A semiconductor device according to one or more embodiments may include a high potential region electrically connected with an electrode of a high potential side, a low potential region electrically connected with an electrode of a low potential side, a breakdown voltage improvement region arranged between the high potential region and the low potential region, including a first semiconductor region, field plates, each of the field plates arranged facing a surface of the breakdown voltage improvement region interposed an insulating layer, the field plates coupled each other between the high potential region and the low potential region, and extending in a direction that intersects the array direction, an auxiliary semiconductor region locally arranged corresponding to at least one field plate selected from the field plates on the surface of the first semiconductor region, and a connection electrode connecting the auxiliary semiconductor region with field plate selected from the field plates.
A method of manufacturing a nitride semiconductor device according to one or more embodiments is disclosed that includes forming a first nitride semiconductor layer, forming a second nitride semiconductor layer having a higher carrier concentration than the first nitride semiconductor layer on the first nitride semiconductor layer, forming a third nitride semiconductor layer on the second nitride semiconductor layer, forming a fourth nitride semiconductor layer on the third nitride semiconductor layer, forming a first main electrode electrically connected to the first nitride semiconductor layer, forming a second main electrode electrically connected to the fourth nitride semiconductor layer, and forming a control electrode on the third nitride semiconductor layer via an insulating film. In one or more embodiments, during the forming the second nitride semiconductor layer, the second nitride semiconductor layer is formed with higher carbon concentration than the carbon concentration of the first nitride semiconductor layer.
H10D 30/47 - Transistors FET ayant des canaux à gaz de porteurs de charge de dimension nulle [0D], à une dimension [1D] ou à deux dimensions [2D] ayant des canaux à gaz de porteurs de charge à deux dimensions, p. ex. transistors FET à nanoruban ou transistors à haute mobilité électronique [HEMT]
H10D 62/60 - Distribution ou concentrations d’impuretés
H10D 62/85 - Corps semi-conducteurs, ou régions de ceux-ci, de dispositifs ayant des barrières de potentiel caractérisés par les matériaux étant des matériaux du groupe III-V, p. ex. GaAs
A semiconductor device includes a semiconductor substrate which includes a first semiconductor region of a first conductivity type and a second semiconductor region of a second conductivity type opposite to the first conductivity type formed on the first semiconductor region, and in which in plan view, an element region in which a semiconductor element is formed and a termination region located closer to an end part side of the semiconductor substrate than the element region are formed. The semiconductor device includes multiple ditch structures formed in parallel in plan view in the termination region, penetrating from a top side through the second semiconductor region and reaching the first semiconductor region, with a conductive layer in a floating state formed inside, and a third semiconductor region of the first conductivity type having higher impurity concentration than the first semiconductor region provided at a bottom of the ditch structure.
The present disclosure pertains to a silicon carbide semiconductor device comprising: a silicon carbide substrate; a metal silicide layer provided on the silicon carbide substrate; and an electrode layer provided on the metal silicide layer, wherein the metal silicide layer contains carbon clusters, and the density of the carbon clusters of the metal silicide layer on the silicon carbide substrate side is higher than the density of the carbon clusters of the metal silicide layer on the electrode layer side. Consequently, provided is a silicon carbide semiconductor device imparted with excellent ohmic contact properties by suppressing the deterioration of ohmic contact properties due to the carbon clusters present in the metal silicide layer.
A semiconductor switching device according to one or more embodiments may include a switch that is connected between a power supply connected from outside of the semiconductor switching device and a load through an electric wire, and turns on and off power supply to the load, a load current detector that detects the load current flowing through the switch, and a square calculator that outputs a square value of the load current detected by the load current detector. In one or more embodiments, the switch may turn on and off the power supply to the load based on a control command.
H02H 7/26 - Protection sectionnelle de systèmes de câbles ou de lignes, p. ex. pour déconnecter une section dans laquelle un court-circuit, un défaut à la terre, ou une décharge d'arc se sont produits
H02H 1/00 - Détails de circuits de protection de sécurité
This semiconductor device 100 comprises: a first semiconductor region 5; a second semiconductor region 32 on the first semiconductor region; a third semiconductor region 30 on the second semiconductor region; a fourth semiconductor region 7 on the third semiconductor region; a fifth semiconductor region 8 on the fourth semiconductor region; first trenches 14 extending to the first semiconductor region; gate electrodes 14a provided in the first trenches; a sixth semiconductor region 4 on the first semiconductor region; a seventh semiconductor region 2 on the sixth semiconductor region; at least two second trenches 16 provided between the first trenches in a plan view; auxiliary electrodes 16a provided in the second trenches; an upper main electrode 11 connected to the fourth semiconductor region and the fifth semiconductor region; a lower main electrode connected to the seventh semiconductor region; an eighth semiconductor region 28 having a Schottky connection with the upper main electrode and arranged on the first semiconductor region between the second trenches; and a ninth semiconductor region 28C connecting the third semiconductor region between the first trenches and the second trenches and the eighth semiconductor region between the second trenches.
Provided is a converter that is capable of suppressing a spike current generated due to capacitors having a potential difference therebetween being connected to each other, thereby being able to reduce conduction loss of switching elements and noise generation. The converter comprises an inductor L, a plurality of switching elements Q1-Q6, and a plurality of capacitors C1, C2, and Co connected via the switching elements Q1-Q6. A current path of an output current Io passing through the capacitors C1, C2, Co is formed by turn-on of the switching elements Q1-Q6 (complementary turn-on of the switching elements Q1, Q3, Q5 and the switching elements Q2, Q4, Q6). The converter also comprises a sub-inductor Lo inserted into the current path.
H02M 3/155 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu sans transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs
H02M 3/07 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu sans transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des résistances ou des capacités, p. ex. diviseur de tension utilisant des capacités chargées et déchargées alternativement par des dispositifs à semi-conducteurs avec électrode de commande
SANKEN ELECTRIC KOREA CO., LTD. (République de Corée)
Inventeur(s)
Tasaki Yuji
Abrégé
This semiconductor device 100 comprises: a silicon carbide layer 10 that includes a first surface P1 parallel to a Y direction and an X direction orthogonal to the Y direction, a second surface P2 facing the surface P1, trenches 21 extending in the Y direction, n-type silicon carbide regions 26, p-type silicon carbide regions 28 positioned between the silicon carbide regions 26 and the surface P1, n-type silicon carbide regions 30 positioned between the silicon carbide regions 28 and the surface P1, and p-type silicon carbide regions 32 positioned in the X direction with respect to the trenches and deeper than the trenches; gate electrodes 16 in the trenches; gate insulating layers 18 between the gate electrodes and the silicon carbide layer 10; a first electrode 12 positioned on the surface P1 side of the silicon carbide layer 10, including Schottky regions 12SB, and in contact with the silicon carbide regions 30, the Schottky regions 12SB being in contact with the silicon carbide regions 26; and a second electrode 14 positioned on the second surface P2 side of the silicon carbide layer 10. The Schottky regions 12SB and the silicon carbide regions 32 are arranged differently while sandwiching the trenches in the X direction.
SANKEN ELECTRIC KOREA CO.,LTD. (République de Corée)
Inventeur(s)
Ito, Koichi
Lee, Eun Suk
Kang, Hanju
Abrégé
A semiconductor device used to control a current resonant power supply includes: a load detection circuit detecting a load state of the current resonant power supply; a frequency setting signal generation circuit generating first and second signals according to a feedback signal changing oppositely to an output signal of the current resonant power supply during a light load state and generating a frequency setting signal according to the first and second signals, and the first signal is a signal obtained by multiplying the feedback signal by a value N; a burst oscillation circuit generating a burst oscillation start signal according to the frequency setting signal; a switch control circuit generating a signal driving a first switching element and a second switching element connected in series with the current resonant power supply to turn on and off alternately according to the frequency setting signal and the burst oscillation start signal.
H02M 3/335 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu avec transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrodes de commande pour produire le courant alternatif intermédiaire utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs
H02M 1/00 - Détails d'appareils pour transformation
A semiconductor device 100 comprises: a first semiconductor region 10; second semiconductor regions 13 that are provided above the first semiconductor region; third semiconductor regions 14 that are provided on the second semiconductor regions; fourth semiconductor regions 16 that are provided above the third semiconductor regions; fifth semiconductor regions 18 that are provided above the fourth semiconductor regions; first trenches 20 that are located at a position deeper than the second semiconductor regions; first electrodes 22 that are provided within the first trenches with insulation films therebetween; second trenches 24 that are located at a position deeper than the second semiconductor regions; second electrodes 26 that are provided within the second trenches with insulation films therebetween; a sixth semiconductor region 28 that is sandwiched between the second trenches and is provided above the first semiconductor region; an upper electrode 30 that is electrically connected to the fifth semiconductor regions and the sixth semiconductor region; a seventh semiconductor region 32 that is on the side opposite to the second semiconductor regions and is above the first semiconductor region; a lower electrode 34 that is electrically connected to the seventh semiconductor region; and an eighth semiconductor region 36 that connects the second semiconductor regions and the sixth semiconductor region over the second trenches.
H01L 29/78 - Transistors à effet de champ l'effet de champ étant produit par une porte isolée
H01L 29/739 - Dispositifs du type transistor, c.à d. susceptibles de répondre en continu aux signaux de commande appliqués commandés par effet de champ
A semiconductor device includes a semiconductor element on a substrate having a conductive pattern. The semiconductor element includes electrodes provided on a first surface and an electrode provided on a second surface, each of the electrodes provided on the first surface is bonded to the conductive pattern of the substrate via a conductive spacer, and the electrode provided on the second surface is bonded to a pad surface of a conductive clip lead.
H01L 23/00 - Détails de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide
H01L 23/538 - Dispositions pour conduire le courant électrique à l'intérieur du dispositif pendant son fonctionnement, d'un composant à un autre la structure d'interconnexion entre une pluralité de puces semi-conductrices se trouvant au-dessus ou à l'intérieur de substrats isolants
H01L 25/065 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant tous d'un type prévu dans une seule des sous-classes , , , , ou , p. ex. ensembles de diodes redresseuses les dispositifs n'ayant pas de conteneurs séparés les dispositifs étant d'un type prévu dans le groupe
12.
SEMICONDUCTOR DEVICE, COMPOSITE SEMICONDUCTOR DEVICE, AND DRIVE CIRCUIT
A semiconductor device according to one or more embodiments is disclosed that may include a p-type first semiconductor region, an n-type second semiconductor region formed on a surface of the first semiconductor region, an n-type third semiconductor region formed by separating from the second semiconductor region, an n-type fourth semiconductor region having a higher impurity concentration than the second semiconductor region, an insulating film arranged on the semiconductor substrate, a gate electrode arranged via the insulating film between the second semiconductor region and the third semiconductor region, a first main electrode electrically connected to the second semiconductor region, a second main electrode electrically connected to the fourth semiconductor region, a p-type fifth semiconductor region on the third semiconductor region, which has a higher impurity concentration than that of the first semiconductor region, and an auxiliary electrode connected to the fifth semiconductor region.
H01L 29/78 - Transistors à effet de champ l'effet de champ étant produit par une porte isolée
H01L 27/088 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant un corps semi-conducteur comprenant uniquement des composants semi-conducteurs d'un seul type comprenant uniquement des composants à effet de champ les composants étant des transistors à effet de champ à porte isolée
H01L 29/06 - Corps semi-conducteurs caractérisés par les formes, les dimensions relatives, ou les dispositions des régions semi-conductrices
H01L 29/51 - Matériaux isolants associés à ces électrodes
H03K 17/687 - Commutation ou ouverture de porte électronique, c.-à-d. par d'autres moyens que la fermeture et l'ouverture de contacts caractérisée par l'utilisation de composants spécifiés par l'utilisation, comme éléments actifs, de dispositifs à semi-conducteurs les dispositifs étant des transistors à effet de champ
13.
SEMICONDUCTOR APPARATUS HAVING HALF-WAVE RECTIFIER LLC CONVERTER
A first series circuit includes a main switch and a resonant switch. A second series circuit includes a primary winding and a resonant capacitor. A transformer includes the primary winding and a secondary winding. A controller controls the main switch and the resonant switch. A rectifier smoothing circuit rectifies and smoothes a voltage in the secondary winding. An output voltage detector detects an output voltage of the rectifier smoothing circuit. The controller controls the main switch based on a first drive signal. The controller turns on the resonant switch during a flyback period when an energy stored in the transformer is released from the secondary winding based on the second drive signal, which causes a resonant current to flow. The controller turns off the resonant switch during an excitation current charging period in which the energy stored in the transformer charges the resonant capacitor after the resonant current stops flowing.
H02M 3/00 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu
H02M 1/00 - Détails d'appareils pour transformation
H02M 3/335 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu avec transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrodes de commande pour produire le courant alternatif intermédiaire utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs
A semiconductor device according to one or more embodiments is disclosed. A first semiconductor region includes a first semiconductor region, a second semiconductor region, a third semiconductor region, a first trench and a fourth semiconductor region. A second semiconductor region includes a fifth semiconductor region, a sixth semiconductor region, a second trench, and a second inner trench electrode. A dummy region includes a seventh semiconductor region that is arranged on the first semiconductor region between the first semiconductor region and the second semiconductor region, a third trench penetrating the seventh semiconductor region in a depth direction; and a third inner trench electrode electrically connected to the first inner trench electrode through a third insulating film in the third trench.
H01L 29/739 - Dispositifs du type transistor, c.à d. susceptibles de répondre en continu aux signaux de commande appliqués commandés par effet de champ
H01L 29/06 - Corps semi-conducteurs caractérisés par les formes, les dimensions relatives, ou les dispositions des régions semi-conductrices
H01L 29/423 - Electrodes caractérisées par leur forme, leurs dimensions relatives ou leur disposition relative ne transportant pas le courant à redresser, à amplifier ou à commuter
An active flyback converter according to one or more embodiments may include a transformer, a first series circuit including the primary winding and a main switch connected in series at both terminals of the DC power supply, a second series circuit including a switch and a capacitor connected in series at both terminals of the primary winding, a controller that turns on and off the main switch and the switch, a rectifier smoothing circuit, and an output voltage detector that detects the output voltage of the rectifier smoothing circuit. In one or more embodiments, the controller may control a first off period from a first drive signal is turned off to a second drive signal is turns on, and a second off period from the second drive signal is turned off to a third drive signal is turned on.
H02M 3/335 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu avec transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrodes de commande pour produire le courant alternatif intermédiaire utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs
H02M 1/00 - Détails d'appareils pour transformation
SANKEN ELECTRIC KOREA CO.,LTD. (République de Corée)
Inventeur(s)
Hong, Sanggyun
Choi, Jintaek
Abrégé
The present invention provides a semiconductor module that is formed by mounting a semiconductor device on an insulating circuit board and sealing the insulating circuit board and the semiconductor device with a resin, wherein: the insulating circuit board includes an insulating part forming an insulating layer, an electric circuit part formed on one side of the insulating part and having a metal pattern formed therein to mount the semiconductor device thereon, and a thermal dissipation part formed on the other side of the insulating part; and the electric circuit part and the thermal dissipation part each include a metal layer and have different thicknesses.
The present invention provides a drive circuit that can prevent damage due to excess over a withstand voltage or destruction due to malfunction of a power element without providing a soft shutdown circuit to be operated at the time of an overcurrent. Provided is a drive circuit 3 that drives a power element by controlling the gate voltage on the basis of a gate control signal. The drive circuit has an overcurrent protection function of stopping drive when the current flowing through the power element is an overcurrent. The drive circuit comprises a resistance switching circuit (sink resistance switching circuit 40) that switches a resistance value of a discharge path from a larger value to a smaller value in a preset time set in advance, the discharge path discharging the charge from the gate of the power element when the power element is turned off.
H02M 1/08 - Circuits spécialement adaptés à la production d'une tension de commande pour les dispositifs à semi-conducteurs incorporés dans des convertisseurs statiques
H02M 7/48 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant alternatif sans possibilité de réversibilité par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande
An active clamp fly-back converter is disclosed that includes a main switch electrically connected to one end of the DC power supply, a primary winding electrically connected in series with the main switch, a clamp switch electrically connected in series with the main switch, a clamp capacitor electrically connected in series with the clamp switch, a controller that controls the main switch and the clamp switch. The controller turns on and off a clamp switch two times by two pulses during off-period of the main switch.
H02M 3/335 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu avec transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrodes de commande pour produire le courant alternatif intermédiaire utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs
H02M 1/00 - Détails d'appareils pour transformation
H02M 3/00 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu
The semiconductor device according to one or more embodiments includes a first semiconductor region of a first conductivity type, a second semiconductor region of the second conductivity type formed on the first semiconductor region, and a semiconductor region containing a first trench structure in which a gate electrode is formed via an insulating film on the second semiconductor region, a third semiconductor region of the second conductivity type provided electrically connected to the second semiconductor region in a planar view, and a gate resistance region including a second trench structure in which a gate resistor is formed via an insulating film on the third semiconductor region. The depth of the third semiconductor region is deeper than the depth of the second semiconductor region and shallower than the trench depth of the second trench structure.
H01L 29/739 - Dispositifs du type transistor, c.à d. susceptibles de répondre en continu aux signaux de commande appliqués commandés par effet de champ
H01L 29/423 - Electrodes caractérisées par leur forme, leurs dimensions relatives ou leur disposition relative ne transportant pas le courant à redresser, à amplifier ou à commuter
H01L 29/43 - Electrodes caractérisées par les matériaux dont elles sont constituées
20.
SWITCHING CIRCUIT, POWER SUPPLY GENERATION CIRCUIT, AND SEMICONDUCTOR DEVICE
The present invention provides a switching circuit that is capable of generating a floating power supply with an inexpensive component configuration, without driving a switch element in advance with different control. The present invention comprises: a first auxiliary switch SW1 and a second auxiliary switch SW2 which are connected in series between a ground and a source terminal S of a switch element 2a; a diode D1 and a capacitor C1 which are connected in series between a gate driving voltage Vcc and a connection point (X point) between the SW1 and the SW2; a diode D2 and a capacitor C2 which are connected in series between a connection point (Y point) between the diode D1 and the capacitor C1 and the source terminal S of the switch element 2a; and a diode D3 and a capacitor C3 which are connected in series between the connection point between the diode D1 and the capacitor C1 and a source terminal S of a switch element 2b, wherein on/off control is performed in which the SW1 is synchronized with the switch element 2a and the SW2 is synchronized with the switch element 2b.
H03K 17/06 - Modifications pour assurer un état complètement conducteur
H02M 1/08 - Circuits spécialement adaptés à la production d'une tension de commande pour les dispositifs à semi-conducteurs incorporés dans des convertisseurs statiques
The present invention provides a drive circuit that can attain a reduction in both switching losses and noise during transitions, while also preventing erroneous striking. The drive circuit comprises: a first switching circuit 10 which is connected between a positive pole Vp and a negative pole Vn of a drive circuit power supply V and which has an output node N1 connected to a source terminal S (negative-pole-side terminal) of a power semiconductor element P1; a second switching circuit 20 which is connected between the positive pole Vp and the negative pole Vn of the drive circuit power supply V and which has an output node N2 connected to a gate terminal G (control terminal) of the power semiconductor element P1; and a control circuit 30 that drives the first switching circuit 10 by means of a drive control signal S10 that switches between a high level and a low level on a first cycle to turn on and off the power semiconductor element P1, and also drives the second switching circuit 20 by means of an electric potential control signal S20 that switches between a high level and a low level on a second cycle T2 which is shorter than the first cycle T1.
H02M 1/08 - Circuits spécialement adaptés à la production d'une tension de commande pour les dispositifs à semi-conducteurs incorporés dans des convertisseurs statiques
Provided is a gate drive circuit that can drive a power semiconductor element Q10 using a gate drive signal of an appropriate profile both when turned on and when turned off. The present invention comprises: a second regulator circuit 22, a first regulator circuit 21, and a third regulator circuit 23 that respectively convert input voltage VIN to a second conversion voltage V2, a first conversion voltage V1, and a third conversion voltage V3, the conversion voltages being different from one another; and a power supply switching circuit 3 that, when a transition instructing that an input signal be turned on is detected, supplies the second conversion voltage V2 as power supply voltage Vreg_gs of a drive-signal-generating circuit 5 and a drive circuit 6 and then supplies the first conversion voltage V1 after a preset first period has elapsed, and, when a transition instructing that the input signal be turned off is detected, supplies the third conversion voltage V3 as the power supply voltage Vreg_gs of the drive-signal-generating circuit 5 and the drive circuit 6.
H02M 1/08 - Circuits spécialement adaptés à la production d'une tension de commande pour les dispositifs à semi-conducteurs incorporés dans des convertisseurs statiques
H03K 17/16 - Modifications pour éliminer les tensions ou courants parasites
SANKEN ELECTRIC KOREA CO., LTD. (République de Corée)
Inventeur(s)
Hotate Tomonori
Abrégé
This semiconductor device is provided with: a first semiconductor region 21 of a first conductive type that has an active region 110 and an inactive region 120; second semiconductor regions 22 of a second conductive type that are provided on the first semiconductor region in the active region; third semiconductor regions 25 of the second conductive type that are provided on the first semiconductor region in the inactive region; and a fourth semiconductor region 26 of the second conductive type that is provided on the first semiconductor region so as to be sandwiched between the third semiconductor regions. The active region has a first width between the second semiconductor regions that are adjacent yet separate from each other. The inactive region has a second width of the fourth semiconductor region sandwiched between the third semiconductor regions.
Provided is an A/D converter that exhibits a high speed and a smaller layout area even when the analog input range (dynamic range) is so designed as to be wider. A CDAC 2 and a comparator 3 constitute a circuit that operates with a first signal amplitude that is an amplitude equivalent to the input potential range of an analog input potential Vin. A control circuit 4 is a circuit that operates with a second signal amplitude that is an amplitude smaller than the first signal amplitude. The signal connection between the circuit operating with the first signal amplitude and the circuit operating with the second signal amplitude is implemented via a level shift circuit 5 that performs a signal amplitude conversion. The transition of an operation instruction signal B [M:0] is implemented such that the Hamming distance is one.
H03M 1/46 - Valeur analogique comparée à des valeurs de référence uniquement séquentiellement, p. ex. du type à approximations successives avec convertisseur numérique/analogique pour fournir des valeurs de référence au convertisseur
The present invention provides a potential/time conversion-type AD converter that makes it possible to obtain a stable operation with a simple structure without using a constant current circuit having complicated component constitution. An AD converter 1 that converts an input potential Vin to a digital value is provided with: a capacitance element 24 that accumulates charge with a preset potential difference (potential difference between a high potential-side reference voltage Vs and a ground terminal); a discharge circuit (second switch element 22, discharge element 23) that discharges the charge charged in the capacitance element 24 with a discharge current Ids determined by the input potential Vin; a timer 26 that measures a discharge time t until the charge in the capacitance element 24 reaches a prescribed charge amount due to the discharge by the discharge circuit (discharge element 23); and a time/digital value conversion circuit 30 that converts the discharge time t measured by the timer 26 to a digital value.
SANKEN ELECTRIC KOREA CO., LTD. (République de Corée)
Inventeur(s)
Kim Jungdoo
Lee Jungseok
Abrégé
The present invention is a dual-side cooled power module comprising a semiconductor element and two insulated circuit boards sandwiching the semiconductor element, wherein: each of the two insulated circuit boards is provided with an insulating resin film, a circuit part provided to the semiconductor-element side of the resin film, and a heat-dissipating part provided to the opposite side of the resin film from the semiconductor element; the circuit part is provided with a wiring layer that is made from a copper-containing metal and is provided to the resin film surface, and a projection that is made from the copper-containing metal, projects toward the semiconductor-element side from the wiring layer, and supports the semiconductor element; and the heat-dissipating part is provided with a copper-containing metal layer provided to the resin film surface. This makes it possible to provide a dual-side cooled power module that is highly reliable even at high temperatures, the dual-side cooled power module being such that damage such as cracks can be suppressed even in high-temperature environments, control of surface flatness is easy, and structural problems such as mold voids can also be suppressed.
H02H 7/085 - Circuits de protection de sécurité spécialement adaptés aux machines ou aux appareils électriques de types particuliers ou pour la protection sectionnelle de systèmes de câble ou de ligne, et effectuant une commutation automatique dans le cas d'un changement indésirable des conditions normales de travail pour moteurs dynamo-électriques contre une charge excessive
Provided is a semiconductor switch device which performs square integration of load current and wire temperature estimation at low cost and with high precision, while reducing resources required for accurate wire temperature estimation. A semiconductor switch device 200 according to one or more examples of the present invention includes: switch units 206, 201, and 202 that are connected between a power source 300 connected from the outside of the semiconductor switch device 200 and a load 400 through a wire, and that turn on/off power supply to the load; load current detection units 203 and 204 that detect load current flowing through the switch units 206, 201, and 202; and a square operation unit 205 that outputs a squared value of a load current value detected by the current detection units 203 and 204. The switch unit 206 receives a control command from outside and turns on/off power supply to the load on the basis of the control command.
H02H 3/08 - Circuits de protection de sécurité pour déconnexion automatique due directement à un changement indésirable des conditions électriques normales de travail avec ou sans reconnexion sensibles à une surcharge
H02H 3/087 - Circuits de protection de sécurité pour déconnexion automatique due directement à un changement indésirable des conditions électriques normales de travail avec ou sans reconnexion sensibles à une surcharge pour des systèmes à courant continu
A semiconductor device according to one or more embodiments may include a first semiconductor region, a second semiconductor region arranged on the first semiconductor region, a third semiconductor region arranged on the second semiconductor region, a first trench penetrating the second semiconductor region from the third semiconductor region and reaching the first semiconductor region, a first main electrode arranged on the second semiconductor region via a first insulating film, field electrodes arranged via second insulating films in a second trenches that are deeper than the first trench and reach the first semiconductor region. The first main electrode may be arranged between the field electrodes. The field electrodes may be arranged alternately, and the field electrodes that are alternately adjacent to each other may be arranged so that the field electrodes partially overlap with adjacent field electrodes in an alignment direction of the arranging field electrodes in a plan view.
A first coupling capacitor is electrically connected in series with an input side reactor. A positive rectifier diode is electrically connected in series with the first coupling capacitor. A positive output side reactor is electrically connected to a connecting point of the first coupling capacitor and the positive rectifier diode and a ground potential. A first smoothing capacitor is electrically connected to the positive rectifier diode and a ground potential. A second coupling capacitor is electrically connected in series with the first coupling capacitor. A negative rectifier diode is electrically connected to the positive output side reactor and the second coupling capacitor. A negative output side reactor is electrically connected to a connecting point of the second coupling capacitor and the negative rectifier diode. A second smoothing capacitor is electrically connected to the negative rectifier diode, the ground potential, and the negative output side reactor.
H02M 3/155 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu sans transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs
H02M 1/00 - Détails d'appareils pour transformation
31.
Excitation current detection circuit and semiconductor device
An excitation current detection circuit is disclosed. A transformer comprises a primary winding, an auxiliary winding, and a secondary winding. A first voltage detector detects a positive voltage of an auxiliary winding voltage. A second voltage detector detects a negative voltage of the auxiliary winding voltage. A first voltage controlled oscillator generates a first clock with a frequency proportional to the positive voltage during a period when the auxiliary winding voltage is the positive voltage. A second voltage controlled oscillator generates a second clock with a frequency proportional to the negative voltage during a period when the auxiliary winding voltage is the negative voltage. A counter outputs a counter value, which is added in one of cycles of the first clock and the second clock and subtracted in the other cycle of the first clock and the second clock as a detected value of an excitation current.
G01R 15/18 - Adaptations fournissant une isolation en tension ou en courant, p. ex. adaptations pour les réseaux à haute tension ou à courant fort utilisant des dispositifs inductifs, p. ex. des transformateurs
G01R 19/00 - Dispositions pour procéder aux mesures de courant ou de tension ou pour en indiquer l'existence ou le signe
H02J 50/10 - Circuits ou systèmes pour l'alimentation ou la distribution sans fil d'énergie électrique utilisant un couplage inductif
32.
Active clamp flyback converter having clamp switch and clamp capacitor and control IC for controlling the clamp switch to limit resonance current
An active clamp flyback converter includes a main switch, a primary winding that is electrically connected in series with the main switch, a clamp switch that is electrically connected to a connection point between the main switch and the primary winding, a clamp capacitor that is connected in series with the clamp switch, and a controller that outputs a first ON signal to control the main switch and a second ON signal to control the clamp switch during a period when the main switch is off. The controller outputs the second ON signal during a half cycle or more of a resonance period, in which the resonance current flowing in a resonance circuit comprising the clamp capacitor and a leakage inductance generated when the clam switch is turned on is limited by an excitation current of an excitation inductance of the primary winding.
H02M 3/335 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu avec transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrodes de commande pour produire le courant alternatif intermédiaire utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs
H02M 1/00 - Détails d'appareils pour transformation
H02M 1/088 - Circuits spécialement adaptés à la production d'une tension de commande pour les dispositifs à semi-conducteurs incorporés dans des convertisseurs statiques pour la commande simultanée de dispositifs à semi-conducteurs connectés en série ou en parallèle
H02M 3/00 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu
33.
Resonant converter with a synchronous rectifier controller having ontime and offtime counting
SANKEN ELECTRIC KOREA CO., LTD. (République de Corée)
Inventeur(s)
Lee, Eunsuk
Kim, Jungyul
Shimada, Masaaki
Aso, Shinji
Yoshinaga, Mitsutomo
Kang, Hanju
Abrégé
A detector compares a drain voltage with a first threshold voltage and outputs a first detection signal. An ON counter detects a period of time during which a current flows in a switching, counts the period of time based on a predetermined clock cycle. An OFF counter detects a period of time during which a current flow through the body diode in a state where no current flows in the switching circuit, counts the period of time. An off-time setting circuit sets the time to turn off the switching circuit. A first comparison circuit compares the cycle count value with turn off time. A second comparison circuit compares a cycle count value output by the ON counter with a comparison result output by the first comparison circuit and outputs a signal to stop transmitting a PWM signal.
H02M 3/335 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu avec transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrodes de commande pour produire le courant alternatif intermédiaire utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs
H02M 1/00 - Détails d'appareils pour transformation
SANKEN ELECTRIC KOREA CO., LTD. (République de Corée)
Inventeur(s)
Lee, Eunsuk
Choi, Kyusam
Yu, Jaekuk
Aso, Shinji
Yoshinaga, Mitsutomo
Kang, Hanju
Abrégé
A detector compares a drain voltage with a first threshold voltage and outputs a first detection signal. An ON-counter detects a period of time during which current flows in a switching circuit based on the first detection signal, counts the period of time based on a predetermined clock cycle, and outputs an ON-count value. A first comparator receives the ON-count value and an ON-threshold value and outputs a first comparison signal when the ON-count value and the ON-threshold value match. A second comparator receives the ON-count value and a decreased ON threshold value, compares the ON-count value and the decreased ON-threshold value, and outputs a second comparison signal. An ON-mask time adjuster receives the second comparison signal and outputs an ON-threshold value for adjusting a mask time and a decreased ON-threshold value that is less than the ON threshold value.
H02M 3/335 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu avec transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrodes de commande pour produire le courant alternatif intermédiaire utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs
H02M 1/08 - Circuits spécialement adaptés à la production d'une tension de commande pour les dispositifs à semi-conducteurs incorporés dans des convertisseurs statiques
A light emitting device according to one or more embodiment is disclosed, which may include a blue LED, a first phosphor that is excited by light of the blue LED and emits green to yellow light, and a second phosphor that is excited by light of the blue LED and emits light with an emission peak wavelength greater than the emission peak wavelength of the first phosphor but 625 nm or less. In one or more embodiments, an emission intensity of the light emitting device at an emission wavelength of 650 nm relative to the emission intensity at the emission peak wavelength of the light emitting device may be 60% or less.
H01L 33/50 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails caractérisés par les éléments du boîtier des corps semi-conducteurs Éléments de conversion de la longueur d'onde
A semiconductor device according to one or more embodiment may include: an IGBT region including a first semiconductor region of a first conductivity type; a second semiconductor region of a second conductivity type arranged on the first semiconductor region; a third semiconductor region of the first conductivity type arranged on the second semiconductor region; a fourth semiconductor region of the second conductivity type arranged on the first semiconductor region and opposite the second semiconductor region; and a control electrode that is arranged via an insulating film opposite the second semiconductor region; and a diode region comprising a fifth semiconductor region of the second conductivity type on the first semiconductor region. In the semiconductor device according to one or more embodiments, an impurity concentration of the fifth semiconductor region may be lower than the impurity concentration of the second semiconductor region.
H10D 84/60 - Dispositifs intégrés formés dans ou sur des substrats semi-conducteurs qui comprennent uniquement des couches semi-conductrices, p. ex. sur des plaquettes de Si ou sur des plaquettes de GaAs-sur-Si caractérisés par l'intégration d'au moins un composant couvert par les groupes ou , p. ex. l'intégration de transistors BJT
The present invention relates to controlling of an active clamp fly-back converter comprising a control unit 2 that turns on/off a clamp switch two times by two pulses during off-period of a main switch. The control unit 2 sets the on-period of the first pulse to half the resonant frequency of a clamp capacitor and a leakage inductor to the resonant frequency, inclusive, turns on the clamp switch when current does not flow through the body diode of the clamp switch and flows the resonant current of the clamp capacitor and the leakage inductor, flows current through the body diode after turning off the clamp switch, turns on the clamp switch after the magnetization current of a magnetizing inductor becomes zero by the second pulse and flows negative direction current through the magnetizing inductor, and performs zero-voltage switching of the main switch QL, thereby providing a high-efficiency and low noise converter.
H02M 3/28 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu avec transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrodes de commande pour produire le courant alternatif intermédiaire
A watchdog timer device according to one or more embodiments may include a mode setting unit that sets a first mode or a second mode. In the first mode, the watchdog timer device monitors an operation state of a monitored device and generates an interrupt signal to cause the monitored device to perform recovery processing at a first timeout. In the second mode, the watchdog timer device monitors the recovery processing and generates a reset signal to restart the monitored device at a second timeout. The watchdog timer device uses different logic to execute determining the first timeout in the first mode and determining the second timeout in the second mode.
A semiconductor device according to one or more embodiments may include: on a semiconductor substrate, a high voltage circuit region; a transistor element region; an isolation region that elementally isolates the transistor element region from the high voltage circuit region; and a capacitively coupled field plate including plural lines of conductors, wherein the capacitively coupled field plate is provided to extend circumferentially along an outer circumferential portion of the high voltage circuit region and across the transistor element region, in a plan view of the semiconductor device, and one or more dividing sections divides at least one of the plural lines of conductors in the capacitively coupled field plate to make the at least one line discontinuous.
A semiconductor device according to one or more embodiments may include a drive circuit comprising: a gate control circuit that generates a gate control signal; a first resistor comprising a first electrode electrically connected to the gate control circuit and a second electrode; and a second resistor comprising a first electrode electrically connected to the gate control circuit and a second electrode that is not electrically connected to the second electrode of the first resistor; wherein the second resistor comprises a resistance value greater than that of the first resistor; an IGBT circuit comprising: a first IGBT cell electrically connected to the second electrode of the first resistor; and a second IGBT cell electrically connected to the second electrode of the second resistor.
H03K 17/567 - Circuits caractérisés par l'utilisation d'au moins deux types de dispositifs à semi-conducteurs, p. ex. BIMOS, dispositifs composites tels que IGBT
H10D 1/47 - Résistances n’ayant pas de barrières de potentiel
H10D 12/00 - Dispositifs bipolaires contrôlés par effet de champ, p. ex. transistors bipolaires à grille isolée [IGBT]
H10D 84/60 - Dispositifs intégrés formés dans ou sur des substrats semi-conducteurs qui comprennent uniquement des couches semi-conductrices, p. ex. sur des plaquettes de Si ou sur des plaquettes de GaAs-sur-Si caractérisés par l'intégration d'au moins un composant couvert par les groupes ou , p. ex. l'intégration de transistors BJT
An analog-to-digital converter is disclosed that converts an input analog potential to a digital conversion value. An analog-to-digital converter according to one or more embodiments may include a comparator that compares the input analog potential with a reference potential; and a conversion circuit that measures comparison operation time from a start to an end of a comparison operation by the comparator and outputs the digital conversion value according to the measured comparison operation time and a comparison result by the comparator.
A semiconductor device may include: a drift region of a first conductivity type; a base region of a second conductivity type arranged on the drift region; an emitter region of the first conductivity type arranged on the base region; a field stop region of the first conductivity type arranged in contact with the drift region; a collector region of the second conductivity type in contact with the field stop region; a main gate electrode electrically insulated from the base region and the collector region; a control gate electrode electrically insulated from the base region and the collector region; a gate pad on the drift region; a first resistor electrically connected between the gate pad and the main gate electrode; and a second resistor electrically connected between the gate pad and the control gate electrode. A resistance value of the first resistor may be greater than the second resistor thereof.
H01L 29/739 - Dispositifs du type transistor, c.à d. susceptibles de répondre en continu aux signaux de commande appliqués commandés par effet de champ
H01L 49/02 - Dispositifs à film mince ou à film épais
The present invention drives a DC-DC converter without dead time and increases conversion efficiency. This DC-DC converter 100 is characterized by comprising: a first switching element 4; a second switching element 5; a first off-detection circuit 13 that has a control circuit 110 which the first switching element 4 and the second switching element 5 alternately on-off drive, causing the same to perform control such that an output voltage becomes a specified voltage, said control circuit 110 detecting turn-off of the first switching element 4; and a second off-detection circuit 16 that detects turn-off of the second switching element. The DC-DC converter 100 is further characterized in that when one among the first switching element 4 and the second switching element 5 transitions to turn-on from an off state, said switching element is on driven on the basis of an off signal from the first off detection circuit 13 or the second off detection circuit 16, which detects the turn-off of the other switching element.
H02M 3/155 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu sans transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs
A semiconductor is disclosed that may include: a first drift region; a base region arranged on the first semiconductor layer; a source region arranged on the base region; a main electrode electrically connected to the source region; and a gate electrode structure that penetrates the source region and base region and reaches the first drift region, wherein the gate electrode structure comprises: a gate electrode; and an insulating material that insulates the gate electrode from the first drift region and the base region; and a field plate structure reaching the first drift region deeper than the gate electrode structure, wherein the field plate structure comprises: a field plate; a resistive part that electrically connects the main electrode to the field plate; and an insulating material that insulates the field plate and the resistive part section from the first drift region and the base region.
The present invention provides a semiconductor integrated circuit and a data transmission-reception method with which the number of connection terminals between chips can be reduced without compromising functionality. The semiconductor integrated circuit includes a chip A and a chip B and performs transmission and reception of data between the chip A and the chip B. In the semiconductor integrated circuit, the transmission of data from the chip A to the chip B and the transmission of a trigger signal (trigger), which is a control signal, from the chip A to the chip B are performed by time-division multiplexing using a DOUT terminal that connects the chip A and the chip B to each other; and the transmission of data from the chip B to the chip A and the transmission of a status signal (status), which is a control signal, from the chip B to the chip A are performed by time-division multiplexing using a DIN terminal that connects the chip A and the chip B to each other.
H01L 25/04 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant tous d'un type prévu dans une seule des sous-classes , , , , ou , p. ex. ensembles de diodes redresseuses les dispositifs n'ayant pas de conteneurs séparés
H01L 25/18 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant de types prévus dans plusieurs différents groupes principaux de la même sous-classe , , , , ou
H04J 3/00 - Systèmes multiplex à division de temps
A semiconductor device according to one or more embodiments is disclosed that may include a first substrate comprising a single-crystalline SiC substrate; a second substrate comprising a polycrystalline SiC substrate; and an interface layer sandwiched between the first substrate and the second substrate and comprising at least elements of phosphorus and chromium.
H01L 29/16 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, mis à part les matériaux de dopage ou autres impuretés, seulement des éléments du groupe IV de la classification périodique, sous forme non combinée
H01L 29/04 - Corps semi-conducteurs caractérisés par leur structure cristalline, p.ex. polycristalline, cubique ou à orientation particulière des plans cristallins
A semiconductor device and a method of manufacturing a semiconductor device according to one or more embodiments are disclosed. An interface layer is formed by implanting ionized impurities into a first layer comprising single-crystalline silicon carbide (SiC). Surfaces of the interface layer and a second layer comprising polycrystalline silicon carbide (SiC) are activated. The activated surfaces of the interface layer and the second layer are contacted and bonded. A covering layer is formed to cover a top surface and sides of the first layer, sides of the interface layer, and sides of the second layer.
A dimming agent according to one or more embodiments is disclosed that may include at least one of terbium, praseodymium, manganese, titanium. A diffuse reflection intensity of the dimming agent in a wavelength of from 400 nm to 750 nm may be 80% or less.
H01L 33/50 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails caractérisés par les éléments du boîtier des corps semi-conducteurs Éléments de conversion de la longueur d'onde
A first semiconductor region, a second semiconductor region, and a third semiconductor region are arranged in layers. Trenches penetrate through the second semiconductor region and reach the first semiconductor region. Each of the trenches may include a gate electrode, and an insulating film insulating the gate electrode from the first semiconductor region and the second semiconductor region. An upper electrode is electrically connected to the second semiconductor region and the third semiconductor region. A fourth semiconductor region of the second conductivity type is arranged on an outer side of the trench of which the gate electrode is an outermost gate electrode in a plan view. An edge trench is arranged on an outer side of the fourth semiconductor region. The fourth semiconductor region is electrically connected to the upper electrode and a bottom of the fourth semiconductor may be arranged deeper than a bottom of the second semiconductor region.
The purpose of the present invention is to enhance the cross regulation accuracy of a DC-DC converter comprising a SEPIC circuit adapted for multiple outputs for supplying positive and negative output voltages. [Solution] In a multi-output SEPIC circuit 1 comprising: reactors Lin, L1, L2; a switching element Q1; coupling capacitors C1, C2; rectifying elements D1, D2; and output capacitors Co1, Co2, the connection of the coupling capacitor C2 and the reactor Lin is changed. The present invention is characterized by changing the connection of the coupling capacitor C2 so that the coupling capacitor C2 is connected to a node of the coupling capacitor C1, the anode of the rectifying element D1, and the reactor L1.
H02M 3/155 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu sans transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs
[Problem] To provide a lateral semiconductor device having a high breakdown voltage. [Solution] On the surface of a high-breakdown-voltage diffusion layer island, a high-concentration floating diffusion layer (1E18 atoms/cc or more) having a conductivity type opposite to that of the high-breakdown-voltage diffusion layer island and connected to the high-breakdown-voltage diffusion layer island is formed concentrically around an electrode lead-out portion from the high-breakdown-voltage diffusion layer as a center. As a result, annular equipotential regions defined by the element structure can be designed in a concentric multistage configuration, and by increasing the number of stages, a stable high-breakdown-voltage structure can be easily realized. In addition, reliability problems such as a decrease in breakdown voltage during long-term use are less likely to occur.
An abnormality detection circuit and method of detecting an abnormality in a CPU is disclosed that may include counting a count value from an initial value to a timeout value; storing a seed value readable from the CPU; generating a key value for verification by performing a specified arithmetic processing on the seed value; waiting for a key value to be written by the CPU; comparing the key value written by the CPU with the key value for verification; and when the count value is equal to the timeout value without the counter being reset, in response to the key value and the key value for verification matching, resetting the counter and storing the seed value to be determined at the time of resetting the counter in the seed value storage section.
SANKEN ELECTRIC KOREA CO.,LTD. (République de Corée)
Inventeur(s)
Park Changyoung
Lim Baeyoung
Abrégé
[Problem] Power modules require high heat-sinking performance, and hence, the objective of the present invention is to provide a four-sided cooling power module that can exhibit an enhanced heat-sinking performance as package structure. [Solution] This four-sided cooling power module comprises: a first base on which electronic parts are mounted; a second base that is opposed to the first base; and a sealing resin that seals the first base and the second base with respective portions thereof exposed. The first base consists of a first region, a second region and a third region. The electronic parts are mounted on the first region. The second region and the third region are oriented orthogonally to the first region. The second base is joined to some of the electronic parts mounted on the first region. The four sides that are the external sides of the first base and of the second base are exposed from the sealing resin.
An integrated circuit for digitally controlling a critical mode power factor correction (PFC) circuit according to one or more embodiments may include: an output voltage detector and a switching current detector; an A/D converter and a sample and hold circuit that perform analog-to-digital conversion of an output signal of the output voltage detector and the switching current detector; an arithmetic unit that performs calculation based on the output signal of the A/D converter and generates a pulse signal to turn on/off a switching device of the PFC circuit; a correction value calculator that calculates, based on a switching frequency of the PFC circuit, a correction value for linearly correcting the output signal of the A/D converter; and an adder that adds the correction value to the output signal of the A/D converter to correct the output signal of the A/D converter and inputs the corrected output signal to the arithmetic unit.
H02M 1/42 - Circuits ou dispositions pour corriger ou ajuster le facteur de puissance dans les convertisseurs ou les onduleurs
H02M 3/335 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu avec transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrodes de commande pour produire le courant alternatif intermédiaire utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs
55.
Integrated circuit and method of synchronous rectification control of bridgeless power factor correction circuit
A method may include detecting an output voltage of the output smoothing capacitor in the bridgeless interleaved power factor correction circuit of a critical mode, comparing the detected output voltage with a reference voltage, controlling the first and the second half-bridge circuits included in the bridgeless interleaved power factor correction circuit of the critical mode to be on and off based on an error signal between the output voltage and the predetermined reference voltage, measuring ON time of a synchronous rectification switch operation of the first half-bridge circuit by measuring a time period between OFF timing of an active switch of the first half-bridge circuit and output of a differentiation signal generated by a differentiation circuit included in the bridgeless interleaved power factor correction circuit of the critical mode; and assigning the measured time to next ON time of the synchronous rectification switch operation of the second half-bridge circuit.
Provided is a watchdog timer device capable of optimizing both a method that causes interruption and a method that causes resetting. This watchdog timer device comprises: a count value reception unit (2) that receives and holds CTOA and CTOB; a counter (3) that determines, in a WDT mode, occurrence of timeout when a count value with CTOA serving as an initial value is counted down to "0" without receiving input of a count clear request CCRA, and determines, in an RT mode, occurrence of timeout when a count value with CTOB serving as an initial value is counted down to "0" without receiving input of a count clear request CCRB; and a mode setting unit (4) that sets an initial state to the WDT mode, and causes the WDT mode to transition to the RT mode when determining occurrence of timeout in the WDT mode or causes the RT mode to transition to the WDT mode by receiving input of the count clear request CCRB in the RT mode.
[Problem] To provide a semiconductor device of a vertical trench gate MOS structure having high breakage resistance at a terminal portion. [Solution] A semiconductor device of a vertical trench gate MOS structure, wherein: a deep P layer is formed between a termination trench which has a single field plate inside the trench and an active trench which is adjacent to the termination trench and which has a gate electrode inside the trench and a field plate below the gate electrode; and the deep P layer is positioned between the field plate and the gate electrode of the adjacent active part trench.
[Problem] To provide a semiconductor device with improved heat dissipation. [Solution] A semiconductor device which, on the semiconductor chip back surface, has protrusions formed from the same semiconductor as that of the semiconductor chip, wherein the protrusions are covered with a metal that has good thermal conductivity. By covering the protrusions with a metal, the heat dissipation from the protruding portion is improved, and it is possible to improve heat dissipation of the entire semiconductor chip. Further, heat dissipation can be further improved by adopting structures in which the protrusions covered by a metal in the chip center portion are longer than the protrusions covered by metal in the chip in the peripheral portion, and structures in which the density of protrusions covered by metal in the chip center portion is higher than the density of the protrusions covered by metal in the chip peripheral portion.
SANKEN ELECTRIC KOREA CO.,LTD. (République de Corée)
Inventeur(s)
Park Changyoung
Park Hyungsang
Abrégé
[Problem] To provide a dual-side cooled power module, wherein a stepped structure provided with a thick metal layer on a substrate is used, whereby spacers and a bonding material between spacers can be omitted to reduce the number of components, packaging material costs and manufacturing steps can be reduced, the occurrence of defects can be prevented, and manufacturing costs can be reduced. [Solution] Provided is a structure wherein a first substrate and a second substrate are made to face each other, a semiconductor chip is bonded therebetween, and sealed with resin, each of the first and the second substrates being provided with a first metal layer, an insulating layer, and a second metal layer, a bonding part with the semiconductor chip of the second metal layer being provided with a CTE-modifiable metal.
H01L 25/07 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant tous d'un type prévu dans une seule des sous-classes , , , , ou , p. ex. ensembles de diodes redresseuses les dispositifs n'ayant pas de conteneurs séparés les dispositifs étant d'un type prévu dans la sous-classe
H01L 25/18 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant de types prévus dans plusieurs différents groupes principaux de la même sous-classe , , , , ou
H01L 23/373 - Refroidissement facilité par l'emploi de matériaux particuliers pour le dispositif
SANKEN ELECTRIC KOREA CO.,LTD. (République de Corée)
Inventeur(s)
Park Changyoung
Kim Juyoung
Abrégé
[Problem] To provide a semiconductor power module including a DBC substrate having metal patterns with different thicknesses, and thereby reduce the number of components, simplify the manufacturing process, and reduce the manufacturing cost of the semiconductor power module. The present invention also improves the flexibility of the structural design of a semiconductor power module. [Solution] In a package structure of this semiconductor power module in which a power chip and a control chip are mounted on a DBC substrate, metal patterns of the DBC substrate include a power chip mounting part (power part) and a control chip mounting part (signal part), and the metal thickness of the power chip mounting part is greater than the metal thickness of the control chip mounting part. Also, the power chip is a flip chip type and has a structure in which clip leads are provided in wiring.
H01L 23/12 - Supports, p. ex. substrats isolants non amovibles
H01L 23/36 - Emploi de matériaux spécifiés ou mise en forme, en vue de faciliter le refroidissement ou le chauffage, p. ex. dissipateurs de chaleur
H01L 25/07 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant tous d'un type prévu dans une seule des sous-classes , , , , ou , p. ex. ensembles de diodes redresseuses les dispositifs n'ayant pas de conteneurs séparés les dispositifs étant d'un type prévu dans la sous-classe
H01L 25/18 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant de types prévus dans plusieurs différents groupes principaux de la même sous-classe , , , , ou
61.
Semiconductor device having a group of trenches in an active region and a mesa portion
A semiconductor device is disclosed that includes a group of trenches positioned in active region inside a first semiconductor region. A first trench is positioned in an outer peripheral region on an outer side of an active region. A second trench is positioned on an outer side of the first trench positioned in the outer peripheral region on the outer side of the active region. A mesa portion is positioned between the first and the second trenches. An insulating layer is positioned inside the first and second trenches. A second field plate is positioned inside the insulating layer in the first trench. A third field plate positioned inside the second insulating layer in the second trench. The mesa portion includes the semiconductor region electrically coupled to the first main electrode on an outermost side. The first trench does not have the gate electrode at upper part of the first trench.
H01L 29/78 - Transistors à effet de champ l'effet de champ étant produit par une porte isolée
H01L 29/10 - Corps semi-conducteurs caractérisés par les formes, les dimensions relatives, ou les dispositions des régions semi-conductrices avec des régions semi-conductrices connectées à une électrode ne transportant pas le courant à redresser, amplifier ou commuter, cette électrode faisant partie d'un dispositif à semi-conducteur qui comporte trois électrodes ou plus
A semiconductor device is disclosed including a sub-layer with first conductivity type, a drift layer with first conductivity type, a base region with second conductivity type positioned on the drift layer, a source region in contact with the base region, a source electrode, a plurality of trenches, at least one of the trenches in contact with the drift layer, the base region, and the source region, a plurality of insulating regions, at least one of the insulating regions positioned inside of each trench, a plurality of gate electrodes, at least one of the gate electrodes positioned inside of each trench; and a plurality of field plates, at least one of the field plates electrically connected to the source electrode and positioned in the insulating region in the trench. The field plate comprises high-resistance polysilicon.
H10D 64/00 - Électrodes de dispositifs ayant des barrières de potentiel
H10D 30/66 - Transistors FET DMOS verticaux [VDMOS]
H10D 62/17 - Régions semi-conductrices connectées à des électrodes ne transportant pas de courant à redresser, amplifier ou commuter, p. ex. régions de canal
A power conversion device according to an embodiment may include: an output circuit configured to perform a power conversion operation of converting input power into an output power and outputting the output power; and a microcomputer configured to control the power conversion operation by the output circuit with power supplied from an internal power source of the output circuit, wherein the microcomputer outputs a status signal notifying whether the microcomputer is in a power shutdown permit period or a power shutdown inhibit period, and the output circuit includes a power supply stop circuit configured, when receiving the operation stop signal that instructs to stop the power conversion operation, to stop the power supply from the internal power source to the microcomputer on a condition where the status signal indicates that the microcomputer is in the power shutdown permit period.
H02M 1/32 - Moyens pour protéger les convertisseurs autrement que par mise hors circuit automatique
H02M 3/158 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu sans transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs avec commande automatique de la tension ou du courant de sortie, p. ex. régulateurs à commutation comprenant plusieurs dispositifs à semi-conducteurs comme dispositifs de commande finale pour une charge unique
64.
POWER SOURCE FOR DRIVING SYNCHRONOUS RECTIFICATION ELEMENT OF SEPIC CONVERTER
The present invention stably supplies a power source for driving a DC-DC converter including a synchronous rectification-type SEPIC circuit. A synchronous rectification-type SEPIC circuit 1, including inductors 2, 5, a switch element 3, a capacitor 4, a synchronous rectification element 6, and an output capacitor 7, is provided with a drive voltage switching unit 15 for stably supplying a drive signal voltage of the synchronous rectification element 6 regardless of whether an output voltage Vo is greater or less than a drive power voltage Vdrv of the synchronous rectification element 6. The drive voltage switching unit 15 is characterized by including a means for: switching connection so that power is supplied from the output voltage Vo to a second drive circuit 10 if the output voltage Vo is set higher than the drive power voltage Vdrv; and switching connection so that power is supplied from the drive voltage Vdrv if the output voltage Vo is set lower than the drive voltage Vdrv.
H02M 3/155 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu sans transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs
65.
Power supply for driving synchronous rectification elements of SEPIC converter
A DC-DC converter according to one or more embodiments is disclosed that may include: a drive voltage switching circuit of a drive circuit that drives a synchronous rectification MOS transistor. The drive voltage switching circuit may switch a connection so that the drive circuit supplies power from the output voltage to the drive circuit in response to the drive voltage for supplying power to the drive circuit being set to be lower than the output voltage. The drive voltage switching circuit may switch a connection so that the drive circuit supplies power from the drive voltage in response to the drive voltage for supplying power to the drive circuit being set to be higher than the output voltage.
H02M 3/158 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu sans transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs avec commande automatique de la tension ou du courant de sortie, p. ex. régulateurs à commutation comprenant plusieurs dispositifs à semi-conducteurs comme dispositifs de commande finale pour une charge unique
H02M 3/155 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu sans transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs
An event processing method of a processor according to one or more embodiments may include detecting an event input, which notifies an occurrence of an event, detecting a wait event by an event input, changing a status from an execution status to a wait status and outputs a count start signal by an event wait instruction, and changes a status from the wait status to the execution status and outputs a count end signal by the detection of the wait event, incrementing a counter value from an initial value by output of the count start signal, and ends counting by output of the count end signal; and receiving and storing a count value of the timer counter by output of the count end signal.
Provided is an A/D conversion circuit with which it is possible to eliminate an offset error without increasing the layout area or the consumed current, even when a memory-cell-overwriting comparator is used. A sequential-comparison analog/digital conversion circuit (1) comprising a capacity DAC (2) that generates a potential for each bit on the basis of an analog input, a comparator (3) that compares the potentials generated by the capacity DAC (2), and a conversion data generator (4) that generates conversion data of a resolution bit on the basis of the result of comparison by the comparator (3), the analog/digital conversion circuit (1) converting the analog input to a digital conversion value and outputting the digital conversion value, wherein the comparator (3) is a memory-cell-overwriting comparator provided with a first-stage current-mirror-type operational amplifier (10) and a second-stage memory cell (20), and the analog/digital conversion circuit (1) also comprises a correction circuit (5) that corrects an output error of the conversion data originating from an offset error in the comparator (3) through addition/subtraction of an offset correction value, which is a fixed value, and that outputs the corrected conversion data as the digital conversion value.
H03M 1/46 - Valeur analogique comparée à des valeurs de référence uniquement séquentiellement, p. ex. du type à approximations successives avec convertisseur numérique/analogique pour fournir des valeurs de référence au convertisseur
H03K 5/08 - Mise en forme d'impulsions par limitation, par application d'un seuil, par découpage, c.-à-d. par application combinée d'une limitation et d'un seuil
Provided is an A/D conversion circuit capable of achieving increased speed by eliminating allocation of excessive [capacitive DAC settling time]. This successive comparison type A/D conversion circuit (10) converts analog input into a digital conversion value by repeating, for each resolution bit, a conversion data generating operation, a potential generating operation, and a comparison operation, and converts analog input into a digital conversion value by repeating, for each resolution bit, the conversion data generating operation carried out by a conversion data generator (40), the potential generating operation carried out by a capacitive DAC (2), and the comparison operation carried out by a comparator (3). The successive comparison type analog/digital conversion circuit (10) comprises a comparator operation signal generating circuit (5) that predicts, on the basis of the capacitance C0-C (n-1) used by the capacitive DAC (2) and the charging/discharging period for a capacitive element (51) having equivalent characteristics, the timing at which a potential generated by the capacitive DAC (2) will stabilize, and generates a comparator operation signal that causes the comparator (3) to start a comparison operation.
H03M 1/46 - Valeur analogique comparée à des valeurs de référence uniquement séquentiellement, p. ex. du type à approximations successives avec convertisseur numérique/analogique pour fournir des valeurs de référence au convertisseur
An analog-to-digital converter according to one or more embodiments is disclosed that converts an analog input to a digital converted value by repeating a conversion data generation operation by a conversion data generator, a potential generation operation by a capacitance DAC, and a comparison operation by a comparator for a resolution bit, the analog-to-digital converter. a comparator operation signal generation circuit predicts the time when a potential generated by the capacitance DAC becomes settled based on a charging or discharging time to a capacitance element whose characteristics are equal to those of the capacitance used in the capacitance DAC, and generates a comparator operation signal to allow the comparator to start the comparison operation.
One or more embodiments of a successive approximation type analog-to-digital converter that converts an analog input into a digital conversion value and outputs the digital conversion value, may include: a capacitance DAC that generates a bit-by-bit potential based on an analog input; a comparator that compares the potential generated by the capacitance DAC, wherein the comparator is a memory cell rewriting type, the comparator includes a first stage current mirror type operational amplifier; and a second stage memory cell; a conversion data generator that generates conversion data of resolution bits based on a comparison result of the comparator; and a correction circuit that corrects an output error of the conversion data caused by an offset error of the comparator by adding or subtracting an offset correction value that is a fixed value, and outputs the conversion data as a digital conversion value.
H03M 1/46 - Valeur analogique comparée à des valeurs de référence uniquement séquentiellement, p. ex. du type à approximations successives avec convertisseur numérique/analogique pour fournir des valeurs de référence au convertisseur
An analog-digital conversion circuit is disclosed for comparing a comparison potential with a reference potential generated based on a reference power supply to convert a comparison potential to a digital value. An analog-to-digital converter generates the comparison potential based on a sampled and held input potential, the digital value, and the reference power supply. A current amount control unit controls current amount flowing to the current amount control element in each bit circuit. In response to second switches of the bit circuits being turned on in order from the upper bit in each bit circuit by the digital value, the current amount control unit applies a current control potential to the current amount control element in any of the bit circuits that the noise current is more than allowable value while the noise current proportional to the charge flowing from the capacitor is more than the allowable value.
H03M 1/46 - Valeur analogique comparée à des valeurs de référence uniquement séquentiellement, p. ex. du type à approximations successives avec convertisseur numérique/analogique pour fournir des valeurs de référence au convertisseur
[Problem] To provide a trench-gate-type MOSFET having fast switching speed and high surge tolerance. [Solution] In the trench-gate-type MOSFET, the resistance value of the source region near the gate electrode is increased, and the resistance value of the source region far from the gate electrode is lowered. As a method for changing the resistance value, the concentration of diffused impurities may be made lower in the source region near the gate electrode than in the source region far from the gate electrode. Similarly, as the method for changing the resistance value, there is a method of having the same impurity concentration at the source region near the gate region and the source region far from the gate electrode, and inputting impurities having low mobility in the source region near the gate electrode and impurities having high mobility in the source region far from the gate electrode.
SANKEN ELECTRIC KOREA CO.,LTD. (République de Corée)
Inventeur(s)
Kim Woojin
Park Changyoung
Abrégé
[Problem] Since there is variation in the thicknesses of materials stacked on top of one another in a dual side cooling power module, stacking the materials one by one makes it difficult to keep the stacked thickness of the entire module constant. [Solution] In order to control the stacked height of this dual side cooling power module when the thickness tolerances of materials directly influence the thickness tolerance of the entire module, a die or the like is stacked on and attached to mutually facing insulated substrates, and thereafter a joining material (adhesive) attached lastly to the substrates is made to act as a cushioning joining layer (buffer adhesion layer) with a reflow process in which a special metal jig is used and pre-drying is not performed.
H01L 23/36 - Emploi de matériaux spécifiés ou mise en forme, en vue de faciliter le refroidissement ou le chauffage, p. ex. dissipateurs de chaleur
H01L 23/48 - Dispositions pour conduire le courant électrique vers le ou hors du corps à l'état solide pendant son fonctionnement, p. ex. fils de connexion ou bornes
H01L 25/07 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant tous d'un type prévu dans une seule des sous-classes , , , , ou , p. ex. ensembles de diodes redresseuses les dispositifs n'ayant pas de conteneurs séparés les dispositifs étant d'un type prévu dans la sous-classe
H01L 25/18 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant de types prévus dans plusieurs différents groupes principaux de la même sous-classe , , , , ou
H01L 21/52 - Montage des corps semi-conducteurs dans les conteneurs
74.
DIMMING AGENT AND LIGHT-EMITTING DEVICE CONTAINING DIMMING AGENT
[Problem] The objective of the present invention is to provide a dimming agent and a light-emitting device, capable of limiting brightness without lowering the current value of a current being injected into an LED. [Solution] The invention is the dimming agent having a diffuse reflection intensity of 80% or lower at wavelengths from 400 nm to 750 nm, characterized by containing at least one among terbium, praseodymium, manganese, and titanium.
H01L 33/50 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails caractérisés par les éléments du boîtier des corps semi-conducteurs Éléments de conversion de la longueur d'onde
H01L 33/56 - Matériaux, p.ex. résine époxy ou silicone
75.
Processor and pipeline processing method for processing multiple threads including wait instruction processing
A pipeline processing unit includes a fetch unit that fetches the instruction for the thread having an execution right, a decoding unit that decodes the instruction fetched by the fetch unit, and a computation execution unit that executes the instruction decoded by the decoding unit. When the WAIT instruction for the thread having the execution right is executed, an instruction holding unit holds instruction fetch information on a processing target instruction to be processed immediately after the WAIT instruction. An execution target thread selection unit selects a thread to be executed based on a wait command and, in response to a wait state started from the execution of the WAIT instruction being canceled, processes the processing target instruction from decoding thereof based on the instruction fetch information on the processing target instruction held in the instruction holding unit.
Provided are an abnormality detection circuit and an abnormality detection method which are capable of temporally and logically monitoring a program sequence. This abnormality detection circuit is equipped with: a seed value register (13) which is a seed value storage unit that stores a seed value (SEED) in such a manner that the seed value (SEED) can be read from a CPU (2); a calculation unit (14) which performs a predetermined calculation process on the seed value stored in the seed value register (13), and thereby generates a check key value (CKEY); a write key register (15) which is a key value storage unit to which a key value (WKEY) is written by the CPU (2); and a comparator (16) which compares the key value (WKEY) written to the write key register (15) with the check key value (CKEY). If the key value (WKEY) written to the write key register (15) matches the check key value (CKEY), then a counter (12) is reset, and the seed value (SEED) determined at the time of resetting the counter (12) is stored in the seed value register (13).
A light emitting device (1) includes: three or more light emitting units (10, 20, 30) that individually include blue light emitting element, a wavelength range of the blue light emitting element accommodated in respective packages being different from each other. The light emitting device mixes output lights from the light emitting units (10, 20, 30) to output white light of a predetermined chromaticity. In an xy chromaticity diagram, the chromaticity of the output light from each of light emitting units (10, 20, 30) is located at a distance from the predetermined chromaticity. The difference between the chromaticity of the output light from each of the light emitting units (10, 20, 30) and the predetermined chromaticity is not greater than 0.04.
F21K 9/00 - Sources lumineuses utilisant des dispositifs à semi-conducteurs en tant qu’éléments générateurs de lumière, p. ex. utilisant des diodes électroluminescentes [LED] ou des lasers
F21Y 113/13 - Combinaison de sources lumineuses de couleurs différentes comprenant un ensemble de sources lumineuses ponctuelles
H01L 25/075 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant tous d'un type prévu dans une seule des sous-classes , , , , ou , p. ex. ensembles de diodes redresseuses les dispositifs n'ayant pas de conteneurs séparés les dispositifs étant d'un type prévu dans le groupe
H01L 33/32 - Matériaux de la région électroluminescente contenant uniquement des éléments du groupe III et du groupe V de la classification périodique contenant de l'azote
H01L 33/50 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails caractérisés par les éléments du boîtier des corps semi-conducteurs Éléments de conversion de la longueur d'onde
An analog-to-digital converter that converts an inputted analog signal into a digital value is disclosed that may include unit circuits that each generate reference voltages comprising regular potential intervals by a series resistor circuit connected between a high potential side reference voltage and a low potential side reference voltage and convert the reference voltages into a digital value by comparing the reference voltages with the inputted analog signal, and an adder that adds the digital values converted by the unit circuits. Each unit circuit may include coupling switches that couple the series resistor circuit with the series resistor circuit of another one of the unit circuits and connect the series resistor circuits between the high potential side reference voltage and the low potential side reference voltage and a sharing switch that shares the inputted analog signal with the other unit circuit that is coupled with the series resistor circuit.
H01L 21/60 - Fixation des fils de connexion ou d'autres pièces conductrices, devant servir à conduire le courant vers le ou hors du dispositif pendant son fonctionnement
H01L 21/822 - Fabrication ou traitement de dispositifs consistant en une pluralité de composants à l'état solide ou de circuits intégrés formés dans ou sur un substrat commun avec une division ultérieure du substrat en plusieurs dispositifs individuels pour produire des dispositifs, p.ex. des circuits intégrés, consistant chacun en une pluralité de composants le substrat étant un semi-conducteur, en utilisant une technologie au silicium
H01L 27/04 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant un corps semi-conducteur
80.
Semiconductor device and method of manufacturing same
A semiconductor device according to one or more embodiments may include a first semiconductor region of a first conductivity type, a second semiconductor region of the first conductivity type with a higher impurity concentration than an impurity concentration of the first semiconductor region, the second semiconductor region being provided on a first principal surface of the first semiconductor region, a third semiconductor region of a second conductivity type provided on an upper surface of the second semiconductor region, the third semiconductor region being doped with an impurity in accordance with an impurity concentration profile including peaks along a film thickness direction, a fourth semiconductor region of the first conductivity type provided on an upper surface of the third semiconductor region.
H01L 29/739 - Dispositifs du type transistor, c.à d. susceptibles de répondre en continu aux signaux de commande appliqués commandés par effet de champ
H01L 21/225 - Diffusion des impuretés, p. ex. des matériaux de dopage, des matériaux pour électrodes, à l'intérieur ou hors du corps semi-conducteur, ou entre les régions semi-conductricesRedistribution des impuretés, p. ex. sans introduction ou sans élimination de matériau dopant supplémentaire en utilisant la diffusion dans ou hors d'un solide, à partir d'une ou en phase solide, p. ex. une couche d'oxyde dopée
H01L 29/08 - Corps semi-conducteurs caractérisés par les formes, les dimensions relatives, ou les dispositions des régions semi-conductrices avec des régions semi-conductrices connectées à une électrode transportant le courant à redresser, amplifier ou commuter, cette électrode faisant partie d'un dispositif à semi-conducteur qui comporte trois électrodes ou plus
H01L 29/66 - Types de dispositifs semi-conducteurs
Provided is a power conversion device in which an output circuit can immediately stop the supply of power in a state in which a microcomputer can be stopped. The power conversion device is provided with: an output circuit (10) that executes a power conversion operation in which input power is converted to a prescribed output power and output; and a microcomputer (20) that is supplied power from an internal power supply (12) of the output circuit (10), and controls the power conversion operation by the output circuit (10). The microcomputer (20) outputs, to the output circuit (10), a state signal that provides notification of whether the microcomputer (20) is in a power supply stoppable period in which the power supply can be stopped, or in a power supply non-stoppable period in which the power supply cannot be stopped. The output circuit (10) is provided with a power supply stopping circuit (14) that stops the supply of power from the internal power supply (12) to the microcomputer (20) when, upon input of an operation stop signal instructing that the power conversion operation be stopped, it can be confirmed via the state signal that the microcomputer (20) is in a power supply stoppable period.
Provided are a processor and an event processing method which are capable of measuring, in real time, the time it takes to return to a RUN state after executing an EVTWAIT instruction, without consuming external timer resources. This processor is provided with: a timer counter TMR which starts counting from an initial value; an event input control unit (26) which detects an event input that indicates occurrence of an event; an EVTWAIT instruction detection unit (27) which detects a wait event in response to the event input; a state control unit (30) which, in response to an EVTWAIT instruction, causes a transition from a RUN state to a WAIT state and outputs a count start signal, and which, in response to the detection of the wait event, causes a transition from the WAIT state to the RUN state and outputs a count end signal; and a TMRCAP register (23) which retrieves and holds the count value of the timer counter TMR in response to the count end signal output from the state control unit (30).
Embodiments of this disclosure provide a control apparatus and method for a current resonance circuit and a current resonance power supply. The control method includes: performing integration on a resonance current of the current resonance circuit or a switching current of one or more switching elements to generate an integration signal; generating a feedback signal of the current resonance circuit; comparing the integration signal with the feedback signal, and generating a measurement signal according to a comparison result; performing digital filtering on the measurement signal; and according to the measurement signal after filtering, generating a pulse width modulation signal controlling the switching elements.
H02M 3/335 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu avec transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrodes de commande pour produire le courant alternatif intermédiaire utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs
H02M 1/08 - Circuits spécialement adaptés à la production d'une tension de commande pour les dispositifs à semi-conducteurs incorporés dans des convertisseurs statiques
H02M 1/00 - Détails d'appareils pour transformation
In the present invention, a digital/analog converter included in an A/D conversion circuit is provided with: a plurality of bit circuits which include, so as to correspond to a plurality of bits, capacitors outputting comparative potential from one ends thereof and having capacity values increasing from lower-order bits to the higher-order bits of the plurality of bits, first switches positioned at the other ends of the capacitors and having applied thereto input potential, and series circuits comprising second switches and current amount control elements and positioned between the other ends of the capacitors and a reference power source; and a current amount control unit for controlling a current amount flowing through the current amount control elements provided to the bit circuits. In a case where the second switches are switched on, by digital values, sequentially from the higher-order bit in the respective bit circuits, and during a period in which a second switch in any one of the bit circuits that has a noise current equal to or higher than an allowable value is switched on, the noise current being proportional to electrical charge flowing from the corresponding capacitor to the reference power source, the current amount control unit regulates the noise current so to be lower than the allowable value by applying current control potential to a current amount control element in any one of the bit circuits.
H03M 1/46 - Valeur analogique comparée à des valeurs de référence uniquement séquentiellement, p. ex. du type à approximations successives avec convertisseur numérique/analogique pour fournir des valeurs de référence au convertisseur
H03M 1/08 - Compensation ou prévention continue de l'influence indésirable de paramètres physiques du bruit
The present invention is provided with: a voltage detection unit 1 for detecting an output voltage and converting the detected output voltage to a digital value having a predetermined number of bits; a digital filter 4 for performing a predetermined calculation on the basis of the error between a target value and the output of the voltage detection unit; a drive unit 5 for driving switching elements with a predetermined duty in a filter characteristic analysis period and controlling a main switching element with a duty based on the calculation result of the digital filter after the completion of the filter characteristic analysis period; a current detection unit 6 for detecting a current flowing through an inductor and outputting the detected current as a current detection signal; a filter characteristic analysis unit 7 for analyzing, on the basis of the current detection signal from the current detection unit, the characteristics of a filter constituted by the inductor and an output capacitor from the period of occurrence of a rush current flowing through the inductor in the filter analysis period; and a constant storage unit 8 having a plurality of digital filter constant tables in which a plurality of filter constants corresponding to a plurality of filter characteristics are stored, selecting a proper filter constant from among the plurality of digital filter constant tables in accordance with the filter characteristics after the completion of the filter characteristic analysis period, and supplying the selected filter constant to the digital filter.
H02M 3/155 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu sans transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs
Task #: 946 / Project: Abstracts JA-EN 199617 / Asset: pctjp2018046755-ttad-000001-en-ja.xml This semiconductor device comprises: a drift region (30) having an SJ structure that is placed on a semiconductor substrate (10), for which a first columnar region (31) of a first electrically conductive type and a second columnar region (32) of a second electrically conductive type are placed in alternating fashion; a base region (40) of the second electrically conductive type that is placed on the drift region (30); a source region (50) of the first electrically conductive type that is placed on the base region (40); and gate electrodes (80) placed inside grooves that pass through the source region (50) and the base region (40). The second columnar region (32) of the drift region (30) is formed with the recombination center density of holes and electrons higher in an upper region (32A) than in a lower region (32B).
A semiconductor device, provided with a semiconductor substrate 10 in which an element region 110 and a periphery region 120 surrounding the element region 110 are defined on a main surface thereof. Outer peripheral trenches 20, having an insulating film 21 disposed on the inner wall surface of a groove and an electroconductor film 22 disposed on the insulating film 21 inside the groove, are disposed on the periphery region 120 so as to surround the element region 110. The electroconductor film 22 of the outer peripheral trenches 20 is set to a potential higher than the potential of the negative-side main electrode of a semiconductor element formed on the element region 110.
UHVHWHULVLWLULVLWLUHVHWHWH by upper/lower complementary switching with a dead time Td in between; a mask generation unit (56) for generating a mask period including the dead time Td; and a zero cross detection unit (51) for detecting a zero cross of back electromotive force in a period other than the mask period on the basis of the phase voltage in a non-conduction period.
H02P 6/182 - Dispositions de circuits pour détecter la position sans éléments séparés pour détecter la position utilisant la force contre-électromotrice dans les enroulements
The present invention is a processor that performs a pipeline process in which a plurality of threads are processed, and commands that include a wait command and correspond to the thread numbers of the threads are executed and processed in parallel. Pipeline processing units 1-4 comprise a fetching unit for fetching the commands of the threads for which an execution right has been obtained, a decoding unit for decoding the commands fetched by the fetching unit, and an operation execution unit for executing the commands decoded by the decoding unit. When the wait command of the threads for which the execution right has been obtained is executed, command holding units 14-0, 14-1 hold information on the command fetch of process commands processed subsequent to the wait command. An execution thread selection unit 5 selects the threads to be executed on the basis of a wait instruction, and when the wait state in effect from the time of execution of the wait command is canceled, executes the threads starting from the decoding of the process commands on the basis of the information on the command fetch of the process commands held in the command holding units.
G06F 9/38 - Exécution simultanée d'instructions, p. ex. pipeline ou lecture en mémoire
G06F 9/30 - Dispositions pour exécuter des instructions machines, p. ex. décodage d'instructions
G06F 9/32 - Formation de l'adresse de l'instruction suivante, p. ex. par incrémentation du compteur ordinal
G06F 9/46 - Dispositions pour la multiprogrammation
G06F 12/0875 - Adressage d’un niveau de mémoire dans lequel l’accès aux données ou aux blocs de données désirés nécessite des moyens d’adressage associatif, p. ex. mémoires cache avec mémoire cache dédiée, p. ex. instruction ou pile
This semiconductor device includes a semiconductor substrate (10) which has, defined on a top surface thereof, an element region (110) and a surrounding region (120) that surrounds the element region (110). A plurality of trenches (20) are arranged surrounding the element region (110) in multiple layers in the surrounding region (120), each of the trenches (20) having an insulating film (21) that is disposed on an inner wall of a groove extending from the top surface of the semiconductor substrate (10) in the film thickness direction and a conductor film (22) that is disposed on the insulating film (21) inside the groove. The surrounding region (120) has an inner region (121) that is close to the element region (110) and an outer region (122) that is positioned around the inner region (121), and the widths of the semiconductor substrate (10) between adjoining trenches (20) are larger in the inner region (121) than in the outer region (122).
A power conversion device according to one or more embodiments may include: a microcomputer; and an output circuit controlled by the microcomputer, including an output unit that converts an input power into a predetermined power and outputs the predetermined power, an internal power source that supplies a power source to the microcomputer, a driver that drives the output unit by a signal from the microcomputer, and a microcomputer stop transition unit that, when an operation of the power conversion device is stopped, outputs a microcomputer stop signal to the microcomputer and causes an operation of the microcomputer to transition to a stop state. In one or more embodiments, after the microcomputer stop transition unit causes the operation of the microcomputer to transition to a stop state, the microcomputer or the output circuit may stop an output of the internal power source.
H02M 1/36 - Moyens pour mettre en marche ou arrêter les convertisseurs
H02M 3/158 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu sans transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs avec commande automatique de la tension ou du courant de sortie, p. ex. régulateurs à commutation comprenant plusieurs dispositifs à semi-conducteurs comme dispositifs de commande finale pour une charge unique
H02M 1/32 - Moyens pour protéger les convertisseurs autrement que par mise hors circuit automatique
H02M 1/00 - Détails d'appareils pour transformation
H02H 7/122 - Circuits de protection de sécurité spécialement adaptés aux machines ou aux appareils électriques de types particuliers ou pour la protection sectionnelle de systèmes de câble ou de ligne, et effectuant une commutation automatique dans le cas d'un changement indésirable des conditions normales de travail pour convertisseursCircuits de protection de sécurité spécialement adaptés aux machines ou aux appareils électriques de types particuliers ou pour la protection sectionnelle de systèmes de câble ou de ligne, et effectuant une commutation automatique dans le cas d'un changement indésirable des conditions normales de travail pour redresseurs pour convertisseurs ou redresseurs statiques pour onduleurs, c.-à-d. convertisseurs de courant continu en courant alternatif
A semiconductor device is disclosed that includes a substrate; a first semiconductor region arranged in the cell region on a first surface side of the substrate; a second semiconductor region arranged in a cell region; a channel stopper electrode arranged in a termination region; a first electrode arranged on the first surface and electrically connected to the second semiconductor region; an insulation film arranged between the channel stopper electrode and the first electrode; first conductors arranged inside the insulation film; second conductors arranged on the insulation film; and a second electrode arranged on a second surface side of the substrate. A width of an overlapping portion in a height direction of the first conductor and the second conductor on the first electrode side is larger than a width of an overlapping portion in the height direction of the first and second conductors on the channel stopper electrode side.
H01L 29/06 - Corps semi-conducteurs caractérisés par les formes, les dimensions relatives, ou les dispositions des régions semi-conductrices
H01L 29/739 - Dispositifs du type transistor, c.à d. susceptibles de répondre en continu aux signaux de commande appliqués commandés par effet de champ
H01L 29/10 - Corps semi-conducteurs caractérisés par les formes, les dimensions relatives, ou les dispositions des régions semi-conductrices avec des régions semi-conductrices connectées à une électrode ne transportant pas le courant à redresser, amplifier ou commuter, cette électrode faisant partie d'un dispositif à semi-conducteur qui comporte trois électrodes ou plus
H01L 29/417 - Electrodes caractérisées par leur forme, leurs dimensions relatives ou leur disposition relative transportant le courant à redresser, à amplifier ou à commuter
This semiconductor device is provided with: a second conductive-type embedded region (20) that is embedded in a part of the upper surface of a first conductive-type semiconductor substrate (10); a second conductive-type first semiconductor region (30) that is disposed above the semiconductor substrate (10) so as to cover the embedded region (20) and that has an impurity concentration lower than that of the embedded region (20); a first conducive-type connection region (40) that is embedded in a part of the upper surface of the semiconductor substrate (10) in a remaining region obtained by excluding the region where the first semiconductor region (30) is disposed, and that has a side surface connected to an extension region (31) which is a part of the lower part of the first semiconductor region (30); and a first conductive-type second semiconductor region (50) that is disposed on the upper surface of the connection region (40) and has a side surface connected to the first semiconductor region (30). The extension region (31) of the first semiconductor region (30) extends below the end of the second semiconductor region (50), and comes into contact with the side surface of the connection region (40).
A trench semiconductor device includes a layer of semiconductor material, an exterior trench pattern formed in the layer of semiconductor material, and an interior trench pattern formed in the layer of semiconductor material, at least partially surrounded by the exterior trench pattern. The exterior trench pattern includes a plurality of exterior trench portions that are each lined with dielectric material and filled with conductive material, and the interior trench pattern includes a plurality of interior trench portions that are each lined with dielectric material and filled with conductive material.
A trench gate type IGBT, comprising: a first semiconductor area (10) of a first electrically conductive type; a second semiconductor area (20) of the first electrically conductive type placed on the main surface of the first semiconductor area (10), with a higher impurity concentration than the first semiconductor area (10); a third semiconductor area (30) of a second electrically conductive type, placed on the top surface of the second semiconductor area (20), with impurities of an impurity concentration profile having a plurality of peaks along the film thickness direction added; and a fourth semiconductor area (40) of the first electrically conductive type placed on the top surface of the third semiconductor area (30).
H01L 29/739 - Dispositifs du type transistor, c.à d. susceptibles de répondre en continu aux signaux de commande appliqués commandés par effet de champ
H01L 21/336 - Transistors à effet de champ à grille isolée
H01L 29/78 - Transistors à effet de champ l'effet de champ étant produit par une porte isolée
A semiconductor device, comprising a nitride semiconductor layer, a switching element, and a driving transistor; the switching element comprises: a first portion of a first electrode formed on the nitride semiconductor layer; a second electrode formed on the nitride semiconductor layer; and a first control electrode formed on the nitride semiconductor layer and located between the first portion of the first electrode and the second electrode; the driving transistor comprises: a second portion of the first electrode formed on the nitride semiconductor layer and connecting the first portions of the adjacent first electrodes to each other; a third electrode formed on the nitride semiconductor layer and transmitting a signal to the first control electrode; and a second control electrode formed on the nitride semiconductor layer and located between the second portion of the first electrode and the third electrode. Therefore, when the switching element is turned off, it can be kept in an off state even if a drain voltage applied to the switching element is subjected to a variation or the like.
H01L 27/06 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant un corps semi-conducteur comprenant une pluralité de composants individuels dans une configuration non répétitive
H01L 27/088 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant un corps semi-conducteur comprenant uniquement des composants semi-conducteurs d'un seul type comprenant uniquement des composants à effet de champ les composants étant des transistors à effet de champ à porte isolée
H01L 29/20 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, à part les matériaux de dopage ou autres impuretés, uniquement des composés AIIIBV
H01L 29/417 - Electrodes caractérisées par leur forme, leurs dimensions relatives ou leur disposition relative transportant le courant à redresser, à amplifier ou à commuter
H01L 29/778 - Transistors à effet de champ avec un canal à gaz de porteurs de charge à deux dimensions, p.ex. transistors à effet de champ à haute mobilité électronique HEMT
97.
SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SAME
A semiconductor device comprising: a semiconductor substrate (10); a first interlayer dielectric film (21) disposed on a major surface of the semiconductor substrate (10); a second interlayer dielectric film (22) disposed on the first interlayer dielectric film (21); and an electrical conductor film (30) which is embedded in an opening continuously penetrating through the first interlayer dielectric film (21) and the second interlayer dielectric film (22) and which is in contact with the major surface of the semiconductor substrate (10). A first inclination angle S1 formed by a side surface of the first interlayer dielectric film (21) and the major surface of the semiconductor substrate (10) is smaller than a second inclination angle S2 formed by an extension line of the side surface of the second interlayer dielectric film (22) and the major surface of the semiconductor substrate (10), and an upper surface of the second interlayer dielectric film (22) is inclined so as to approach the semiconductor substrate (10) gradually outward from the upper end of the opening.
A semiconductor device, provided with: a semiconductor substrate (10) having a first main surface (11) and a second main surface (12) opposite each other, a measurement pad being disposed on the first main surface (11); and a stress film (20) disposed on the first main surface (11) and/or the second main surface (12), the stress film (20) producing a stress in the semiconductor substrate (10) that causes warpage, in which the first main surface (11) becomes concave, so that the warpage amount of the semiconductor substrate (10) at room temperature is 30 to 60 μm. The stress is produced by the difference in thermal expansion coefficient between the semiconductor substrate (10) and the stress film (20).
A device and method for calculating switching time. The device includes: a digital calculator configured to calculate a next on time according to an output voltage signal and an inductor current signal detected during an on period of a switching element and calculate a next off time according to the next on time, an input voltage signal and the output voltage signal; and a signal generator configured to generate a pulse width modulation signal for controlling the switching element, according to the next on time and the next off time. Therefore, a digital controlling manner is provided, not only the number of components and the cost are decreased, but also detection accuracy is improved with a simple structure.
H02M 3/157 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu sans transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs avec commande automatique de la tension ou du courant de sortie, p. ex. régulateurs à commutation avec commande numérique
H02M 1/42 - Circuits ou dispositions pour corriger ou ajuster le facteur de puissance dans les convertisseurs ou les onduleurs
H02M 7/5395 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant alternatif sans possibilité de réversibilité par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs, p. ex. onduleurs à impulsions à un seul commutateur avec commande automatique de la forme d'onde ou de la fréquence de sortie par modulation de largeur d'impulsions
H02M 1/00 - Détails d'appareils pour transformation