d'octroi 2024-11-19
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Brudy, Frederik
  • Anderson, Fraser
  • Dachselt, Raimund
  • Fitzmaurice, George
  • Matejka, Justin Frank
  • Reipschläger, Patrick

Abrégé

One embodiment of a computer-implemented method for analyzing human motion data includes receiving a set of motion data that indicates one or more movements of a first person within a real-world environment; generating a virtual avatar corresponding to the first person based on the set of motion data; determining a position of the virtual avatar within an extended reality (ER) scene based on the one or more movements; and displaying the virtual avatar in the ER scene according to the determined position.

Classes IPC  ?

  • G06T 13/40 - Animation tridimensionnelle [3D] de personnages, p.ex. d’êtres humains, d’animaux ou d’êtres virtuels
  • G06F 3/01 - Dispositions d'entrée ou dispositions d'entrée et de sortie combinées pour l'interaction entre l'utilisateur et le calculateur
  • G06T 7/70 - Détermination de la position ou de l'orientation des objets ou des caméras
  • G06T 19/00 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie
  • G06V 40/20 - Mouvements ou comportement, p.ex. reconnaissance des gestes

97.

PROEST

      
Numéro d'application 228527800
Statut En instance
Date de dépôt 2023-08-18
Propriétaire Autodesk, Inc. (USA)
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

(1) Downloadable computer software for construction project management, lead generation and management, proposal and bid creation and management, bid analysis, calculating and tracking material, labor, equipment, and other costs, pre-project management, customer communications, accounting integration, real-time collaboration, cost forecasting, construction data analytics, contract and document management, quality and safety management, construction customer relationship management, and construction reporting. (1) Software as a service (SAAS) services featuring software for construction project management, lead generation and management, proposal and bid creation and management, bid analysis, calculating and tracking material, labor, equipment, and other costs, pre-project management, customer communications, accounting integration, real-time collaboration, cost forecasting, construction data analytics, contract and document management, quality and safety management, construction customer relationship management, and construction reporting.

98.

Character animations in a virtual environment based on reconstructed three-dimensional motion data

      
Numéro d'application 17673403
Numéro de brevet 11908058
Statut Délivré - en vigueur
Date de dépôt 2022-02-16
Date de la première publication 2023-08-17
Date d'octroi 2024-02-20
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Anderson, Fraser
  • Fitzmaurice, George William
  • Wang, Cheng Yao
  • Zhou, Qian

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for providing editable keyframe-based animation data for applying to a character to animate motion of the character in three-dimensional space. Three-dimensional motion data is constructed from two-dimensional videos. The three-dimensional motion data represents movement of people in the two-dimensional videos and includes, for each person, a root of a three-dimensional skeleton of the person. The three-dimensional skeleton comprises multiple three-dimensional poses of the person during at least a portion of frames of a video from the two-dimensional videos. The three-dimensional motion data is converted into editable keyframe-based animation data in three-dimensional space and provided to animate motion.

Classes IPC  ?

  • G06T 13/40 - Animation tridimensionnelle [3D] de personnages, p.ex. d’êtres humains, d’animaux ou d’êtres virtuels
  • G06F 3/01 - Dispositions d'entrée ou dispositions d'entrée et de sortie combinées pour l'interaction entre l'utilisateur et le calculateur
  • G06F 16/74 - Navigation; Visualisation à cet effet
  • G06T 7/246 - Analyse du mouvement utilisant des procédés basés sur les caractéristiques, p.ex. le suivi des coins ou des segments

99.

Methods and systems for generating lattice recommendations in computer-aided design applications

      
Numéro d'application 18128770
Numéro de brevet 11900029
Statut Délivré - en vigueur
Date de dépôt 2023-03-30
Date de la première publication 2023-07-27
Date d'octroi 2024-02-13
Propriétaire Autodesk, Inc. (USA)
Inventeur(s)
  • Bandara, Konara Mudiyanselage Kosala
  • Shayani, Hooman

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for designing three dimensional lattice structures include, in one aspect, a method including: obtaining a mechanical problem definition including a 3D model of an object; generating a numerical simulation model for the 3D model of the object using one or more loading cases and one or more isotropic solid materials identified as a baseline material model for a design space; predicting performance of different lattice settings in different orientations in the design space using a lattice structural behavior model in place of the baseline material model in the numerical simulation model; and presenting a set of lattice proposals for the design space based on the predicted performance of the different lattice settings in the different orientations; wherein the lattice structural behavior model has been precomputed for the different lattice settings, which are generable by the 3D modeling program.

Classes IPC  ?

  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • G06T 17/00 - Modélisation tridimensionnelle [3D] pour infographie
  • G06F 111/10 - Modélisation numérique
  • G06F 119/18 - Analyse de fabricabilité ou optimisation de fabricabilité

100.

Predictive modeling and control for water resource infrastructure

      
Numéro d'application 18171971
Numéro de brevet 11815863
Statut Délivré - en vigueur
Date de dépôt 2023-02-21
Date de la première publication 2023-06-29
Date d'octroi 2023-11-14
Propriétaire AUTODESK, INC. (USA)
Inventeur(s)
  • Gaffoor, Thouheed Abdul
  • Suthar, Megh
  • Mohamed, Yousra Hazem Khalil Helmy

Abrégé

A control mechanism scheduler for a water resource infrastructure receives operating data and disturbance data, the operating data describing infrastructure components of the water resource infrastructure, the disturbance data comprising a disturbance signal describing a disturbance expected to disturb the water resource infrastructure. The control mechanism scheduler generates classes for disturbance signals, generates simulations of the water resource infrastructure, and generates schedules of setpoints for control mechanisms actuable to control the infrastructure components of the water resource infrastructure in accordance with approaching a predetermined objective.

Classes IPC  ?

  • G05B 13/04 - Systèmes de commande adaptatifs, c. à d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques impliquant l'usage de modèles ou de simulateurs
  • G06N 20/00 - Apprentissage automatique
  • G05B 13/02 - Systèmes de commande adaptatifs, c. à d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques
  • G06N 5/04 - Modèles d’inférence ou de raisonnement
  • E03B 7/02 - Réseaux de canalisations publiques ou autres canalisations maîtresses analogues
  • E03B 7/07 - Disposition des appareils, p.ex. filtres, commandes du débit, dispositifs de mesure, siphons, valves, dans les réseaux de canalisations
  1     2     3     ...     16        Prochaine page