An ultrasound training model which exhibits optically clear soft tissue-mimicking materials that are simultaneously acoustically scattering and self-healing to needle punctures. An exemplary embodiment is disclosed that comprises an embedded bone-mimicking spine model and a dual-purpose lid that may be used as a friction surface mat. Various embodiments of the training model materials are disclosed.
Injection instruments with needles; Injection instruments without needles; Injection needles for medical use; Injection needles for spinal treatment; Medical devices and apparatus, namely, ultrasound imaging apparatus, scanners and needle guides, and parts and fittings therefor; Medical image processors; Medical imaging apparatus; Medical imaging apparatus for bone and spine imaging and therapy; Medical imaging apparatus incorporating medical imaging software; Medical needles and introducers
3.
THREE-DIMENSIONAL IMAGING AND MODELING OF ULTRASOUND IMAGE DATA
The position and orientation of an ultrasound probe is tracked in three dimensions to provide highly-accurate three-dimensional bone surface images that can be used for anatomical assessment and/or procedure guidance. The position and orientation of a therapy applicator can be tracked in three dimensions to provide feedback to align the projected path of the therapy applicator with a desired path for the therapy applicator or to provide feedback to align the potential therapy field of a therapy applicator with a target anatomical site. The three-dimensional bone surface images can be fit to a three-dimensional model of the anatomical site to provide or display additional information to the user to improve the accuracy of the anatomical assessment and/or procedure guidance.
Systems and methods for anatomical identification using ultrasonic imaging and acoustic shadow detection methods are provided. At least some embodiments of the disclosure comprise the following steps: acquiring ultrasound image; detecting shadow region; extracting shadow profile; filtering shadow profile with matched filter; identifying anatomical landmarks within shadow; extracting features of anatomical landmarks; classifying anatomy, and determining with a high degree of confidence that the target anatomy is depicted in the image. A determination is made as to the degree of confidence that the target anatomy is depicted in the image. Conditionally, graphics indicating presence and position of target anatomy is displayed including disposition, location and orientation thereof.
In some embodiments, a method comprises: obtaining a 2D ultrasound image of an imaged region of a subject, the imaged region comprising bone; identifying model template cross-sections of a 3D model of the bone corresponding to the 2D image at least in part by registering the 2D ultrasound image to the 3D model, wherein the model template cross-sections are defined prior to obtaining such 2D image, the model template cross-sections having size and shape representative of a population of potential subjects; identifying at least one location of at least one landmark feature of the bone in the 2D image based on results of the registration; and generating a visualization that includes: a visualization of the 2D image and a visualization of one of the identified cross-sections of the 3D model, wherein the visualization indicates the at least one location of the at least one landmark feature.
Handheld ultrasound imaging devices for identification of target regions are generally described. Medical ultrasound is a popular medical imaging modality primarily used for diagnostic imaging of soft tissue but also for interventional procedures such as guidance of a needle or catheter placement. Examples include diagnostic imaging of organs, such cardiac or liver structures. Common interventional procedures that rely on ultrasound guidance are central line placement and guidance of nerve blocks, both of which are high volume procedures in certain hospital settings such as the intensive care unit (ICU). Handheld ultrasound imaging devices with integral display screens and improve portability are described, along with systems and methods for orienting displayed ultrasound images so as to improve their usefulness in guiding interventional procedures.
G09G 5/32 - Dispositions ou circuits de commande de l'affichage communs à l'affichage utilisant des tubes à rayons cathodiques et à l'affichage utilisant d'autres moyens de visualisation caractérisés par l'affichage de caractères ou de signes individuels en utilisant des signaux de commande d'affichage dérivés de signaux codés représentant les caractères ou les signes avec une mémoire de codes de caractères avec des moyens pour commander la position de l'affichage
G09G 5/36 - Dispositions ou circuits de commande de l'affichage communs à l'affichage utilisant des tubes à rayons cathodiques et à l'affichage utilisant d'autres moyens de visualisation caractérisés par l'affichage de dessins graphiques individuels en utilisant une mémoire à mappage binaire
Systems and methods for anatomical identification using ultrasonic imaging and acoustic shadow detection methods are provided. At least some embodiments of the disclosure comprise the following steps: acquiring ultrasound image; detecting shadow region; extracting shadow profile; filtering shadow profile with matched filter; identifying anatomical landmarks within shadow; extracting features of anatomical landmarks; classifying anatomy, and determining with a high degree of confidence that the target anatomy is depicted in the image. A determination is made as to the degree of confidence that the target anatomy is depicted in the image. Conditionally, graphics indicating presence and position of target anatomy is displayed including disposition, location and orientation thereof.
A61B 8/00 - Diagnostic utilisant des ondes ultrasonores, sonores ou infrasonores
G01N 29/00 - Recherche ou analyse des matériaux par l'emploi d'ondes ultrasonores, sonores ou infrasonoresVisualisation de l'intérieur d'objets par transmission d'ondes ultrasonores ou sonores à travers l'objet
G01N 29/44 - Traitement du signal de réponse détecté
G06K 9/46 - Extraction d'éléments ou de caractéristiques de l'image
8.
Target region identification for imaging application
Systems and methods related to the location of target regions in imaging applications are generally described. Certain embodiments relate to devices and/or methods for image-guided identification of suitable regions at which to insert needles, catheters, and the like. Such systems and methods can be used in association with a variety of imaging technologies, including ultrasound imaging. In certain embodiments, the systems and methods described herein can be used in association with hand-held ultrasound imaging devices.
A61B 90/13 - Instruments, outillage ou accessoires spécialement adaptés à la chirurgie ou au diagnostic non couverts par l'un des groupes , p. ex. pour le traitement de la luxation ou pour la protection de bords de blessures pour la chirurgie stéréotaxique, p. ex. système stéréotaxique à cadre avec des guides pour aiguilles ou instruments, p. ex. des glissières courbes ou des articulations à rotule guidés par la lumière, p. ex. pointeurs lasers
A61B 90/00 - Instruments, outillage ou accessoires spécialement adaptés à la chirurgie ou au diagnostic non couverts par l'un des groupes , p. ex. pour le traitement de la luxation ou pour la protection de bords de blessures
Systems and methods for probe insertion using feedback from ultrasound guidance using anatomical features. The present disclosure is directed to ultrasound imaging for the generation of ultrasound images of anatomical features such as bone and/or visualizing ultrasound images of anatomical features in a subject being imaged. Specifically, the present invention pertains to real-time feedback using graphical user interface and ultrasonic imaging for the purpose of probe insertion. Probe insertion can either be idealistically displayed or physically guided with varying degrees of freedom for augmented accuracy and mitigating failure rates.
Systems and methods for processing ultrasound data are provided. The disclosure includes using at least one computer hardware processor to perform obtaining ultrasound data generated based, at least in part, on one or more ultrasound signals from an imaged region of a subject, the ultrasound data comprising fundamental frequency ultrasound data and harmonic frequency ultrasound data, calculating shadow intensity data based at least in part on the harmonic frequency ultrasound data, generating, based at least in part on the fundamental frequency ultrasound data, an indication of bone presence in the imaged region, generating, based at least in part on the shadow intensity data, an indication of tissue presence in the imaged region, and generating an ultrasound image of the subject at least in part by combining the indication of bone presence and the indication of tissue presence.
Techniques for processing ultrasound data. The techniques include using at least one computer hardware processor to perform obtaining ultrasound data generated based, at least in part, on one or more ultrasound signals from an imaged region of a subject; calculating shadow intensity data corresponding to the ultrasound data; generating, based at least in part on the shadow intensity data and at least one bone separation parameter, an indication of bone presence in the imaged region, generating, based at least in part on the shadow intensity data and at least one tissue separation parameter different from the at least one bone separation parameter, an indication of tissue presence in the imaged region; and generating an ultrasound image of the subject at least in part by combining the indication of bone presence and the indication of tissue presence.
Techniques for processing ultrasound data. The techniques include using at least one computer hardware processor to perform obtaining ultrasound data generated based, at least in part, on one or more ultrasound signals from an imaged region of a subject; calculating shadow intensity data corresponding to the ultrasound data; generating, based at least in part on the shadow intensity data and at least one bone separation parameter, an indication of bone presence in the imaged region, generating, based at least in part on the shadow intensity data and at least one tissue separation parameter different from the at least one bone separation parameter, an indication of tissue presence in the imaged region; and generating an ultrasound image of the subject at least in part by combining the indication of bone presence and the indication of tissue presence.
A61B 8/00 - Diagnostic utilisant des ondes ultrasonores, sonores ou infrasonores
G01N 29/00 - Recherche ou analyse des matériaux par l'emploi d'ondes ultrasonores, sonores ou infrasonoresVisualisation de l'intérieur d'objets par transmission d'ondes ultrasonores ou sonores à travers l'objet
G01N 29/44 - Traitement du signal de réponse détecté
13.
LOCALIZATION OF IMAGING TARGET REGIONS AND ASSOCIATED SYSTMES AND DEVICES
Imaging devices for identification of target regions are generally described. Medical ultrasound is a popular medical imaging modality primarily used for diagnostic imaging of soft tissue but also for interventional procedures such as guidance of a needle or catheter placement. Examples include diagnostic imaging of organs, such cardiac or liver structures. Common interventional procedures that rely on ultrasound guidance are central line placement and guidance of nerve blocks, both of which are high volume procedures in certain hospital settings such as the intensive care unit (ICU).
Systems and methods related to the location of target regions in imaging applications are generally described. Certain embodiments relate to devices and/or methods for image-guided identification of suitable regions at which to insert needles, catheters, and the like. Such systems and methods can be used in association with a variety of imaging technologies, including ultrasound imaging. In certain embodiments, the systems and methods described herein can be used in association with hand-held ultrasound imaging devices.
A61B 8/00 - Diagnostic utilisant des ondes ultrasonores, sonores ou infrasonores
A61B 19/00 - Instruments, outillage ou accessoires pour la chirurgie ou le diagnostic non couverts par l'un des groupes A61B 1/00-A61B 18/00, p.ex. pour stéréotaxie, opération aseptique, traitement de la luxation, protecteurs des bords des blessures(masques de protection du visage A41D 13/11; blouses de chirurgien ou vêtements pour malades A41D 13/12; dispositifs pour retirer, traiter ou transporter les liquides du corps A61M 1/00)