SAS Institute Inc.

États‑Unis d’Amérique

Retour au propriétaire

1-100 de 773 pour SAS Institute Inc. Trier par
Recheche Texte
Excluant les filiales
Affiner par Reset Report
Type PI
        Brevet 711
        Marque 62
Juridiction
        États-Unis 705
        Canada 32
        International 28
        Europe 8
Date
Nouveautés (dernières 4 semaines) 5
2025 janvier 5
2024 décembre 3
2024 novembre 5
2024 octobre 7
Voir plus
Classe IPC
G06F 17/30 - Recherche documentaire; Structures de bases de données à cet effet 150
G06N 20/00 - Apprentissage automatique 74
G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT] 70
H04L 29/08 - Procédure de commande de la transmission, p.ex. procédure de commande du niveau de la liaison 68
G06F 17/18 - Opérations mathématiques complexes pour l'évaluation de données statistiques 65
Voir plus
Classe NICE
09 - Appareils et instruments scientifiques et électriques 40
16 - Papier, carton et produits en ces matières 23
42 - Services scientifiques, technologiques et industriels, recherche et conception 22
41 - Éducation, divertissements, activités sportives et culturelles 10
35 - Publicité; Affaires commerciales 8
Voir plus
Statut
En Instance 9
Enregistré / En vigueur 764
  1     2     3     ...     8        Prochaine page

1.

METHOD AND SYSTEM FOR PREDICTING RELEVANT NETWORK RELATIONSHIPS

      
Numéro d'application 18777760
Statut En instance
Date de dépôt 2024-07-19
Date de la première publication 2025-01-30
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Ablitt, Nicholas Akbar
  • Morris, James Byron

Abrégé

The computing device trains a first model on a first data set using a first graph to predict relevant links between a plurality of nodes. The computing device applies the trained first model to the one or more links between the plurality of nodes from a first node, iteratively connects each node to the one or more first sets of generated networks for each of the relevant links until the relevant links for connection to the plurality of nodes are not present, and outputs the one or more first sets of generated networks. The computing device also applies the trained first model to the one or more links between the plurality of nodes, removes the non-relevant links, connects each node of the plurality of nodes with the relevant links to generate one or more second sets of networks, and outputs the one or more second sets of generated networks.

Classes IPC  ?

  • G06N 7/01 - Modèles graphiques probabilistes, p. ex. réseaux probabilistes

2.

METHOD AND SYSTEM FOR PREDICTING RELEVANT NETWORK RELATIONSHIPS

      
Numéro d'application 18783592
Statut En instance
Date de dépôt 2024-07-25
Date de la première publication 2025-01-30
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Ablitt, Nicholas Akbar
  • Morris, James Byron

Abrégé

The computing device trains a first model on a first data set using a first graph to predict relevant links between a plurality of nodes. The computing device obtains the first data set or a second data set associated with the plurality of nodes. The computing device determines the one or more features for the one or more links between the plurality of nodes, applies the trained first model to the one or more links between the plurality of nodes, outputs the relevant links and non-relevant links of the one or more links between the plurality of nodes, removes the non-relevant links between the plurality of nodes, connects each node of the plurality of nodes with the relevant links to generate one or more second sets of networks, and outputs the one or more second sets of generated networks.

Classes IPC  ?

  • G06N 5/01 - Techniques de recherche dynamiqueHeuristiquesArbres dynamiquesSéparation et évaluation

3.

Restructuring matrix processing on a computing device

      
Numéro d'application 18793225
Numéro de brevet 12204606
Statut Délivré - en vigueur
Date de dépôt 2024-08-02
Date de la première publication 2025-01-21
Date d'octroi 2025-01-21
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s) Andrianov, Alexander Vladimirovich

Abrégé

In some examples, a system can store a first array, which is a one-dimensional array of values (e.g., matrix values), in memory. The system can also store a second array in the memory, where the second array is a one-dimensional array of pointers that point to positions of a subset of the values in the first array. The subset of values can be a first entry of each row or column of a matrix. The system can then provide the second array as input to a program routine, which can perform a matrix operation. To do so, the program routine can access the first array and the second array in memory, select a set of values for the matrix from the first array by using the pointers, execute the matrix operation using the using the selected set of values, and output the result.

Classes IPC  ?

4.

Systems and methods for outlier detection and feature transformation in machine learning model training

      
Numéro d'application 18824828
Numéro de brevet 12190219
Statut Délivré - en vigueur
Date de dépôt 2024-09-04
Date de la première publication 2025-01-07
Date d'octroi 2025-01-07
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Nyangon, Joseph O.
  • Akintunde, Ruth Oluwadamilola

Abrégé

A computer-program product, computer-implemented method, and computer-implemented system includes obtaining a raw dataset; executing an outlier filtration process based on obtaining the raw dataset; training a model using a refined outlier-reduced dataset; and predicting, via the trained model, a value of the target entity at a future time.

Classes IPC  ?

5.

Predicting likelihood of request classifications using deep learning

      
Numéro d'application 18672589
Numéro de brevet 12189716
Statut Délivré - en vigueur
Date de dépôt 2024-05-23
Date de la première publication 2025-01-07
Date d'octroi 2025-01-07
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Liao, Yi
  • Armagan, Artin
  • Oothongsap, Phoemphun
  • Hare, Brian Christopher
  • Arangala, Adheesha Sanjaya
  • Jung, Jin-Whan

Abrégé

A system and method include receiving a first set of variables associated with a real-time request, extracting a predetermined subset of the first set of variables for generating a second set of variables, identifying historical request data, computing a set of parameters based on the first set of variables and the historical request data, generating a plurality of numeric sequences and a plurality of string sequences for the real-time request, converting each of the plurality of string sequences into an encoded string sequence to obtain a plurality of encoded string sequences, inputting the plurality of numeric sequences and the plurality of encoded string sequences into a trained deep machine learning model, and computing a score from the trained deep machine learning model, the score indicative of a likelihood that the real-time request belongs to an unauthorized classification.

Classes IPC  ?

  • G06N 3/086 - Méthodes d'apprentissage en utilisant les algorithmes évolutionnaires, p. ex. les algorithmes génétiques ou la programmation génétique
  • G06F 18/21 - Conception ou mise en place de systèmes ou de techniquesExtraction de caractéristiques dans l'espace des caractéristiquesSéparation aveugle de sources
  • G06F 18/214 - Génération de motifs d'entraînementProcédés de Bootstrapping, p. ex. ”bagging” ou ”boosting”
  • G06F 18/22 - Critères d'appariement, p. ex. mesures de proximité
  • G06N 3/045 - Combinaisons de réseaux
  • G06N 3/084 - Rétropropagation, p. ex. suivant l’algorithme du gradient

6.

GRAPHICAL USER INTERFACE AND PIPELINE FOR TEXT ANALYTICS

      
Numéro d'application 18737391
Statut En instance
Date de dépôt 2024-06-07
Date de la première publication 2024-12-26
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Pagolu, Murali Krishna
  • Kozak, Corey Kyle

Abrégé

A graphical user interface (GUI) and pipeline for processing text documents is provided herein. In one example, a system can receive unstructured text documents. The system can determine entity-issue descriptions corresponding to the unstructured text documents. The system can then generate a GUI indicating the entity-issue descriptions. The GUI can also indicate assignments of the unstructured text documents to categories of a predefined schema. The GUI can allow the user to adjust the assignments of the unstructured text documents to the categories. The GUI can also include a table of rows, where each row corresponds to one of the unstructured text documents. Each row can indicate an entity-issue description in the corresponding unstructured text document and the categories assigned to the unstructured text document. Each row can also include a graphical button that is selectable to allow the user to view the unstructured text document corresponding to the row.

Classes IPC  ?

  • G06F 16/34 - NavigationVisualisation à cet effet

7.

Graphical user interface and pipeline for text analytics

      
Numéro d'application 18737520
Numéro de brevet 12197481
Statut Délivré - en vigueur
Date de dépôt 2024-06-07
Date de la première publication 2024-12-26
Date d'octroi 2025-01-14
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Pagolu, Murali Krishna
  • Kozak, Corey Kyle

Abrégé

A graphical user interface (GUI) and pipeline for processing text documents is provided herein. In one example, a system can receive unstructured text documents. The system can determine entity-issue descriptions corresponding to the unstructured text documents. The system can then generate a GUI indicating the entity-issue descriptions. The GUI can also indicate assignments of the unstructured text documents to categories of a predefined schema. The GUI can allow the user to adjust the assignments of the unstructured text documents to the categories. The GUI can also include a table of rows, where each row corresponds to one of the unstructured text documents. Each row can indicate an entity-issue description in the corresponding unstructured text document and the categories assigned to the unstructured text document. Each row can also include a graphical button that is selectable to allow the user to view the unstructured text document corresponding to the row.

Classes IPC  ?

  • G06F 16/34 - NavigationVisualisation à cet effet

8.

Distributed gaussian process classification computing system

      
Numéro d'application 18635410
Numéro de brevet 12175374
Statut Délivré - en vigueur
Date de dépôt 2024-04-15
Date de la première publication 2024-12-24
Date d'octroi 2024-12-24
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Wang, Yingjian
  • Wu, Xinmin

Abrégé

A computing system trains a classification model using distributed training data. A first worker index and a second worker index are received from a controller device and together uniquely identify a segment of a lower triangular matrix. The first and second worker indices have values from one to a predefined block size value. In response to receipt of a first computation request from the controller device, a first kernel matrix block is computed at each computing device based on the first worker index and the second worker index. In response to receipt of a second computation request from the controller device, an objective function value is computed for each observation vector included in an accessed training data subset. The computed objective function value is sent to the controller device. Model parameters for a trained classification model are output.

Classes IPC  ?

  • G06N 3/098 - Apprentissage distribué, p. ex. apprentissage fédéré
  • G06N 5/04 - Modèles d’inférence ou de raisonnement
  • G06N 20/10 - Apprentissage automatique utilisant des méthodes à noyaux, p. ex. séparateurs à vaste marge [SVM]
  • G06N 20/00 - Apprentissage automatique

9.

Architecture for execution of computer programs inside data systems

      
Numéro d'application 18665001
Numéro de brevet 12155727
Statut Délivré - en vigueur
Date de dépôt 2024-05-15
Date de la première publication 2024-11-26
Date d'octroi 2024-11-26
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s) Ghazaleh, David Abu

Abrégé

A computing system is configured to receive, at a service entity, from a data exchange entity, an execution command indicating to store an instance of a data program in a memory portion of the computing system by storing computer instructions based on an external data program of an external computing system. The computing system is configured to receive, at a service entity, from a data exchange entity, an indication of availability of the input data. The input data is available for use by the instance of the data program. The computing system is configured to send from the service entity an indication of availability of the output data. The output data is generated based on execution of the instance of the data program.

Classes IPC  ?

  • G06F 15/173 - Communication entre processeurs utilisant un réseau d'interconnexion, p. ex. matriciel, de réarrangement, pyramidal, en étoile ou ramifié
  • G06F 16/11 - Administration des systèmes de fichiers, p. ex. détails de l’archivage ou d’instantanés
  • G06F 16/178 - Techniques de synchronisation des fichiers dans les systèmes de fichiers
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

10.

Systems and methods for dynamic allocation of compute resources via a machine learning-informed feedback sequence

      
Numéro d'application 18627375
Numéro de brevet 12147838
Statut Délivré - en vigueur
Date de dépôt 2024-04-04
Date de la première publication 2024-11-19
Date d'octroi 2024-11-19
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Wellum, Richard Keith
  • Gelpi, John Hardin
  • Daehnrich, Alexander

Abrégé

A system, method, and computer-program product includes obtaining an analytical request that specifies an analytical task to be performed using computing resources of an adaptive analytics compute service, determining, by the adaptive analytics compute service, an initial set of compute resources for executing the analytical request based on identifying a type of the analytical request, deploying, by the adaptive analytics compute service, a compute environment for executing the analytical request based on the initial set of compute resources, observing utilization data of the initial set of compute resources during a period of executing the analytical request within the compute environment, and commencing a machine learning-informed feedback sequence for autonomously adapting the compute environment, wherein one iteration of the machine learning-informed feedback sequence includes: generating a proposed set of compute resources, and encoding, based on the proposed set of compute resources, a set of instructions for automatically adapting the compute environment.

Classes IPC  ?

  • G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT]
  • G06F 9/455 - ÉmulationInterprétationSimulation de logiciel, p. ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation
  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption
  • G06F 11/30 - Surveillance du fonctionnement

11.

Data access layer for translating between a data structure used by a first software program and a proxy table used by a second software program

      
Numéro d'application 18599342
Numéro de brevet 12141138
Statut Délivré - en vigueur
Date de dépôt 2024-03-08
Date de la première publication 2024-11-12
Date d'octroi 2024-11-12
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Xiao, Yongqiao
  • Koch, Patrick Nathan

Abrégé

In one example, a system can receive information about a data structure including a set of data entries. The system can generate a proxy data table including a set of columns. The system can use a data access layer to generate a mapping from the data entries to the columns. The system can receive an input to cause an operation to be performed on the data structure by performing the operation on the data structure. Generating a result can involve issuing read commands to the data access layer to perform the operation on the data structure such that the data access layer obtains the associated data entries and provides them as responses to the read commands by performing a translation between the data entries and the columns based on the mapping. The system can then output the result of the operation.

Classes IPC  ?

12.

DEEP LEARNING MODEL FOR ENERGY FORECASTING

      
Numéro d'application 18410742
Statut En instance
Date de dépôt 2024-01-11
Date de la première publication 2024-11-07
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Chauhan, Richa
  • Yadav, Harish
  • Shah, Hemil
  • Kamat, Kanchan
  • De Castro, Arnulfo D.
  • Lee, Tae Yoon

Abrégé

In one example, a system can receive an input from a user indicating a target variable to be forecasted over a future time window. The system can then determine independent variables that influence the target variable and generate a set of candidate variables, including combinations of the independent variables. The system can then execute a random forest classifier to identify a subset of candidate variables having a threshold level of influence on the target variable. The system can then construct a machine-learning model configured to receive the identified subset of candidate variables as inputs and generate a forecast of the target variable. After constructing the machine-learning model, the system can train the machine-learning model using historical data and then execute the machine-learning model to generate the forecast.

Classes IPC  ?

  • G06N 3/045 - Combinaisons de réseaux
  • G06N 20/20 - Techniques d’ensemble en apprentissage automatique

13.

Graphical user interface and pipeline for text analytics

      
Numéro d'application 18615319
Numéro de brevet 12135737
Statut Délivré - en vigueur
Date de dépôt 2024-03-25
Date de la première publication 2024-11-05
Date d'octroi 2024-11-05
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Pagolu, Murali Krishna
  • Kozak, Corey Kyle

Abrégé

A graphical user interface (GUI) and pipeline for processing text documents is provided herein. In one example, a system can receive unstructured text documents. The system can determine entity-issue descriptions corresponding to the unstructured text documents. The system can then generate a GUI indicating the entity-issue descriptions. The GUI can also indicate assignments of the unstructured text documents to categories of a predefined schema. The GUI can allow the user to adjust the assignments of the unstructured text documents to the categories. The GUI can also include a table of rows, where each row corresponds to one of the unstructured text documents. Each row can indicate an entity-issue description in the corresponding unstructured text document and the categories assigned to the unstructured text document. Each row can also include a graphical button that is selectable to allow the user to view the unstructured text document corresponding to the row.

Classes IPC  ?

  • G06F 16/34 - NavigationVisualisation à cet effet

14.

Automated near-duplicate detection for text documents

      
Numéro d'application 18394209
Numéro de brevet 12124518
Statut Délivré - en vigueur
Date de dépôt 2023-12-22
Date de la première publication 2024-10-22
Date d'octroi 2024-10-22
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Wang, Fan
  • Jade, Teresa S.
  • Yang, Xu

Abrégé

Techniques described herein provide for automated detection of near-duplicate documents. In one example, a system can cluster documents into a set of clusters based on character frequencies associated with the documents. For a given cluster, the system can generate first similarity scores associated with every pair of documents in the cluster. The system can then select a filtered group of documents associated with first similarity scores that meet or exceed a first predefined similarity threshold. Next, the system can convert the filtered group of documents into matrix representations. The system can generate second similarity scores for every pair of matrix representations. The system can then identify documents, from among the filtered group of documents, associated with second similarity scores that meet or exceed a second predefined similarity threshold. The identified documents can be duplicate or near-duplicate text documents.

Classes IPC  ?

  • G06F 7/02 - Comparaison de valeurs numériques
  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 16/906 - GroupementClassement
  • G06F 16/93 - Systèmes de gestion de documents
  • G06F 16/35 - PartitionnementClassement

15.

Standard error for deep learning model outcome estimator

      
Numéro d'application 18529014
Numéro de brevet 12165031
Statut Délivré - en vigueur
Date de dépôt 2023-12-05
Date de la première publication 2024-10-17
Date d'octroi 2024-12-10
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Kabisa, Sylvie Tchumtchoua
  • Chen, Xilong
  • Walton, Gunce Eryuruk
  • Elsheimer, David Bruce
  • Chang, Ming-Chun

Abrégé

A treatment model trained to compute an estimated treatment variable value for each observation vector of a plurality of observation vectors is executed. Each observation vector includes covariate variable values, a treatment variable value, and an outcome variable value. An outcome model trained to compute an estimated outcome value for each observation vector using the treatment variable value for each observation vector is executed. A standard error value associated with the outcome model is computed using a first variance value computed using the treatment variable value of the plurality of observation vectors, using a second variance value computed using the treatment variable value and the estimated treatment variable value of the plurality of observation vectors, and using a third variance value computed using the estimated outcome value of the plurality of observation vectors. The standard error value is output.

Classes IPC  ?

  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06N 3/045 - Combinaisons de réseaux
  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 3/084 - Rétropropagation, p. ex. suivant l’algorithme du gradient

16.

METHODS AND SYSTEMS FOR ENHANCED SENSOR ASSESSMENTS FOR PREDICTING SECONDARY ENDPOINTS

      
Numéro d'application 18637794
Statut En instance
Date de dépôt 2024-04-17
Date de la première publication 2024-10-17
Propriétaire SAS Institute Inc. (USA)
Inventeur(s) Gottula, John Wesley

Abrégé

A method, system, and computer-program product includes identifying a set of heterogeneous sensors, configuring a plurality of model training compositions for each of the set of heterogeneous sensors, computing, for each of the plurality of model training compositions, a first efficacy metric value based on predictive outputs of the at least two machine learning models, identifying, for each sensor of the set of heterogeneous sensors, a champion model training composition of the subject sensor, the champion model training composition having a highest efficacy metric value, and electing, from a plurality of champion model training compositions corresponding to the champion model training compositions identified for each sensor of the set of heterogeneous sensors, an overall champion model training composition corresponding to a champion sensor of the set of heterogeneous sensors based on an assessment of second efficacy metric values of the plurality of champion model training compositions.

Classes IPC  ?

17.

Bayesian neural network point estimator

      
Numéro d'application 18530798
Numéro de brevet 12210954
Statut Délivré - en vigueur
Date de dépôt 2023-12-06
Date de la première publication 2024-10-17
Date d'octroi 2025-01-28
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Kabisa, Sylvie Tchumtchoua
  • Chen, Xilong
  • Walton, Gunce Eryuruk
  • Elsheimer, David Bruce
  • Chang, Ming-Chun

Abrégé

A point estimate value for an individual is computed using a Bayesian neural network model (BNN) by training a first BNN model that computes a weight mean value, a weight standard deviation value, a bias mean value, and a bias standard deviation value for each neuron of a plurality of neurons using observations. A plurality of BNN models is instantiated using the first BNN model. Instantiating each BNN model of the plurality of BNN models includes computing, for each neuron, a weight value using the weight mean value, the weight standard deviation value, and a weight random draw and a bias value using the bias mean value, the bias standard deviation value, and a bias random draw. Each instantiated BNN model is executed with the observations to compute a statistical parameter value for each observation vector of the observations. The point estimate value is computed from the statistical parameter value.

Classes IPC  ?

  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06N 3/045 - Combinaisons de réseaux
  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 3/084 - Rétropropagation, p. ex. suivant l’algorithme du gradient

18.

Systems and methods for enhanced speaker diarization

      
Numéro d'application 18634155
Numéro de brevet 12165650
Statut Délivré - en vigueur
Date de dépôt 2024-04-12
Date de la première publication 2024-10-17
Date d'octroi 2024-12-10
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Li, Xiaolong
  • Cheng, Xiaozhuo
  • Yang, Xu

Abrégé

A system, method, and computer-program product includes receiving speech audio of a multi-turn conversation, generating, via a speech-to-text process, a transcript of the speech audio, wherein the transcript of the speech audio textually segments speech spoken during the multi-turn conversation into a plurality of utterances, generating a speaker diarization prompt that includes contextual information about a plurality of speakers participating in the multi-turn conversation, inputting, to a large language model, the speaker diarization prompt and the transcript of the speech audio, and obtaining, from the large language model, an output comprising an enhanced transcript of the speech audio, wherein the enhanced transcript of the speech audio textually segments the speech spoken during the multi-turn conversation into a plurality of refined utterances and associates a speaker identification value with each of the plurality of refined utterances.

Classes IPC  ?

  • G10L 15/22 - Procédures utilisées pendant le processus de reconnaissance de la parole, p. ex. dialogue homme-machine
  • G10L 15/02 - Extraction de caractéristiques pour la reconnaissance de la paroleSélection d'unités de reconnaissance
  • G10L 15/04 - SegmentationDétection des limites de mots
  • G10L 15/26 - Systèmes de synthèse de texte à partir de la parole
  • G10L 25/30 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes caractérisées par la technique d’analyse utilisant des réseaux neuronaux
  • G10L 25/78 - Détection de la présence ou de l’absence de signaux de voix

19.

Graphical user interface and alerting system for detecting and mitigating problems in an agent network

      
Numéro d'application 18581450
Numéro de brevet 12113660
Statut Délivré - en vigueur
Date de dépôt 2024-02-20
Date de la première publication 2024-10-08
Date d'octroi 2024-10-08
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Hargrove, Jennifer Lee
  • Mir, Ellen Laura
  • Maynard, John L.
  • Haralson, Karen D.
  • Kozak, Corey K.

Abrégé

In some examples a system can receive sets of usage data from agent computer systems associated with agents. The agents can be associated with service providers that provide services to service users. The system can generate a corresponding set of metric values for a common set of metrics for each agent based on a corresponding set of usage data. The common set of metrics can be used for all of the agents to detect anomalies related to the agents. The system can generate a score for each agent based on the corresponding set of metric values, wherein the score indicates a risk level associated with the agent. The system can compare the scores for the agents to a predefined threshold to identify one or more agents that may be problematic. The system can then generate a graphical user interface indicating the one or more identified agents.

Classes IPC  ?

  • H04L 41/06 - Gestion des fautes, des événements, des alarmes ou des notifications
  • H04L 41/046 - Architectures ou dispositions de gestion de réseau comprenant des agents de gestion de réseau ou des agents mobiles à cet effet
  • H04L 41/22 - Dispositions pour la maintenance, l’administration ou la gestion des réseaux de commutation de données, p. ex. des réseaux de commutation de paquets comprenant des interfaces utilisateur graphiques spécialement adaptées [GUI]

20.

Source code evaluator and modified parameter structure for enabling automated validation of parameter values in source code

      
Numéro d'application 18609387
Numéro de brevet 12111750
Statut Délivré - en vigueur
Date de dépôt 2024-03-19
Date de la première publication 2024-10-08
Date d'octroi 2024-10-08
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Xiao, Yongqiao
  • Koch, Patrick Nathan

Abrégé

Parameter values in source code can be automatically validated using the techniques described herein. For example, a system can receive source code that includes a call to an action. The action can have a parameter that is set to a selected value in the source code. The parameter can be defined in definition data. The system can also receive a file that separate from the source code and includes metadata for the parameter. The system can extract the metadata from the file and modify the definition data to include the metadata. The system can then execute a validation process on the selected value for the parameter. The validation process can involve retrieving the metadata from the modified definition data, evaluating the selected value using the metadata to determine whether the selected value is invalid, and if it is invalid, outputting an error notification indicating that the selected value is invalid.

Classes IPC  ?

  • G06F 11/36 - Prévention d'erreurs par analyse, par débogage ou par test de logiciel

21.

Methods and systems for enhanced sensor assessments for predicting secondary endpoints

      
Numéro d'application 18637783
Numéro de brevet 12099932
Statut Délivré - en vigueur
Date de dépôt 2024-04-17
Date de la première publication 2024-09-24
Date d'octroi 2024-09-24
Propriétaire SAS Institute Inc. (USA)
Inventeur(s) Gottula, John Wesley

Abrégé

A method, system, and computer-program product includes identifying a set of heterogeneous sensors, configuring a plurality of model training compositions for each of the set of heterogeneous sensors, computing, for each of the plurality of model training compositions, a first efficacy metric value based on predictive outputs of the at least two machine learning models, identifying, for each sensor of the set of heterogeneous sensors, a champion model training composition of the subject sensor, the champion model training composition having a highest efficacy metric value, and electing, from a plurality of champion model training compositions corresponding to the champion model training compositions identified for each sensor of the set of heterogeneous sensors, an overall champion model training composition corresponding to a champion sensor of the set of heterogeneous sensors based on an assessment of second efficacy metric values of the plurality of champion model training compositions.

Classes IPC  ?

  • G06N 3/09 - Apprentissage supervisé
  • G06F 18/20 - Analyse
  • G06F 18/2135 - Extraction de caractéristiques, p. ex. en transformant l'espace des caractéristiquesSynthétisationsMappages, p. ex. procédés de sous-espace basée sur des critères d'approximation, p. ex. analyse en composantes principales

22.

Topological order determination using machine learning

      
Numéro d'application 18538070
Numéro de brevet 12056207
Statut Délivré - en vigueur
Date de dépôt 2023-12-13
Date de la première publication 2024-08-06
Date d'octroi 2024-08-06
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Chen, Xilong
  • Huang, Tao
  • Chvosta, Jan

Abrégé

A computing device learns a best topological order vector of a plurality of variables. A target variable and zero or more input variables are defined. (A) A machine learning model is trained with observation vectors using the target variable and the zero or more input variables. (B) The machine learning model is executed to compute an equation loss value. (C) The equation loss value is stored with the identifier. (D) The identifier is incremented. (E) (A) through (D) are repeated a plurality of times. (F) A topological order vector is defined. (G) A loss value is computed from a subset of the stored equation loss values based on the topological order vector. (F) through (G) are repeated for each unique permutation of the topological order vector. A best topological order vector is determined based on a comparison between the loss value computed for each topological order vector in (G).

Classes IPC  ?

  • G06F 17/18 - Opérations mathématiques complexes pour l'évaluation de données statistiques

23.

SYSTEMS AND METHODS FOR CONFIGURING AND USING A MULTI-STAGE OBJECT CLASSIFICATION AND CONDITION PIPELINE

      
Numéro d'application US2023082412
Numéro de publication 2024/123723
Statut Délivré - en vigueur
Date de dépôt 2023-12-05
Date de publication 2024-06-13
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Blanchard, Robert, Winston
  • Vengateshwaran, Neela, Niranjani

Abrégé

A system, method, and computer-program product includes detecting, via a localization machine learning model, a target object within a scene based on downsampled image data of the scene, identifying a likely position of the target object within original image data of the scene, extracting, from the original image data of the scene, a target sub-image containing the target object, classifying, via an object classification machine learning model, the target object to a probable object class of a plurality of distinct object classes, routing the target image resolution of the target sub-image to a target object-condition machine learning classification model of a plurality of distinct object-condition machine learning classification models, classifying, via the target object-condition machine learning classification model, the target object to a probable object-condition class, and displaying, via a graphical user interface, a representation of the target object in association with the probable object-condition class.

Classes IPC  ?

  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo

24.

Cutoff value optimization for bias mitigating machine learning training system with multi-class target

      
Numéro d'application 18444906
Numéro de brevet 12093826
Statut Délivré - en vigueur
Date de dépôt 2024-02-19
Date de la première publication 2024-06-13
Date d'octroi 2024-09-17
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Wu, Xinmin
  • Tharrington, Jr., Ricky Dee
  • Abbey, Ralph Walter
  • Hunt, Xin Jiang

Abrégé

A computing device trains a fair prediction model while defining an optimal event cutoff value. (A) A prediction model is trained with observation vectors. (B) The prediction model is executed to define a predicted target variable value and a probability associated with an accuracy of the predicted target variable value. (C) A conditional moments matrix is computed based on fairness constraints, the predicted target variable value, and the sensitive attribute variable value of each observation vector. The predicted target variable value has a predefined target event value only when the probability is greater than a predefined event cutoff value. (D) (A) through (C) are repeated. (E) An updated value is computed for the predefined event cutoff value. (F) (A) through (E) are repeated. An optimal event cutoff value is defined from the predefined event cutoff values used when repeating (A) through (E). The optimal value and prediction model are output.

Classes IPC  ?

  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance

25.

Systems and methods for configuring and using a multi-stage object classification and condition pipeline

      
Numéro d'application 18528685
Numéro de brevet 12002256
Statut Délivré - en vigueur
Date de dépôt 2023-12-04
Date de la première publication 2024-06-04
Date d'octroi 2024-06-04
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Blanchard, Robert Winston
  • Vengateshwaran, Neela Niranjani

Abrégé

A system, method, and computer-program product includes detecting, via a localization machine learning model, a target object within target image data of a scene, classifying, via an object classification machine learning model, the target object to a probable object class of a plurality of distinct object classes, routing, via the one or more processors, the target image data of the scene to a target object-condition machine learning classification model of a plurality of distinct object-condition machine learning classification models based on a mapping between the plurality of distinct object classes and the plurality of distinct object-condition machine learning classification models, classifying, via the target object-condition machine learning classification model, the target object to a probable object-condition class of a plurality of distinct object-condition classes, and displaying, via a graphical user interface, a representation of the target object in association with the probable object-condition class.

Classes IPC  ?

  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
  • G06V 10/94 - Architectures logicielles ou matérielles spécialement adaptées à la compréhension d’images ou de vidéos

26.

Method and system for digital traffic campaign management

      
Numéro d'application 18513882
Numéro de brevet 12051087
Statut Délivré - en vigueur
Date de dépôt 2023-11-20
Date de la première publication 2024-05-23
Date d'octroi 2024-07-30
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Statham, Craig Geoffrey
  • Gay, Sauryha Lynne

Abrégé

The computing device receives data for a plurality of events that includes a timestamp associated with a digital traffic campaign in an event processing system. Based on the timestamp of the data for each event, the computing device executes operations comprising: applying filtering using digital signal processing to the event count for the combined data for each of the one or more intervals, executing a model to compute one or more backward difference approximations for the one or more candidate systems time constants from the evaluated exponential curve, and selecting a system time constant that predicts a first time instant wherein the data for the plurality of events approaches a point on a horizontal asymptote for the evaluated exponential curve. The computing device determines an epoch for the selected system time constant and outputs the determined epoch for the selected system time constant in the graphical user interface.

Classes IPC  ?

  • G06Q 30/0242 - Détermination de l’efficacité des publicités
  • G06Q 30/0201 - Modélisation du marchéAnalyse du marchéCollecte de données du marché

27.

Cubic regularization optimizer

      
Numéro d'application 18511092
Numéro de brevet 11983631
Statut Délivré - en vigueur
Date de dépôt 2023-11-16
Date de la première publication 2024-05-14
Date d'octroi 2024-05-14
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Zhou, Wenwen
  • Griffin, Joshua David
  • Omheni, Riadh
  • Yektamaram, Seyedalireza
  • Xu, Yan

Abrégé

A computer determines a solution to a nonlinear optimization problem. A conjugate gradient (CG) iteration is performed with a first order derivative vector and a second order derivative matrix to update a CG residual vector, an H-conjugate vector, and a residual weight vector. A CG solution vector is updated using a previous CG solution vector, the H-conjugate vector, and the residual weight vector. An eigenvector of the second order derivative matrix having a smallest eigenvalue is computed. A basis matrix is defined that includes a cubic regularization (CR) solution vector, a CR residual vector, the CG solution vector, the CG residual vector, and the eigenvector. A CR iteration is performed to update the CR solution vector. The CR residual vector is updated using the first order derivative vector, the second order derivative matrix, and the updated CR solution vector. The process is repeated until a stop criterion is satisfied.

Classes IPC  ?

28.

Systems, methods, and graphical user interfaces for configuring design of experiments

      
Numéro d'application 18380646
Numéro de brevet 11977820
Statut Délivré - en vigueur
Date de dépôt 2023-10-16
Date de la première publication 2024-05-07
Date d'octroi 2024-05-07
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Liu, Peng
  • Bailey, Mark Wallace
  • Jones, Bradley Allen
  • King, Caleb Bridges
  • Lekivetz, Ryan Adam
  • Morgan, Joseph Albert
  • Rhyne, Jacob Davis

Abrégé

A system, method, and computer-program product includes displaying a plurality of factor-setting user interface (UI) control elements configured to receive an input of characters for specifying a set of design of experiment factors for creating a design of experiment (DOE), displaying a plurality of factor type UI control elements configured to receive input for specifying a factor type of a plurality of factor types, displaying a plurality of dynamic rows of editable UI control elements configured to receive inputs of experimental values for the set of DOE factors, and displaying a composite factor UI control component configured to receive inputs for generating one or more control signals that add or remove one or more DOE factors of the set of DOE factors.

Classes IPC  ?

  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p. ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO
  • G06F 3/0482 - Interaction avec des listes d’éléments sélectionnables, p. ex. des menus
  • G06F 3/04847 - Techniques d’interaction pour la commande des valeurs des paramètres, p. ex. interaction avec des règles ou des cadrans

29.

Combining user feedback with an automated entity-resolution process executed on a computer system

      
Numéro d'application 18299973
Numéro de brevet 12111803
Statut Délivré - en vigueur
Date de dépôt 2023-04-13
Date de la première publication 2024-04-18
Date d'octroi 2024-10-08
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s) Ablitt, Nicholas

Abrégé

One example described herein involves a system that can receive a set of data records and execute an automated entity resolution (AER) process configured to assign the set of data records to a set of entities. For each entity in the set of entities, the system can generate a respective consistency score for the entity, generate a respective confidence score for the entity based on the respective consistency score for the entity, and determine a respective visual indicator based on the respective confidence score for the entity. The respective visual indicator can indicate a risk of record misassignment to a user. The system can then generate a graphical user interface that includes the respective visual indicator for each of the entities.

Classes IPC  ?

  • G06F 16/21 - Conception, administration ou maintenance des bases de données
  • G06F 16/215 - Amélioration de la qualité des donnéesNettoyage des données, p. ex. déduplication, suppression des entrées non valides ou correction des erreurs typographiques
  • G06F 16/23 - Mise à jour

30.

Combining user feedback with an automated entity-resolution process executed on a computer system

      
Numéro d'application 18212832
Numéro de brevet 12086117
Statut Délivré - en vigueur
Date de dépôt 2023-06-22
Date de la première publication 2024-04-18
Date d'octroi 2024-09-10
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s) Ablitt, Nicholas Akbar

Abrégé

One example described herein involves a system that can receive a set of data records and execute an automated entity resolution (AER) process configured to assign the set of data records to a set of entities. For each entity in the set of entities, the system can generate a respective consistency score for the entity, generate a respective confidence score for the entity based on the respective consistency score for the entity, and determine a respective visual indicator based on the respective confidence score for the entity. The respective visual indicator can indicate a risk of record misassignment to a user. The system can then generate a graphical user interface that includes the respective visual indicator for each of the entities.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 16/215 - Amélioration de la qualité des donnéesNettoyage des données, p. ex. déduplication, suppression des entrées non valides ou correction des erreurs typographiques
  • G06F 16/23 - Mise à jour

31.

Robust heart-rate detection techniques for wearable heart-rate sensors

      
Numéro d'application 18527070
Numéro de brevet 11950933
Statut Délivré - en vigueur
Date de dépôt 2023-12-01
Date de la première publication 2024-04-09
Date d'octroi 2024-04-09
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Sadek, Carol Wagih
  • Liao, Yuwei
  • Chaudhuri, Arin

Abrégé

A heart-rate detection system can receive heartbeat data generated by a wearable heart-rate sensor worn by a wearer. The system can then execute a noise-reduction process for reducing noise in the heartbeat data. The noise-reduction process can involve applying a lowpass filter to the heartbeat data, generating wavelet coefficients by applying a wavelet transform to the filtered heartbeat data, and generating a reduced set of wavelet coefficients by thresholding the wavelet coefficients. An inverse wavelet signal can then be generated by applying an inverse wavelet transform to the reduced set of wavelet coefficients. R-peaks can be identified by performing peak detection on the instantaneous amplitudes of the data points in the inverse wavelet signal. A heart rate curve can then be generated based on the R-peaks and modified by applying a Hampel filter. Heartbeat data can then be generated based on the modified heart rate curve for output.

Classes IPC  ?

  • A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
  • A61B 5/024 - Mesure du pouls ou des pulsations cardiaques
  • G16H 40/67 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement à distance
  • G16H 50/70 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour extraire des données médicales, p. ex. pour analyser les cas antérieurs d’autres patients

32.

Systems, methods, and graphical user interfaces for configuring design of experiments

      
Numéro d'application 18229050
Numéro de brevet 11928325
Statut Délivré - en vigueur
Date de dépôt 2023-08-01
Date de la première publication 2024-03-12
Date d'octroi 2024-03-12
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Liu, Peng
  • Bailey, Mark Wallace
  • Jones, Bradley Allen
  • King, Caleb Bridges
  • Lekivetz, Ryan Adam
  • Morgan, Joseph Albert
  • Rhyne, Jacob Davis

Abrégé

A system, method, and computer-program product includes displaying a plurality of factor-setting user interface (UI) control elements configured to receive an input of characters for specifying a set of design of experiment factors for creating a design of experiment (DOE), displaying a plurality of factor type UI control elements configured to receive input for specifying a factor type of a plurality of factor types, displaying a plurality of dynamic rows of editable UI control elements configured to receive inputs of experimental values for the set of DOE factors, and displaying a composite factor UI control component configured to receive inputs for generating one or more control signals that add or remove one or more DOE factors of the set of DOE factors.

Classes IPC  ?

  • G06F 3/0482 - Interaction avec des listes d’éléments sélectionnables, p. ex. des menus
  • G06F 3/04847 - Techniques d’interaction pour la commande des valeurs des paramètres, p. ex. interaction avec des règles ou des cadrans
  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu

33.

Flow model computation system with disconnected graphs

      
Numéro d'application 18207432
Numéro de brevet 11914548
Statut Délivré - en vigueur
Date de dépôt 2023-06-08
Date de la première publication 2024-02-27
Date d'octroi 2024-02-27
Propriétaire SAS Institute Inc. (USA)
Inventeur(s) Khatkale, Shyam Kashinath

Abrégé

A computing device determines a node traversal order for computing a computational parameter value for each node of a data model of a system that includes a plurality of disconnected graphs. The data model represents a flow of a computational parameter value through the nodes from a source module to an end module. A flow list defines an order for selecting and iteratively processing each node to compute the computational parameter value in a single iteration through the flow list. Each node from the flow list is selected to compute a driver quantity for each node. Each node is selected from the flow list in a reverse order to compute a driver rate and the computational parameter value for each node. The driver quantity or the computational parameter value is output for each node to predict a performance of the system.

Classes IPC  ?

  • G06F 15/82 - Architectures de calculateurs universels à programmes enregistrés commandés par des données ou à la demande
  • G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p. ex. des interruptions ou des opérations d'entrée–sortie

34.

Anomaly detection using RPCA and ICA

      
Numéro d'application 18223717
Numéro de brevet 11887012
Statut Délivré - en vigueur
Date de dépôt 2023-07-19
Date de la première publication 2024-01-30
Date d'octroi 2024-01-30
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Kolay, Sudipta
  • Xu, Steven Guanxing
  • Shen, Kai
  • Talebi, Zohreh Asgharzadeh

Abrégé

A computing device identifies an anomaly among a plurality of observation vectors. An observation vector is projected using a predefined orthogonal complement matrix. The predefined orthogonal complement matrix is determined from a decomposition of a low-rank matrix. The low-rank matrix is computed using a robust principal component analysis algorithm. The projected observation vector is multiplied by a predefined demixing matrix to define a demixed observation vector. The predefined demixing matrix is computed using an independent component analysis algorithm and the predefined orthogonal complement matrix. A detection statistic value is computed from the defined, demixed observation vector. When the computed detection statistic value is greater than or equal to a predefined anomaly threshold value, an indicator is output that the observation vector is an anomaly.

Classes IPC  ?

  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance
  • G06N 20/00 - Apprentissage automatique
  • G06F 17/16 - Calcul de matrice ou de vecteur

35.

SYSTEMS, METHODS, AND GRAPHICAL USER INTERFACES FOR TAXONOMY-BASED CLASSIFICATION OF UNLABELED STRUCTURED DATASETS

      
Numéro d'application 18221684
Statut En instance
Date de dépôt 2023-07-13
Date de la première publication 2024-01-25
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Rausch, Nancy Anne
  • Akintunde, Ruth Oluwadamilola
  • Kay, Brant Nathan

Abrégé

A computer-implemented system includes identifying a target hierarchical taxonomy comprising a plurality of distinct hierarchical taxonomy categories; extracting a plurality of distinct taxonomy tokens from the plurality of distinct hierarchical taxonomy categories; computing a taxonomy vector corpus based on the plurality of distinct taxonomy tokens; computing a plurality of distinct taxonomy clusters based on an input of the taxonomy vector corpus; constructing a hierarchical taxonomy classifier based on the plurality of distinct taxonomy clusters; converting a volume of unlabeled structured datasets to a plurality of distinct corpora of taxonomy-labeled structured datasets based on the hierarchical taxonomy classifier; and outputting at least one corpus of taxonomy-labeled structured datasets of the plurality of distinct corpora of taxonomy-labeled structured datasets based on an input of a data classification query.

Classes IPC  ?

  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

36.

Grid status monitoring system

      
Numéro d'application 18214038
Numéro de brevet 11860212
Statut Délivré - en vigueur
Date de dépôt 2023-06-26
Date de la première publication 2024-01-02
Date d'octroi 2024-01-02
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Anderson, Thomas Dale
  • Sharma, Priyadarshini
  • Konya, Mark Joseph
  • Liao, Yuwei

Abrégé

A computer monitors a status of grid devices using sensor measurements. Sensor data is clustered using a predefined grouping distance value to define one or more sensor event clusters. A plurality of monitored devices is clustered using a predefined clustering distance value to define one or more asset clusters. A location is associated with each monitored device of the plurality of monitored devices. A distance is computed between each sensor event cluster and each asset cluster. When the computed distance is less than or equal to a predefined asset/sensor distance value for a sensor event cluster and an asset cluster, an asset identifier of the asset cluster associated with the computed distance is added to an asset event list. For each asset cluster included in the asset event list, an asset location of an asset is shown on a map in a graphical user interface presented in a display.

Classes IPC  ?

  • G01R 31/08 - Localisation de défauts dans les câbles, les lignes de transmission ou les réseaux
  • G06Q 30/01 - Services de relation avec la clientèle
  • H02J 13/00 - Circuits pour pourvoir à l'indication à distance des conditions d'un réseau, p. ex. un enregistrement instantané des conditions d'ouverture ou de fermeture de chaque sectionneur du réseauCircuits pour pourvoir à la commande à distance des moyens de commutation dans un réseau de distribution d'énergie, p. ex. mise en ou hors circuit de consommateurs de courant par l'utilisation de signaux d'impulsion codés transmis par le réseau

37.

Anomaly detection and diagnostics based on multivariate analysis

      
Numéro d'application 18198537
Numéro de brevet 11846979
Statut Délivré - en vigueur
Date de dépôt 2023-05-17
Date de la première publication 2023-12-07
Date d'octroi 2023-12-19
Propriétaire SAS INSTITUTE, INC. (USA)
Inventeur(s)
  • Scott, Kevin L.
  • Kakde, Deovrat Vijay
  • Chaudhuri, Arin
  • Peredriy, Sergiy

Abrégé

Anomalies in a target object can be detected and diagnosed using improved Mahalanobis-Taguchi system (MTS) techniques. For example, an anomaly detection and diagnosis (ADD) system can receive a set of measurements associated with attributes of a target object. A Mahalanobis distance (MD) can be determined using a generalized inverse matrix. An abnormal condition can be detected when the MD is greater than a predetermined threshold value. The ADD system can determine an importance score for each measurement of a corresponding attribute. The attribute whose measurement has the highest importance score can be determined to be responsible for the abnormal condition.

Classes IPC  ?

38.

Systems and methods for configuring and using a multi-stage object classification and condition pipeline

      
Numéro d'application 18237866
Numéro de brevet 11836968
Statut Délivré - en vigueur
Date de dépôt 2023-08-24
Date de la première publication 2023-12-05
Date d'octroi 2023-12-05
Propriétaire SAS Institute, Inc. (USA)
Inventeur(s)
  • Blanchard, Robert Winston
  • Vengateshwaran, Neela Niranjani

Abrégé

A system, method, and computer-program product includes detecting, via a localization machine learning model, a target object within a scene based on downsampled image data of the scene, identifying a likely position of the target object within original image data of the scene, extracting, from the original image data of the scene, a target sub-image containing the target object, classifying, via an object classification machine learning model, the target object to a probable object class of a plurality of distinct object classes, routing the target image resolution of the target sub-image to a target object-condition machine learning classification model of a plurality of distinct object-condition machine learning classification models, classifying, via the target object-condition machine learning classification model, the target object to a probable object-condition class, and displaying, via a graphical user interface, a representation of the target object in association with the probable object-condition class.

Classes IPC  ?

  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
  • G06T 3/40 - Changement d'échelle d’images complètes ou de parties d’image, p. ex. agrandissement ou rétrécissement
  • G06T 7/70 - Détermination de la position ou de l'orientation des objets ou des caméras
  • G06T 7/11 - Découpage basé sur les zones

39.

Method for configuring and using a numeric-to-alphabetic expression machine learning model

      
Numéro d'application 18220632
Numéro de brevet 11990134
Statut Délivré - en vigueur
Date de dépôt 2023-07-11
Date de la première publication 2023-11-30
Date d'octroi 2024-05-21
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Li, Xiaolong
  • Cheng, Xiaozhuo
  • Yang, Xu

Abrégé

A system, method, and computer-program product includes constructing a transcript adaptation training data corpus that includes a plurality of transcript normalization training data samples, wherein each of the plurality of transcript normalization training data samples includes: a predicted audio transcript that includes at least one numerical expression, an adapted audio transcript that includes an alphabetic representation of the at least one numerical expression, and a transcript normalization identifier that, when applied to a model input comprising a target audio transcript, defines a text-to-text transformation objective causing a numeric-to-alphabetic expression machine learning model to predict an alphabetic-equivalent audio transcript that represents each numerical expression included in the target audio transcript in one or more alphabetic tokens; configuring the numeric-to-alphabetic expression machine learning model based on a training of a machine learning text-to-text transformer model using the transcript adaptation training data corpus; and executing the numeric-to-alphabetic expression machine learning model.

Classes IPC  ?

  • G10L 15/22 - Procédures utilisées pendant le processus de reconnaissance de la parole, p. ex. dialogue homme-machine
  • G10L 15/02 - Extraction de caractéristiques pour la reconnaissance de la paroleSélection d'unités de reconnaissance
  • G10L 15/04 - SegmentationDétection des limites de mots
  • G10L 15/26 - Systèmes de synthèse de texte à partir de la parole
  • G10L 25/30 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes caractérisées par la technique d’analyse utilisant des réseaux neuronaux
  • G10L 25/78 - Détection de la présence ou de l’absence de signaux de voix

40.

Systems and methods for configuring and using an audio transcript correction machine learning model

      
Numéro d'application 18214336
Numéro de brevet 11922947
Statut Délivré - en vigueur
Date de dépôt 2023-06-26
Date de la première publication 2023-11-09
Date d'octroi 2024-03-05
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Li, Xiaolong
  • Cheng, Xiaozhuo
  • Yang, Xu

Abrégé

A system, method, and computer-program product includes constructing a transcript correction training data corpus that includes a plurality of labeled audio transcription training data samples, wherein each of the plurality of labeled audio transcription training data samples includes: an incorrect audio transcription of a target piece of audio data; a correct audio transcription of the target piece of audio data; and a transcript correction identifier that, when applied to a model input that includes a likely incorrect audio transcript, defines a text-to-text transformation objective causing an audio transcript correction machine learning model to predict a corrected audio transcript based on the likely incorrect audio transcript; configuring the audio transcript correction machine learning model based on a training of a machine learning text-to-text transformer model using the transcript correction training data corpus; and executing the audio transcript correction machine learning model within a speech-to-text post-processing sequence of a speech-to-text service.

Classes IPC  ?

  • G10L 15/22 - Procédures utilisées pendant le processus de reconnaissance de la parole, p. ex. dialogue homme-machine
  • G10L 15/02 - Extraction de caractéristiques pour la reconnaissance de la paroleSélection d'unités de reconnaissance
  • G10L 15/04 - SegmentationDétection des limites de mots
  • G10L 15/26 - Systèmes de synthèse de texte à partir de la parole
  • G10L 25/30 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes caractérisées par la technique d’analyse utilisant des réseaux neuronaux
  • G10L 25/78 - Détection de la présence ou de l’absence de signaux de voix

41.

Bias mitigating machine learning training system with multi-class target

      
Numéro d'application 18208455
Numéro de brevet 11922311
Statut Délivré - en vigueur
Date de dépôt 2023-06-12
Date de la première publication 2023-11-09
Date d'octroi 2024-03-05
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Wu, Xinmin
  • Tharrington, Jr., Ricky Dee
  • Abbey, Ralph Walter

Abrégé

A computing device trains a fair prediction model. A prediction model is trained and executed with observation vectors. A weight value is computed for each observation vector based on whether the predicted target variable value of a respective observation vector of the plurality of observation vectors has a predefined target event value. An observation vector is relabeled based on the computed weight value. The prediction model is retrained with each observation vector weighted by a respective computed weight value and with the target variable value of any observation vector that was relabeled. The retrained prediction model is executed. A conditional moments matrix is computed. A constraint violation matrix is computed. Computing the weight value through computing the constraint violation matrix is repeated until a stop criterion indicates retraining of the prediction model is complete. The retrained prediction model is output.

Classes IPC  ?

42.

Systems, methods, and graphical user interfaces for taxonomy-based classification of unlabeled structured datasets

      
Numéro d'application 18221695
Numéro de brevet 11809460
Statut Délivré - en vigueur
Date de dépôt 2023-07-13
Date de la première publication 2023-11-07
Date d'octroi 2023-11-07
Propriétaire SAS Institute, Inc. (USA)
Inventeur(s)
  • Rausch, Nancy Anne
  • Akintunde, Ruth Oluwadamilola
  • Kay, Brant Nathan

Abrégé

A computer-implemented system includes identifying a target hierarchical taxonomy comprising a plurality of distinct hierarchical taxonomy categories; extracting a plurality of distinct taxonomy tokens from the plurality of distinct hierarchical taxonomy categories; computing a taxonomy vector corpus based on the plurality of distinct taxonomy tokens; computing a plurality of distinct taxonomy clusters based on an input of the taxonomy vector corpus; constructing a hierarchical taxonomy classifier based on the plurality of distinct taxonomy clusters; converting a volume of unlabeled structured datasets to a plurality of distinct corpora of taxonomy-labeled structured datasets based on the hierarchical taxonomy classifier; and outputting at least one corpus of taxonomy-labeled structured datasets of the plurality of distinct corpora of taxonomy-labeled structured datasets based on an input of a data classification query.

Classes IPC  ?

  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

43.

Parallel processing techniques for expediting reconciliation for a hierarchy of forecasts on a computer system

      
Numéro d'application 18229333
Numéro de brevet 11809915
Statut Délivré - en vigueur
Date de dépôt 2023-08-02
Date de la première publication 2023-11-07
Date d'octroi 2023-11-07
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Simpson, Matthew Wayne
  • Wang, Caiqin
  • Jakhotiya, Nilesh
  • Trovero, Michele Angelo

Abrégé

A parallel processing technique can be used to expedite reconciliation of a hierarchy of forecasts on a computer system. As one example, the computer system can receive forecasts that have a hierarchical relationship with respect to one another. The computer system can distribute the forecasts among a group of computing nodes by time point, so that all data points corresponding to the same time point in the forecasts are assigned to the same computing node. The computing nodes can receive the datasets corresponding to the time points, organize the data points in each of the datasets by forecast to generate ordered datasets, and assign the ordered datasets to processing threads. The processing threads (across the computing nodes) can then execute a reconciliation process in parallel to one another to generate reconciled values, which can be output by the computing nodes.

Classes IPC  ?

  • G06F 9/46 - Dispositions pour la multiprogrammation
  • G06F 9/52 - Synchronisation de programmesExclusion mutuelle, p. ex. au moyen de sémaphores

44.

Manufacturing defective object detection system

      
Numéro d'application 18295337
Numéro de brevet 11798263
Statut Délivré - en vigueur
Date de dépôt 2023-04-04
Date de la première publication 2023-10-24
Date d'octroi 2023-10-24
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Prabhudesai, Kedar Shriram
  • Walker, Jonathan Lee
  • Heda, Sanjeev Shyam
  • Valsaraj, Varunraj
  • Langlois, Allen Joseph
  • Combaneyre, Frederic
  • Ghadyali, Hamza Mustafa
  • Karmakar, Nabaruna

Abrégé

A computing system detects a defective object. An image is received of a manufacturing line that includes objects in a process of being manufactured. Each pixel included in the image is classified as a background pixel class, a non-defective object class, or a defective object class using a trained neural network model. The pixels included in the image that were classified as the non-defective object class or the defective object class are grouped into polygons. Each polygon is defined by a contiguous group of pixels classified as the non-defective object class or the defective object class. Each polygon is classified in the non-defective object class or in the defective object class based on a number of pixels included in a respective polygon that are classified in the non-defective object class relative to a number of pixels included in the respective polygon that are classified in the defective object class.

Classes IPC  ?

  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
  • G06V 10/24 - Alignement, centrage, détection de l’orientation ou correction de l’image
  • G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
  • G06T 7/00 - Analyse d'image
  • G06V 10/26 - Segmentation de formes dans le champ d’imageDécoupage ou fusion d’éléments d’image visant à établir la région de motif, p. ex. techniques de regroupementDétection d’occlusion

45.

Multi-threaded speaker identification

      
Numéro d'application 18207433
Numéro de brevet 11810572
Statut Délivré - en vigueur
Date de dépôt 2023-06-08
Date de la première publication 2023-10-05
Date d'octroi 2023-11-07
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Cheng, Xiaozhuo
  • Li, Xiaolong
  • Yang, Xu

Abrégé

A system, method, and computer-program product includes distributing a plurality of audio data files of a speech data corpus to a plurality of computing nodes that each implement a plurality of audio processing threads, executing the plurality of audio processing threads associated with each of the plurality of computing nodes to detect a plurality of tentative speakers participating in each of the plurality of audio data files, generating, via a clustering algorithm, a plurality of clusters of embedding signatures based on a plurality of embedding signatures associated with the plurality of tentative speakers in each of the plurality of audio data files, and detecting a plurality of global speakers associated with the speech data corpus based on the plurality of clusters of embedding signatures.

Classes IPC  ?

  • G10L 17/00 - Techniques d'identification ou de vérification du locuteur
  • G10L 15/16 - Classement ou recherche de la parole utilisant des réseaux neuronaux artificiels
  • G10L 15/26 - Systèmes de synthèse de texte à partir de la parole
  • G10L 15/04 - SegmentationDétection des limites de mots
  • G10L 25/78 - Détection de la présence ou de l’absence de signaux de voix
  • G10L 25/30 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes caractérisées par la technique d’analyse utilisant des réseaux neuronaux
  • G10L 15/02 - Extraction de caractéristiques pour la reconnaissance de la paroleSélection d'unités de reconnaissance

46.

Computer system for automatically analyzing a video of a physical activity using a model and providing corresponding feedback

      
Numéro d'application 17969991
Numéro de brevet 11769350
Statut Délivré - en vigueur
Date de dépôt 2022-10-20
Date de la première publication 2023-09-26
Date d'octroi 2023-09-26
Propriétaire SAS Institute, Inc. (USA)
Inventeur(s)
  • Shen, Ji
  • Dean, Jared Langford
  • Chen, Xilong
  • Chvosta, Jan

Abrégé

A computer system can automatically analyze a video of a physical activity and provide corresponding feedback. For example, the system can receive a video file including image frames showing an entity performing a physical activity that involves a sequence of movement phases. The system can generate coordinate sets by performing image analysis on the image frames. The system can provide the coordinate sets as input to a trained model, the trained model being configured to assign scores and movement phases to the image frames based on the coordinate sets. The system can then select a particular movement phase for which to provide feedback, based on the scores and movement phases assigned to the image frames. The system can generate the feedback for the entity about their performance of the particular movement phase, which may improve the entity's future performance of that particular movement phase.

Classes IPC  ?

  • G06V 40/20 - Mouvements ou comportement, p. ex. reconnaissance des gestes
  • G06T 9/00 - Codage d'image
  • G06V 10/84 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les modèles graphiques de probabilités à partir de caractéristiques d’images ou de vidéos, p. ex. les modèles de Markov ou les réseaux bayésiens
  • G06N 3/042 - Réseaux neuronaux fondés sur la connaissanceReprésentations logiques de réseaux neuronaux
  • G06N 3/047 - Réseaux probabilistes ou stochastiques
  • G06N 3/09 - Apprentissage supervisé
  • G06T 7/246 - Analyse du mouvement utilisant des procédés basés sur les caractéristiques, p. ex. le suivi des coins ou des segments
  • G06V 10/44 - Extraction de caractéristiques locales par analyse des parties du motif, p. ex. par détection d’arêtes, de contours, de boucles, d’angles, de barres ou d’intersectionsAnalyse de connectivité, p. ex. de composantes connectées
  • G06N 3/0455 - Réseaux auto-encodeursRéseaux encodeurs-décodeurs

47.

System and methods for configuring, deploying and maintaining computing clusters

      
Numéro d'application 18185603
Numéro de brevet 11875189
Statut Délivré - en vigueur
Date de dépôt 2023-03-17
Date de la première publication 2023-09-21
Date d'octroi 2024-01-16
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Wellum, Richard K.
  • Henry, Joseph Daniel
  • O'Neal, Holden Ernest
  • Waller, John W.

Abrégé

An apparatus includes at least one node device to host a computing cluster, and at least one processor to generate a UI providing guidance through a set of configuration settings for the computing cluster, wherein, for each configuration setting that is received as an input during configuration, the at least one processor is caused to: perform a check of the set of configuration settings to determine whether the received configuration setting creates a conflict among the set of configuration settings; and in response to a determination that the received configuration setting creates a conflict among the set of configuration settings, perform operations including generate an indication of the conflict for presentation by the UI, and receive a change to a configuration setting as an input from the input device.

Classes IPC  ?

  • G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT]
  • G06F 9/451 - Dispositions d’exécution pour interfaces utilisateur
  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption
  • G06F 9/455 - ÉmulationInterprétationSimulation de logiciel, p. ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation

48.

Automated job flow generation to provide object views in container-supported many task computing

      
Numéro d'application 17733196
Numéro de brevet 11775341
Statut Délivré - en vigueur
Date de dépôt 2022-04-29
Date de la première publication 2023-09-14
Date d'octroi 2023-10-03
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Bequet, Henry Gabriel Victor
  • Stogner, Ronald Earl
  • Yang, Eric Jian
  • Zhang, Chaowang “ricky”

Abrégé

An apparatus includes a processor to receive a request to provide a view of an object associated with a job flow, and in response to determining that the object is associated with a task type requiring access to a particular resource not accessible to a first interpretation routine: store, within a job queue, a job flow generation request message to cause generation of a job flow definition the defines another job flow for generating the requested view; within a task container in which a second interpretation routine that does have access to the particular resource is executed, generate the job flow definition; store, within a task queue, a job flow generation completion message that includes a copy of the job flow definition; use the job flow definition to perform the other job flow to generate the requested view; and transmit the requested view to the requesting device.

Classes IPC  ?

  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption

49.

Network analysis techniques for grouping connected objects and executing remedial measures

      
Numéro d'application 18169342
Numéro de brevet 11757725
Statut Délivré - en vigueur
Date de dépôt 2023-02-15
Date de la première publication 2023-09-12
Date d'octroi 2023-09-12
Propriétaire SAS Institute, Inc. (USA)
Inventeur(s) Bhambhlani, Himanshu Chandrakant

Abrégé

Groups of connected nodes in a network of nodes can be detected for evaluating and mitigating risks of the network of nodes. For example, a system can process one or more subnetworks of the network of nodes in parallel. For each subnetwork, the system can identify root nodes and their reachable nodes to create rooted groups of connected nodes. The system then can determine outdegrees of the remaining nodes in the network. The system can identify reachable nodes from a remaining node of the highest outdegree to create a nonrooted group of connected nodes. The system can estimate a risk value based on the number of rooted groups and nonrooted groups, the number of nodes in each rooted group and nonrooted group, and the attributes of the nodes in each group. The system can mitigate potential risks by reconfiguring the network of nodes.

Classes IPC  ?

  • H04L 41/12 - Découverte ou gestion des topologies de réseau
  • H04L 41/0604 - Gestion des fautes, des événements, des alarmes ou des notifications en utilisant du filtrage, p. ex. la réduction de l’information en utilisant la priorité, les types d’éléments, la position ou le temps
  • H04L 41/22 - Dispositions pour la maintenance, l’administration ou la gestion des réseaux de commutation de données, p. ex. des réseaux de commutation de paquets comprenant des interfaces utilisateur graphiques spécialement adaptées [GUI]
  • H04L 9/40 - Protocoles réseaux de sécurité
  • H04L 41/0631 - Gestion des fautes, des événements, des alarmes ou des notifications en utilisant l’analyse des causes profondesGestion des fautes, des événements, des alarmes ou des notifications en utilisant l’analyse de la corrélation entre les notifications, les alarmes ou les événements en fonction de critères de décision, p. ex. la hiérarchie ou l’analyse temporelle ou arborescente
  • H04L 41/0677 - Localisation des défaillances

50.

Computerized engines and graphical user interfaces for customizing and validating forecasting models

      
Numéro d'application 18114852
Numéro de brevet 11748597
Statut Délivré - en vigueur
Date de dépôt 2023-02-27
Date de la première publication 2023-09-05
Date d'octroi 2023-09-05
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Vasheghani Farahani, Iman
  • Hodgin, Ron Travis
  • Pothireddy, Sujatha
  • Chauhan, Kaushal Lalitkumar
  • Bendale, Bhupendra Suresh
  • Bapat, Harshad Dinesh
  • Misra, Kritika

Abrégé

Some examples can involve a system that can receive a first user selection of time series data and a second user selection of a type of forecasting model to apply to the time series data. The system can then obtain a first set of candidate values and a second set of candidate values for a first parameter and a second parameter, respectively, of the selected type of forecasting model. The candidate values may be determined based on statistical information derived from the time series data. The system can then provide the first set of candidate values and the second set of candidate values to the user, receive user selections of a first parameter value and a second parameter value, and determine whether a conflict exists between the first parameter value and the second parameter value. If so, the system can generate an output indicating that the conflict exists.

Classes IPC  ?

  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06N 3/044 - Réseaux récurrents, p. ex. réseaux de Hopfield
  • G06F 3/04847 - Techniques d’interaction pour la commande des valeurs des paramètres, p. ex. interaction avec des règles ou des cadrans

51.

Parallel and incremental processing techniques for data protection

      
Numéro d'application 18172614
Numéro de brevet 11741252
Statut Délivré - en vigueur
Date de dépôt 2023-02-22
Date de la première publication 2023-08-29
Date d'octroi 2023-08-29
Propriétaire SAS Institute, Inc. (USA)
Inventeur(s)
  • Yewchin, Darryl Edward
  • Foreman, Robert Todd
  • Rood, Robert Valentine

Abrégé

A data protection system is provided to detect data and execute security actions on the detected data using multiple tiers of parallel processing and incremental processing. For example, the data protection system can employ parallel job-submission and parallel-job execution to cataloging, scanning, searching, and other processes. Only source data that has not already been processed or has modified may be loaded to a cataloging data queue and a scanning data queue to reduce processing time. Scan results can include different data groups and can be used to search for specific data sets.

Classes IPC  ?

  • G06F 21/56 - Détection ou gestion de programmes malveillants, p. ex. dispositions anti-virus
  • G06F 21/60 - Protection de données
  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès

52.

Method and system for obtaining item-based recommendations

      
Numéro d'application 18169592
Numéro de brevet 11842379
Statut Délivré - en vigueur
Date de dépôt 2023-02-15
Date de la première publication 2023-08-24
Date d'octroi 2023-12-12
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Walker, Jonathan Lee
  • Desai, Hardi
  • Liao, Xuejun
  • Valsaraj, Varunraj

Abrégé

The computing device obtains a training data set related to a plurality of historic user inputs associated with preferences of one or more services or items from an entity. For each of the one or more services or items, the computing device executes operations to train a plurality of models using the training data set to generate a plurality of recommended models, apply a validation data set to generate a plurality of predictions from the plurality of recommended models, obtain a weight of each metric of a plurality of metrics from the entity, obtain user inputs associated with user preferences, and determine a relevancy score for each metric. The computing device selects a recommended model based on the relevancy score of the selected metric or a combination of selected metrics, generates one or more recommendations for the users, and outputs the one or more generated recommendations to the users.

Classes IPC  ?

53.

System and methods for configuring, deploying and maintaining computing clusters

      
Numéro d'application 18185670
Numéro de brevet 11762705
Statut Délivré - en vigueur
Date de dépôt 2023-03-17
Date de la première publication 2023-08-24
Date d'octroi 2023-09-19
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Wellum, Richard K.
  • Henry, Joseph Daniel
  • O'Neal, Holden Ernest
  • Waller, John W.

Abrégé

An apparatus includes at least one node device to host a computing cluster, and at least one processor to: use at least one of a level of resource observed to be consumed by operation of the computing cluster or a level of performance observed to be provided by operation of the computing cluster as an input to a pre-existing cluster model to derive a predicted level; compare the predicted level to a corresponding observed level of resource consumed or performance provided; and in response to the predicted level not matching the observed level to within a pre-selected degree, derive a new cluster model from observations of the operation of the computing cluster, and generate a prompt to perform repeat the configuration of the computing cluster using the new cluster model in place of the pre-existing cluster model to generate a new set of configuration settings for the computing cluster.

Classes IPC  ?

  • G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT]
  • G06F 9/451 - Dispositions d’exécution pour interfaces utilisateur
  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption

54.

Automated virtual machine resource management in container-supported many task computing

      
Numéro d'application 17733090
Numéro de brevet 11734064
Statut Délivré - en vigueur
Date de dépôt 2022-04-29
Date de la première publication 2023-08-22
Date d'octroi 2023-08-22
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Bequet, Henry Gabriel Victor
  • Stogner, Ronald Earl
  • Yang, Eric Jian
  • Zhang, Chaowang “ricky”

Abrégé

An apparatus includes a processor to: receive a request to perform a job flow; within a performance container, based on the data dependencies among a set of tasks of the job flow, derive an order of performance of the set of tasks that includes a subset able to be performed in parallel, and derive a quantity of task containers to enable the parallel performance of the subset; based on the derived quantity of task containers, derive a quantity of virtual machines (VMs) to enable the parallel performance of the subset; provide, to a VM allocation routine, an indication of a need for provision of the quantity of VMs; and store, within a task queue, multiple task routine execution request messages to enable parallel execution of task routines within the quantity of task containers to cause the parallel performance of the subset.

Classes IPC  ?

  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption

55.

Directed graph interface for detecting and mitigating anomalies in entity interactions

      
Numéro d'application 18121372
Numéro de brevet 11734419
Statut Délivré - en vigueur
Date de dépôt 2023-03-14
Date de la première publication 2023-08-22
Date d'octroi 2023-08-22
Propriétaire SAS Institute, Inc. (USA)
Inventeur(s) Mackle, Stuart James

Abrégé

A computer system can automatically generate a directed graph interface for use in detecting and mitigating anomalies in entity interactions. For example, the system can receive interaction data describing a set of interactions at two entities. The system can then generate a directed network graph based on the interaction data. To do so, the system can identify pairs of interactions associated with the two entities in the set of interactions. The system can classify the pairs of interactions as outbound and/or inbound interaction pairs. The system can then generate one or more directed links in the directed network graph to represent the outbound and/or inbound interaction pairs. The system can further determine a characteristic of the outbound and/or inbound interaction pairs, automatically detect an anomaly that may be suggestive of malicious activity by one or both entities based on the characteristic, and output an indicator of the detected anomaly.

Classes IPC  ?

  • G06F 9/00 - Dispositions pour la commande par programme, p. ex. unités de commande
  • G06F 21/55 - Détection d’intrusion locale ou mise en œuvre de contre-mesures
  • G06F 9/451 - Dispositions d’exécution pour interfaces utilisateur

56.

State monitoring system

      
Numéro d'application 18053415
Numéro de brevet 11734594
Statut Délivré - en vigueur
Date de dépôt 2022-11-08
Date de la première publication 2023-08-22
Date d'octroi 2023-08-22
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Solanki, Rajendra Singh
  • Zhong, Jie
  • Kowalewski, Elaine Kearney

Abrégé

A computer monitors a state of a system. A time branch is defined for each valid value of each discrete variable. A system model is executed with observed values to update each time branch and determine a probability associated with each time branch. A discrete variable is selected, and a sequence duration value is incremented. When the incremented sequence duration value is greater than a predefined minimum sequence duration value, a probability change value is computed for the discrete variable, and, when the computed probability change value is less than or equal to a synchronization probability change value, a continuous value for each continuous variable for each time branch of the discrete variable is synchronized, and the sequence duration value for the selected discrete variable is reinitialized. The continuous value for at least one non-observed continuous variable is output.

Classes IPC  ?

  • G06N 7/01 - Modèles graphiques probabilistes, p. ex. réseaux probabilistes

57.

Flexible computer architecture for performing digital image analysis

      
Numéro d'application 17988463
Numéro de brevet 11734919
Statut Délivré - en vigueur
Date de dépôt 2022-11-16
Date de la première publication 2023-08-22
Date d'octroi 2023-08-22
Propriétaire SAS Institute, Inc. (USA)
Inventeur(s)
  • Cazzari, Daniele
  • Desai, Hardi
  • Langlois, Allen Joseph
  • Walker, Jonathan
  • Tuning, Thomas
  • Mishra, Saurabh
  • Valsaraj, Varunraj

Abrégé

A flexible computer architecture for performing digital image analysis is described herein. In some examples, the computer architecture can include a distributed messaging platform (DMP) for receiving images from cameras and storing the images in a first queue. The computer architecture can also include a first container for receiving the images from the first queue, applying an image analysis model to the images, and transmitting the image analysis result to the DMP for storage in a second queue. Additionally, the computer architecture can include a second container for receiving the image analysis result from the second queue, performing a post-processing operation on the image analysis result, and transmitting the post-processing result to the DMP for storage in a third queue. The computer architecture can further include an output container for receiving the post-processing result from the third queue and generating an alert notification based on the post-processing result.

Classes IPC  ?

  • G06V 10/94 - Architectures logicielles ou matérielles spécialement adaptées à la compréhension d’images ou de vidéos

58.

Deep learning model training system

      
Numéro d'application 17820342
Numéro de brevet 11727274
Statut Délivré - en vigueur
Date de dépôt 2022-08-17
Date de la première publication 2023-08-15
Date d'octroi 2023-08-15
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Forristal, Jarad
  • Griffin, Joshua David
  • Yektamaram, Seyedalireza
  • Zhou, Wenwen

Abrégé

A computer trains a neural network. A neural network is executed with a weight vector to compute a gradient vector using a batch of observation vectors. Eigenvalues are computed from a Hessian approximation matrix, a regularization parameter value is computed using the gradient vector, the eigenvalues, and a step-size value, a search direction vector is computed using the eigenvalues, the gradient vector, the Hessian approximation matrix, and the regularization parameter value, a reduction ratio value is computed, an updated weight vector is computed from the weight vector, a learning rate value, and the search direction vector or the gradient vector based on the computed reduction ratio value, and an updated Hessian approximation matrix is computed from the Hessian approximation matrix, the predefined learning rate value, and the search direction vector or the gradient vector based on the reduction ratio value. The step-size value is updated using the search direction vector.

Classes IPC  ?

  • G06N 3/08 - Méthodes d'apprentissage
  • G06F 18/211 - Sélection du sous-ensemble de caractéristiques le plus significatif

59.

Machine-learning model for performing contextual summarization of text data

      
Numéro d'application 17976461
Numéro de brevet 11704351
Statut Délivré - en vigueur
Date de dépôt 2022-10-28
Date de la première publication 2023-07-18
Date d'octroi 2023-07-18
Propriétaire SAS Institute, Inc. (USA)
Inventeur(s)
  • Soleimani, Reza
  • Leeman-Munk, Samuel
  • Styles, David Blake

Abrégé

In one example, a system can receive a set of text samples and generate a set of summaries based on the set of text samples. The system can then generate a training dataset by iteratively executing a training-sample generation process. Each iteration can involve selecting multiple text samples from the set of text samples, combining the multiple text samples together into a training sample, determining a text category and a summary corresponding to a selected one of the multiple text samples, and including the text category and the summary in the training sample. After generating the training dataset, the system can use it to train a model. The trained model can then receive a target textual dataset and a target category as input, identify a portion of the target textual dataset corresponding to the target category, and generate a summarization of the portion of that target textual dataset.

Classes IPC  ?

  • G06F 16/34 - NavigationVisualisation à cet effet
  • G06F 40/40 - Traitement ou traduction du langage naturel
  • G06F 40/284 - Analyse lexicale, p. ex. segmentation en unités ou cooccurrence

60.

Automated job flow cancellation for multiple task routine instance errors in many task computing

      
Numéro d'application 18091691
Numéro de brevet 11748159
Statut Délivré - en vigueur
Date de dépôt 2022-12-30
Date de la première publication 2023-07-13
Date d'octroi 2023-09-05
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Bequet, Henry Gabriel Victor
  • Stogner, Ronald Earl
  • Yang, Eric Jian
  • Zhang, Chaowang “ricky”

Abrégé

An apparatus including a processor to: within a kill container, in response to a set of error messages indicative of errors in executing multiple instances of a task routine to perform a task of a job flow with multiple data object blocks of a data object, and in response to the quantity of error messages reaching a threshold, output a kill tasks request message that identifies the job flow; within a task container, in response to the kill tasks request message, cease execution of the task routine and output a task cancelation message that identifies the task and the job flow; and within a performance container, in response to he task cancelation message, output a job cancelation message to cause the transmission of an indication of cancelation of the job flow, via a network, and to a requesting device that requested the performance of the job flow.

Classes IPC  ?

  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption

61.

Bias mitigating machine learning training system

      
Numéro d'application 18051906
Numéro de brevet 11790036
Statut Délivré - en vigueur
Date de dépôt 2022-11-02
Date de la première publication 2023-06-29
Date d'octroi 2023-10-17
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Wu, Xinmin
  • Hunt, Xin Jiang
  • Abbey, Ralph Walter

Abrégé

A computing device trains a fair machine learning model. A predicted target variable is defined using a trained prediction model. The prediction model is trained with weighted observation vectors. The predicted target variable is updated using the prediction model trained with weighted observation vectors. A true conditional moments matrix and a false conditional moments matrix are computed. The training and updating with weighted observation vectors are repeated until a number of iterations is performed. When a computed conditional moments matrix indicates to adjust a bound value, the bound value is updated based on an upper bound value or a lower bound value, and the repeated training and updating with weighted observation vectors is repeated with the bound value replaced with the updated bound value until the conditional moments matrix indicates no further adjustment of the bound value is needed. A fair prediction model is trained with the updated bound value.

Classes IPC  ?

  • G06F 17/16 - Calcul de matrice ou de vecteur
  • G06F 17/18 - Opérations mathématiques complexes pour l'évaluation de données statistiques
  • G06N 3/08 - Méthodes d'apprentissage

62.

Disaggregation system

      
Numéro d'application 17862510
Numéro de brevet 11704388
Statut Délivré - en vigueur
Date de dépôt 2022-07-12
Date de la première publication 2023-06-15
Date d'octroi 2023-07-18
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Macaro, Christian
  • Reva, Fedor
  • Cannizzaro, Rocco Claudio

Abrégé

A computing device determines a disaggregated solution vector of a plurality of variables. A first value is computed for a known variable using a predefined density distribution function, and a second value is computed for an unknown variable using the computed first value, a predefined correlation value, and a predefined aggregate value. The predefined correlation value indicates a correlation between the known variable and the unknown variable. A predefined number of solution vectors is computed by repeating the first value and the second value computations. A solution vector is the computed first value and the computed second value. A centroid vector is computed from solution vectors computed by repeating the computations. A predefined number of closest solution vectors to the computed centroid vector are determined from the solution vectors. The determined closest solution vectors are output.

Classes IPC  ?

  • G06F 17/11 - Opérations mathématiques complexes pour la résolution d'équations
  • G06F 18/2413 - Techniques de classification relatives au modèle de classification, p. ex. approches paramétriques ou non paramétriques basées sur les distances des motifs d'entraînement ou de référence
  • G06Q 10/0635 - Analyse des risques liés aux activités d’entreprises ou d’organisations
  • G06F 18/2411 - Techniques de classification relatives au modèle de classification, p. ex. approches paramétriques ou non paramétriques basées sur la proximité d’une surface de décision, p. ex. machines à vecteurs de support
  • G06F 18/23213 - Techniques non hiérarchiques en utilisant les statistiques ou l'optimisation des fonctions, p. ex. modélisation des fonctions de densité de probabilité avec un nombre fixe de partitions, p. ex. K-moyennes

63.

Data object preparation for execution of multiple task routine instances in many task computing

      
Numéro d'application 18091569
Numéro de brevet 11748158
Statut Délivré - en vigueur
Date de dépôt 2022-12-30
Date de la première publication 2023-05-11
Date d'octroi 2023-09-05
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Bequet, Henry Gabriel Victor
  • Stogner, Ronald Earl
  • Yang, Eric Jian
  • Zhang, Chaowang “ricky”

Abrégé

An apparatus includes a processor to: output a request message to cause a first task to be performed; within a task container, in response to the request message and a data object not being divided, divide the data object into a set of data object blocks based on at least the sizes of the data object and the atomic unit of organization of data therein, as well as the storage resources allocated to task containers, and output a task completion message indicating that the first task has been performed, and including a set of data block identifiers indicating the location of the set of data object blocks within at least one federated area; and in response to the task completion message, output a set of request messages to cause a second task to be performed by executing multiple instances of a task routine within multiple task containers.

Classes IPC  ?

  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption

64.

Piecewise linearization of multivariable data

      
Numéro d'application 17938692
Numéro de brevet 11645359
Statut Délivré - en vigueur
Date de dépôt 2022-10-07
Date de la première publication 2023-05-09
Date d'octroi 2023-05-09
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Xu, Wei
  • Pratt, Robert William
  • Summerville, Natalia

Abrégé

A computing device selects a piecewise linear regression model for multivariable data. A hyperplane is fit to observation vectors using a linear multivariable regression. A baseline fit quality measure is computed for the fit hyperplane. For each independent variable, the observation vectors are sorted, contiguous segments to evaluate are defined, for each contiguous segment, a segment hyperplane is fit to the sorted observation vectors using a multivariable linear regression, path distances are computed between a first observation of the and a last observation of the sorted observation vectors based on a predefined number of segments, a shortest path associated with a smallest value of the computed path distances is selected, and a fit quality measure is computed for the selected shortest path. A best independent variable is selected from the independent variables based on having an extremum value for the computed fit quality measure.

Classes IPC  ?

  • G06F 17/18 - Opérations mathématiques complexes pour l'évaluation de données statistiques

65.

Message queue protocol for sequential execution of related task routines in many task computing

      
Numéro d'application 18091672
Numéro de brevet 11762689
Statut Délivré - en vigueur
Date de dépôt 2022-12-30
Date de la première publication 2023-05-04
Date d'octroi 2023-09-19
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Bequet, Henry Gabriel Victor
  • Stogner, Ronald Earl
  • Yang, Eric Jian
  • Zhang, Chaowang “ricky”

Abrégé

An apparatus including a processor to: output a first request message onto a group sub-queue shared by multiple task containers to request execution of a first task routine; within a task container, respond to the first request message, by outputting a first task in-progress message onto an individual sub-queue not shared with other task containers to accede to executing the first task routine, followed by a task completion message; and respond to the task completion message by allowing the task completion message to remain on the individual sub-queue to keep the task container from executing another task routine from another request message on the group sub-queue, outputting a second request message onto the individual sub-queue to cause execution of a second task routine within the same task container to perform a second task, and responding to the second task in-progress message by de-queuing the task completion message.

Classes IPC  ?

  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption

66.

Optimal number of threads determination system

      
Numéro d'application 17820952
Numéro de brevet 11635988
Statut Délivré - en vigueur
Date de dépôt 2022-08-19
Date de la première publication 2023-04-25
Date d'octroi 2023-04-25
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Gao, Yan
  • Griffin, Joshua David
  • Lin, Yu-Min
  • Xu, Yan
  • Yektamaram, Seyedalireza
  • Ankulkar, Amod Anil
  • Sharma, Aishwarya
  • Kolapkar, Girish Vinayak
  • Bhole, Kiran Devidas
  • Singh, Kushawah Yogender
  • Gomes Da Silva, Jorge Manuel

Abrégé

A computing device determines an optimal number of threads for a computer task. Execution of a computing task is controlled in a computing environment based on each task configuration included in a plurality of task configurations to determine an execution runtime value for each task configuration. An optimal number of threads value is determined for each set of task configurations having common values for a task parameter value, a dataset indicator, and a hardware indicator. The optimal number of threads value is an extremum value of an execution parameter value as a function of a number of threads value. A dataset parameter value is determined for a dataset. A hardware parameter value is determined as a characteristic of each distinct executing computing device in the computing environment. The optimal number of threads value for each set of task configurations is stored in a performance dataset in association with the common values.

Classes IPC  ?

  • G06F 9/455 - ÉmulationInterprétationSimulation de logiciel, p. ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation
  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption
  • G06N 20/10 - Apprentissage automatique utilisant des méthodes à noyaux, p. ex. séparateurs à vaste marge [SVM]

67.

Multithreaded speech data preprocessing

      
Numéro d'application 17993385
Numéro de brevet 11862171
Statut Délivré - en vigueur
Date de dépôt 2022-11-23
Date de la première publication 2023-04-06
Date d'octroi 2024-01-02
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Li, Xiaolong
  • Cheng, Xiaozhuo
  • Henderson, Samuel Norris
  • Yang, Xu

Abrégé

An apparatus includes a processor to: receive, from a requesting device, a request to perform speech-to-text conversion of a speech data set; within a first thread of a thread pool, perform a first pause detection technique to identify a first set of likely sentence pauses; within a second thread of the thread pool, perform a second pause detection technique to identify a second set of likely sentence pauses; perform a speaker diarization technique to identify a set of likely speaker changes; divide the speech data set into data segments representing speech segments based on a combination of at least the first set of likely sentence pauses, the second set of likely sentence pauses, and the set of likely speaker changes; use at least an acoustic model with each data segment to identify likely speech sounds; and generate a transcript based, at least in part, on the identified likely speech sounds.

Classes IPC  ?

  • G10L 15/22 - Procédures utilisées pendant le processus de reconnaissance de la parole, p. ex. dialogue homme-machine
  • G10L 15/26 - Systèmes de synthèse de texte à partir de la parole
  • G10L 15/04 - SegmentationDétection des limites de mots
  • G10L 25/78 - Détection de la présence ou de l’absence de signaux de voix
  • G10L 25/30 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes caractérisées par la technique d’analyse utilisant des réseaux neuronaux
  • G10L 15/02 - Extraction de caractéristiques pour la reconnaissance de la paroleSélection d'unités de reconnaissance

68.

Multithreaded speech-to-text processing

      
Numéro d'application 17994554
Numéro de brevet 11776545
Statut Délivré - en vigueur
Date de dépôt 2022-11-28
Date de la première publication 2023-03-30
Date d'octroi 2023-10-03
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Li, Xiaolong
  • Cheng, Xiaozhuo
  • Henderson, Samuel Norris
  • Yang, Xu

Abrégé

An apparatus includes a processor to: receive a request to perform speech-to-text conversion of a speech data set; perform pause detection to identify a set of likely sentence pauses and/or speaker diarization technique to identify a set of likely speaker changes; based the set of likely sentence pauses and/or the set of likely speaker changes, divide the speech data set into data segments representing speech segments; use an acoustic model with the data segments to derive sets of probabilities of speech sounds uttered; store the sets of probabilities in temporal order within a buffer queue; distribute the sets of probabilities from the buffer queue in temporal order among threads of a thread pool; and within each thread, and based on set(s) of probabilities, derive one candidate word and select either the candidate word or an alternate candidate word derived from a language model as the next word most likely spoken.

Classes IPC  ?

  • G10L 15/26 - Systèmes de synthèse de texte à partir de la parole
  • G10L 15/22 - Procédures utilisées pendant le processus de reconnaissance de la parole, p. ex. dialogue homme-machine
  • G10L 15/02 - Extraction de caractéristiques pour la reconnaissance de la paroleSélection d'unités de reconnaissance
  • G10L 15/04 - SegmentationDétection des limites de mots
  • G10L 25/78 - Détection de la présence ou de l’absence de signaux de voix
  • G10L 25/30 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes caractérisées par la technique d’analyse utilisant des réseaux neuronaux

69.

Process to geographically associate potential water quality stressors to monitoring stations

      
Numéro d'application 17945428
Numéro de brevet 12196737
Statut Délivré - en vigueur
Date de dépôt 2022-09-15
Date de la première publication 2023-03-23
Date d'octroi 2025-01-14
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Griffith, Philip David
  • Hodge, Andie
  • Lyall, Amir Naveed
  • Thomas, Kirby Ann
  • Valisekkagari, Srinivas Reddy
  • Wendt, Ryan Todd

Abrégé

A computing device obtains data indicating a topography for an area comprising water and receives an indication of an identified data object representing a stressor to the area or a first monitoring station configurable to monitor the stressor. The computing device also determines a location for the identified data object in the topography and selects one or more related data objects to be related to the identified data object by determining a classification indicating whether the identified data object operates in water and selecting the one or more related data objects based on the location and the classification. The computing device also generates one or more controls for monitoring the area based on the selected one or more related data objects.

Classes IPC  ?

70.

Quality prediction using process data

      
Numéro d'application 17944291
Numéro de brevet 11630973
Statut Délivré - en vigueur
Date de dépôt 2022-09-14
Date de la première publication 2023-01-26
Date d'octroi 2023-04-18
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Kakde, Deovrat Vijay
  • Wang, Haoyu
  • Mcguirk, Anya Mary

Abrégé

A computing device accesses a machine learning model trained on training data of first bonding operations (e.g., a ball and/or stitch bond). The first bonding operations comprise operations to bond a first set of multiple wires to a first set of surfaces. The machine learning model is trained by supervised learning. The device receives input data indicating process data generated from measurements of second bonding operations. The second bonding operations comprise operations to bond a second set of multiple wires to a second set of surfaces. The device weights the input data according to the machine learning model. The device generates an anomaly predictor indicating a risk for an anomaly occurrence in the second bonding operations based on weighting the input data according to the machine learning model. The device outputs the anomaly predictor to control the second bonding operations.

Classes IPC  ?

  • G06K 9/00 - Méthodes ou dispositions pour la lecture ou la reconnaissance de caractères imprimés ou écrits ou pour la reconnaissance de formes, p.ex. d'empreintes digitales
  • G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques
  • G06N 20/00 - Apprentissage automatique
  • H01L 21/66 - Test ou mesure durant la fabrication ou le traitement

71.

QUALITY PREDICTION USING PROCESS DATA

      
Numéro d'application US2022013319
Numéro de publication 2023/003595
Statut Délivré - en vigueur
Date de dépôt 2022-01-21
Date de publication 2023-01-26
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Kakde, Deovrat Vijay
  • Wang, Haoyu
  • Mcguirk, Anya Mary

Abrégé

A computing device (2002) accesses a machine learning model (2050) trained on training data (2032) of first bonding operations (1308, 2040A) (e.g., a ball and/or stitch bond). The first bonding operations comprise operations to bond a first set of wires (1504) to a first set of surfaces (1506, 1508). The machine learning model is trained by supervised learning. The device receives input data (2070) indicating process data (2074) generated from measurements of second bonding operations (2040B). The second bonding operations comprise operations to bond a second set of wires to a second set of surfaces. The device weights the input data according to the machine learning model. The device generates an anomaly predictor (2052) indicating a risk for an anomaly occurrence in the second bonding operations based on weighting the input data according to the machine learning model. The device outputs the anomaly predictor to control the second bonding operations.

Classes IPC  ?

  • G06E 1/00 - Dispositions pour traiter exclusivement des données numériques

72.

Automated streaming data model generation with parallel processing capability

      
Numéro d'application 17879893
Numéro de brevet 11550643
Statut Délivré - en vigueur
Date de dépôt 2022-08-03
Date de la première publication 2023-01-10
Date d'octroi 2023-01-10
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Enck, Steven William
  • Cavalier, Charles Michael
  • Gauby, Sarah Jeanette
  • Kolodzieski, Scott Joseph

Abrégé

An event stream processing (ESP) model is read that describes computational processes. (A) An event block object is received. (B) A new measurement value, a timestamp value, and a sensor identifier are extracted. (C) An in-memory data store is updated with the new measurement value, the timestamp value, and the sensor identifier. (A) through (C) are repeated until an output update time is reached. When the output update time is reached, data stored in the in-memory data store is processed and updated using data enrichment windows to define enriched data values that are output. The data enrichment windows include a gate window before each window that uses values computed by more than one window. The gate window sends a trigger to a next window when each value of the more than one window has been computed. The enrichment windows are included in the ESP model.

Classes IPC  ?

  • G06F 9/54 - Communication interprogramme
  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption

73.

TWO-LEVEL PARALLELIZTION OF GOODNESS-OF-FIT TESTS FOR SPATIAL PROCESS MODELS

      
Numéro d'application 17535745
Statut En instance
Date de dépôt 2021-11-26
Date de la première publication 2022-12-29
Propriétaire SAS Institute Inc. (USA)
Inventeur(s) Mohan, Pradeep

Abrégé

An apparatus includes processor(s) to: receive a request to test goodness-of-fit of a spatial process model; generate a KD tree from observed spatial point dataset including locations within a region at which instances of an event occurred; derive, from the observed spatial point dataset, multiple quadrats into which the region is divided; receive, from multiple processors, current levels of availability of processing resources including quantities of currently available execution threads; select, based on the quantity of currently available execution threads, a subset of the multiple processors to perform multiple iterations of a portion of the test in parallel; provide, to each processor of the subset, the KD tree, the spatial process model, and the multiple quadrats; receive, from each processor of the subset, per-quadrat data portions indicative of results of an iteration; derive a goodness-of-fit statistic from the per-quadrat data portions; and transmit an indication of goodness-of-fit to another device.

Classes IPC  ?

  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT]

74.

Feature storage manager

      
Numéro d'application 17847361
Numéro de brevet 11875238
Statut Délivré - en vigueur
Date de dépôt 2022-06-23
Date de la première publication 2022-12-29
Date d'octroi 2024-01-16
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Kaczynski, Piotr
  • Maksymiuk, Aneta
  • Skalski, Artur Lukasz
  • Stobieniecka, Wioletta Paulina
  • Dwivedi, Dwijendra Nath

Abrégé

A computing system obtains a first preconfigured feature set. The first preconfigured feature set defines: a first feature definition defining an input variable, and first computer instructions for locating first data. The first data is available for retrieval because it is stored, or set-up to arrive, in the feature storage according to the first preconfigured feature set. The computing system receives a requested data set for the input variable. The computing system generates an availability status indicating whether the request data set is available for retrieval according to the first preconfigured feature set. Based on the availability status, generating, by the computing system, the requested data set by: retrieving historical data for the first preconfigured feature set; retrieving a data definition associated with the historical data; and generating the requested data based on the historical data and the data definition.

Classes IPC  ?

75.

User interface creation system

      
Numéro d'application 17721427
Numéro de brevet 11537366
Statut Délivré - en vigueur
Date de dépôt 2022-04-15
Date de la première publication 2022-12-27
Date d'octroi 2022-12-27
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Jirak, Karen Christine
  • Matthews, Ii, Edward Fredrick
  • Yang, James Chunan

Abrégé

A computing device create a user interface application. A user interface (UI) tag is read in a UI application. The UI tag is executed to identify a UI template tag. The identified UI template tag is executed to define a top-level container initializer for the UI application and to define a plurality of widget initializers for inclusion in a top-level container rendered using the top-level container initializer. The top-level container is rendered in a display using the top-level container initializer. Each widget of a plurality of widgets in the rendered top-level container is rendered using the defined plurality of widget initializers to create a UI.

Classes IPC  ?

  • G06F 8/38 - Création ou génération de code source pour la mise en œuvre d'interfaces utilisateur
  • G06F 8/36 - Réutilisation de logiciel

76.

Bias mitigating machine learning training system

      
Numéro d'application 17837444
Numéro de brevet 11531845
Statut Délivré - en vigueur
Date de dépôt 2022-06-10
Date de la première publication 2022-12-20
Date d'octroi 2022-12-20
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Hunt, Xin Jiang
  • Wu, Xinmin
  • Abbey, Ralph Walter

Abrégé

A computing device trains a fair machine learning model. A prediction model is trained to predict a target value. For a number of iterations, a weight vector is computed using the bound value based on fairness constraints defined for a fairness measure type; a weight value is assigned to each observation vector based on the target value and a sensitive attribute value; the prediction model is trained with each weighted observation vector to predict the target value; and a conditional moments vector is computed based on the fairness constraints and the target and sensitive attribute values. Conditional moments difference values are computed. When the conditional moments difference values indicate to adjust the bound value, the bound value is updated and the process is repeated with the bound value replaced with the updated bound value until the conditional moments difference values indicate no further adjustment of the bound value is needed.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques

77.

Techniques for image content extraction

      
Numéro d'application 17889801
Numéro de brevet 11704785
Statut Délivré - en vigueur
Date de dépôt 2022-08-17
Date de la première publication 2022-12-08
Date d'octroi 2023-07-18
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Wheaton, David James
  • Cooke, Iii, Stuart Dakari
  • Nadolski, William Robert

Abrégé

Embodiments are directed to techniques for image content extraction. Some embodiments include extracting contextually structured data from document images, such as by automatically identifying document layout, document data, document metadata, and/or correlations therebetween in a document image, for instance. Some embodiments utilize breakpoints to enable the system to match different documents with internal variations to a common template. Several embodiments include extracting contextually structured data from table images, such as gridded and non-gridded tables. Many embodiments are directed to generating and utilizing a document template database for automatically extracting document image contents into a contextually structured format. Several embodiments are directed to automatically identifying and associating document metadata with corresponding document data in a document image to generate a machine-facilitated annotation of the document image. In some embodiments, the machine-facilitated annotation may be used to generate a template for the template database.

Classes IPC  ?

  • G06K 9/00 - Méthodes ou dispositions pour la lecture ou la reconnaissance de caractères imprimés ou écrits ou pour la reconnaissance de formes, p.ex. d'empreintes digitales
  • G06T 7/00 - Analyse d'image
  • G06F 16/81 - Indexation, p. ex. balises XMLStructures de données à cet effetStructures de stockage
  • G06F 16/93 - Systèmes de gestion de documents
  • G06F 40/284 - Analyse lexicale, p. ex. segmentation en unités ou cooccurrence
  • G06F 40/186 - Gabarits
  • G06F 40/169 - Annotation, p. ex. données de commentaires ou notes de bas de page
  • G06F 3/04842 - Sélection des objets affichés ou des éléments de texte affichés
  • G06V 10/40 - Extraction de caractéristiques d’images ou de vidéos
  • G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques
  • G06V 30/10 - Reconnaissance de caractères
  • G06V 30/24 - Reconnaissance de caractères caractérisée par la méthode de traitement ou de reconnaissance
  • G06V 30/418 - Appariement de documents, p. ex. d’images de documents

78.

Automated control of a manufacturing process

      
Numéro d'application 17854264
Numéro de brevet 11531907
Statut Délivré - en vigueur
Date de dépôt 2022-06-30
Date de la première publication 2022-11-24
Date d'octroi 2022-12-20
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Oroojlooyjadid, Afshin
  • Nazari, Mohammadreza
  • Hajinezhad, Davood
  • Dizche, Amirhassan Fallah
  • Silva, Jorge Manuel Gomes Da
  • Walker, Jonathan Lee
  • Desai, Hardi
  • Blanchard, Robert
  • Valsaraj, Varunraj
  • Zhang, Ruiwen
  • Wang, Weichen
  • Liu, Ye
  • Azizsoltani, Hamoon
  • Mookiah, Prathaban

Abrégé

A computing device trains a machine state predictive model. A generative adversarial network with an autoencoder is trained using a first plurality of observation vectors. Each observation vector of the first plurality of observation vectors includes state variable values for state variables and an action variable value for an action variable. The state variables define a machine state, wherein the action variable defines a next action taken in response to the machine state. The first plurality of observation vectors successively defines sequential machine states to manufacture a product. A second plurality of observation vectors is generated using the trained generative adversarial network with the autoencoder. A machine state machine learning model is trained to predict a subsequent machine state using the first plurality of observation vectors and the generated second plurality of observation vectors. A description of the machine state machine learning model is output.

Classes IPC  ?

  • G06N 5/02 - Représentation de la connaissanceReprésentation symbolique

79.

Quality prediction using process data

      
Numéro d'application 17581113
Numéro de brevet 11501116
Statut Délivré - en vigueur
Date de dépôt 2022-01-21
Date de la première publication 2022-11-15
Date d'octroi 2022-11-15
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Kakde, Deovrat Vijay
  • Wang, Haoyu
  • Mcguirk, Anya Mary

Abrégé

A computing device accesses a machine learning model trained on training data of first bonding operations (e.g., a ball and/or stitch bond). The first bonding operations comprise operations to bond a first set of multiple wires to a first set of surfaces. The machine learning model is trained by supervised learning. The device receives input data indicating process data generated from measurements of second bonding operations. The second bonding operations comprise operations to bond a second set of multiple wires to a second set of surfaces. The device weights the input data according to the machine learning model. The device generates an anomaly predictor indicating a risk for an anomaly occurrence in the second bonding operations based on weighting the input data according to the machine learning model. The device outputs the anomaly predictor to control the second bonding operations.

Classes IPC  ?

  • G06K 9/00 - Méthodes ou dispositions pour la lecture ou la reconnaissance de caractères imprimés ou écrits ou pour la reconnaissance de formes, p.ex. d'empreintes digitales
  • G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques
  • H01L 21/66 - Test ou mesure durant la fabrication ou le traitement
  • G06N 20/00 - Apprentissage automatique

80.

Leveraging text profiles to select and configure models for use with textual datasets

      
Numéro d'application 17858634
Numéro de brevet 11501547
Statut Délivré - en vigueur
Date de dépôt 2022-07-06
Date de la première publication 2022-11-15
Date d'octroi 2022-11-15
Propriétaire SAS INSTITUTE INC:. (USA)
Inventeur(s)
  • Jade, Teresa S.
  • Li, Xiao
  • Zuo, Chunqi
  • Kovach, Paul Jeffrey

Abrégé

Text profiles can be leveraged to select and configure models according to some examples described herein. In one example, a system can analyze a reference textual dataset and a target textual dataset using text-mining techniques to generate a first text profile and a second text profile, respectively. The first text profile can contain first metrics characterizing the reference textual dataset and the second text profile can contain second metrics characterizing the target textual dataset. The system can determine a similarity value by comparing the first text profile to the second text profile. The system can also receive a user selection of a model that is to be applied to the target textual dataset. The system can then generate an insight relating to an anticipated accuracy of the model on the target textual dataset based on the similarity value. The system can output the insight to the user.

Classes IPC  ?

  • G06F 16/335 - Filtrage basé sur des données supplémentaires, p. ex. sur des profils d’utilisateurs ou de groupes
  • G06V 30/19 - Reconnaissance utilisant des moyens électroniques
  • G06F 40/10 - Traitement de texte

81.

Graphical user interface for visualizing contributing factors to a machine-learning model's output

      
Numéro d'application 17747139
Numéro de brevet 11501084
Statut Délivré - en vigueur
Date de dépôt 2022-05-18
Date de la première publication 2022-11-15
Date d'octroi 2022-11-15
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Soleimani, Reza
  • Leeman-Munk, Samuel Paul
  • Cox, James Allen
  • Styles, David Blake

Abrégé

In one example, a system can execute a first machine-learning model to determine an overall classification for a textual dataset. The system can also determine classification scores indicating the level of influence that each token in the textual dataset had on the overall classification. The system can select a first subset of the tokens based on their classification scores. The system can also execute a second machine-learning model to determine probabilities that the textual dataset falls into various categories. The system can determine category scores indicating the level of influence that each token had on a most-likely category determination. The system can select a second subset of the tokens based on their category scores. The system can then generate a first visualization depicting the first subset of tokens color-coded to indicate their classification scores and a second visualization depicting the second subset of tokens color-coded to indicate their category scores.

Classes IPC  ?

  • G06F 40/30 - Analyse sémantique
  • G06F 40/284 - Analyse lexicale, p. ex. segmentation en unités ou cooccurrence
  • G06F 40/205 - Analyse syntaxique
  • G06N 20/20 - Techniques d’ensemble en apprentissage automatique

82.

Interactive graphical user interface for monitoring computer models

      
Numéro d'application 17860501
Numéro de brevet 11651535
Statut Délivré - en vigueur
Date de dépôt 2022-07-08
Date de la première publication 2022-11-10
Date d'octroi 2023-05-16
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Roberts, Terisa
  • Katiyar, Vipul Manoj
  • Malani, Amol Kishor

Abrégé

A computing system establishes a hierarchy for monitoring model(s). The hierarchy comprises an association between each of multiple measures of a measure level of the hierarchy and intermediate level(s) of the hierarchy. An intermediate level comprises one or more of a measurement category or analysis type. The hierarchy comprises an association between the intermediate level(s) and at least one model. The system monitors the model(s) by generating health measurements. Each of the health measurements corresponds to one of the multiple measures. Each of the health measurements indicates a performance of a monitored model according to a measurement category or analysis type associated in the hierarchy with the respective measure of the multiple measures. The system generates a visualization in a graphical user interface. The visualization comprises a graphical representation of an indication of a health measurement for each of measure(s), and associations in the hierarchy.

Classes IPC  ?

  • G06T 11/20 - Traçage à partir d'éléments de base, p. ex. de lignes ou de cercles
  • G06F 3/0482 - Interaction avec des listes d’éléments sélectionnables, p. ex. des menus
  • G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p. ex. des interruptions ou des opérations d'entrée–sortie
  • G06F 3/04847 - Techniques d’interaction pour la commande des valeurs des paramètres, p. ex. interaction avec des règles ou des cadrans

83.

Flexible program functions usable for customizing execution of a sequential Monte Carlo process in relation to a state space model

      
Numéro d'application 17730476
Numéro de brevet 11501041
Statut Délivré - en vigueur
Date de dépôt 2022-04-27
Date de la première publication 2022-11-03
Date d'octroi 2022-11-15
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Chen, Xilong
  • Zhao, Yang
  • Kabisa, Sylvie T.
  • Elsheimer, David Bruce

Abrégé

One example described herein involves a system receiving task data and distribution criteria for a state space model from a client device. The task data can indicate a type of sequential Monte Carlo (SMC) task to be implemented. The distribution criteria can include an initial distribution, a transition distribution, and a measurement distribution for the state space model. The system can generate a set of program functions based on the task data and the distribution criteria. The system can then execute an SMC module to generate a distribution and a corresponding summary, where the SMC module is configured to call the set of program functions during execution of an SMC process and apply the results returned from the set of program functions in one or more subsequent steps of the SMC process. The system can then transmit an electronic communication to the client device indicating the distribution and its corresponding summary.

Classes IPC  ?

  • G06F 30/23 - Optimisation, vérification ou simulation de l’objet conçu utilisant les méthodes des éléments finis [MEF] ou les méthodes à différences finies [MDF]
  • G06F 111/10 - Modélisation numérique
  • G06F 30/27 - Optimisation, vérification ou simulation de l’objet conçu utilisant l’apprentissage automatique, p. ex. l’intelligence artificielle, les réseaux neuronaux, les machines à support de vecteur [MSV] ou l’apprentissage d’un modèle

84.

Speech segmentation based on combination of pause detection and speaker diarization

      
Numéro d'application 17851264
Numéro de brevet 11538481
Statut Délivré - en vigueur
Date de dépôt 2022-06-28
Date de la première publication 2022-10-20
Date d'octroi 2022-12-27
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Li, Xiaolong
  • Henderson, Samuel Norris
  • Cheng, Xiaozhuo
  • Yang, Xu

Abrégé

An apparatus includes at least one processor to, in response to a request to perform speech-to-text conversion: perform a pause detection technique including analyzing speech audio to identify pauses, and analyzing lengths of the pauses to identify likely sentence pauses; perform a speaker diarization technique including dividing the speech audio into fragments, analyzing vocal characteristics of speech sounds of each fragment to identify a speaker of a set of speakers, and identifying instances of a change in speakers between each temporally consecutive pair of fragments to identify likely speaker changes; and perform speech-to-text operations including dividing the speech audio into segments based on at least the likely sentence pauses and likely speaker changes, using at least an acoustic model with each segment to identify likely speech sounds in the speech audio, and generating a transcript of the speech audio based at least on the likely speech sounds.

Classes IPC  ?

  • G10L 15/04 - SegmentationDétection des limites de mots
  • G10L 15/16 - Classement ou recherche de la parole utilisant des réseaux neuronaux artificiels
  • G10L 15/26 - Systèmes de synthèse de texte à partir de la parole
  • G10L 25/78 - Détection de la présence ou de l’absence de signaux de voix
  • G10L 25/30 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes caractérisées par la technique d’analyse utilisant des réseaux neuronaux
  • G10L 15/02 - Extraction de caractéristiques pour la reconnaissance de la paroleSélection d'unités de reconnaissance

85.

Dynamic per-node pre-pulling in distributed computing

      
Numéro d'application 17560656
Numéro de brevet 11776090
Statut Délivré - en vigueur
Date de dépôt 2021-12-23
Date de la première publication 2022-10-13
Date d'octroi 2023-10-03
Propriétaire SAS Institute Inc. (USA)
Inventeur(s) Steadman, Jody Bridges

Abrégé

An apparatus includes a processor to: receive an indication of ability of a node device to provide a resource for executing application routines, at least one identifier of at least one image including an executable routine stored within a cache of the node device, and an indication of at least one revision level of the at least one image; analyze the ability to provide the resource; in response to being able to support execution of the application routine, identify a first image in a repository; compare identifiers to determine whether there is a second image including a matching executable routine; in response to a match, compare revision levels; and in response to the revision level of the most recent version of the first image being more recent, retrieve the most recent version of the first image from the repository, and store it within the node device.

Classes IPC  ?

  • G06F 16/535 - Filtrage basé sur des données supplémentaires, p. ex. sur des profils d'utilisateurs ou de groupes
  • G06T 3/40 - Changement d'échelle d’images complètes ou de parties d’image, p. ex. agrandissement ou rétrécissement
  • G06T 1/20 - Architectures de processeursConfiguration de processeurs p. ex. configuration en pipeline
  • H04L 67/10 - Protocoles dans lesquels une application est distribuée parmi les nœuds du réseau

86.

MACHINE-LEARNING TECHNIQUES FOR AUTOMATICALLY IDENTIFYING TOPS OF GEOLOGICAL LAYERS IN SUBTERRANEAN FORMATIONS

      
Numéro d'application US2021051596
Numéro de publication 2022/216311
Statut Délivré - en vigueur
Date de dépôt 2021-09-22
Date de publication 2022-10-13
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Peredriy, Sergiy
  • Holdaway, Keith Richard

Abrégé

Tops of geological layers can be automatically identified using machine-learning techniques as described herein. In one example, a system can receive well log records associated with wellbores drilled through geological layers. The system can generate well clusters by applying a clustering process to the well log records. The system can then obtain a respective set of training data associated with a well cluster, train a machine-learning model based on the respective set of training data, select a target well-log record associated with a target wellbore of the well cluster, and provide the target well-log record as input to the trained machine-learning model. Based on an output from the trained machine-learning model, the system can determine the geological tops of the geological layers in a region surrounding the target wellbore. The system may then transmit an electronic signal indicating the geological tops of the geological layers associated with the target wellbore.

Classes IPC  ?

  • G06F 16/587 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des informations géographiques ou spatiales, p. ex. la localisation
  • G06F 16/909 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des informations géographiques ou spatiales, p. ex. la localisation
  • G01V 1/40 - SéismologieProspection ou détection sismique ou acoustique spécialement adaptées au carottage
  • G06F 16/387 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des informations géographiques ou spatiales, p. ex. la localisation

87.

User interfaces for converting node-link data into audio outputs

      
Numéro d'application 17717661
Numéro de brevet 11460973
Statut Délivré - en vigueur
Date de dépôt 2022-04-11
Date de la première publication 2022-10-04
Date d'octroi 2022-10-04
Propriétaire SAS INSTITUTE INC:. (USA)
Inventeur(s)
  • Mealin, Sean Patrick
  • Summers, Ii, Claude Edward
  • Soltys, Ii, Mitchel Stanley
  • Marshall, Jr., Ralph Johnson
  • Sookne, Jesse Daniel
  • Smith, Brice Joseph
  • Kraus, Gregory David
  • Bolender, Eric Colin
  • Langston, Julianna Elizabeth
  • Robinson, Lisa Beth Morton

Abrégé

Node-link data can be converted into audio outputs. For example, a system can generate a graphical user interface (GUI) depicting a node-link diagram having nodes and links. The GUI can include a virtual reference point in the node-link diagram and a virtual control element that is rotatable around the virtual reference point by a user to contact one or more of the nodes in the node-link diagram. The system can receive user input for rotating the virtual control element around the virtual reference point, which can generate a contact between the virtual control element and a particular node of the node-link diagram. In response to detecting the contact, the system can determine a sound characteristic configured to indicate an attribute associated with the particular node. The system can then generate a sound having the sound characteristic, for example to assist the user in exploring the node-link diagram.

Classes IPC  ?

  • G06F 3/04817 - Techniques d’interaction fondées sur les interfaces utilisateur graphiques [GUI] fondées sur des propriétés spécifiques de l’objet d’interaction affiché ou sur un environnement basé sur les métaphores, p. ex. interaction avec des éléments du bureau telles les fenêtres ou les icônes, ou avec l’aide d’un curseur changeant de comportement ou d’aspect utilisant des icônes
  • G06F 3/16 - Entrée acoustiqueSortie acoustique
  • G06F 3/14 - Sortie numérique vers un dispositif de visualisation

88.

Automated machine learning test system

      
Numéro d'application 17840745
Numéro de brevet 11886329
Statut Délivré - en vigueur
Date de dépôt 2022-06-15
Date de la première publication 2022-09-29
Date d'octroi 2024-01-30
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Gardner, Steven Joseph
  • Dunbar, Connie Stout
  • Elsheimer, David Bruce
  • Dunbar, Gregory Scott
  • Griffin, Joshua David
  • Gao, Yan

Abrégé

A computing device selects new test configurations for testing software. (A) First test configurations are generated using a random seed value. (B) Software under test is executed with the first test configurations to generate a test result for each. (C) Second test configurations are generated from the first test configurations and the test results generated for each. (D) The software under test is executed with the second test configurations to generate the test result for each. (E) When a restart is triggered based on a distance metric value computed between the second test configurations, a next random seed value is selected as the random seed value and (A) through (E) are repeated. (F) When the restart is not triggered, (C) through (F) are repeated until a stop criterion is satisfied. (G) When the stop criterion is satisfied, the test result is output for each test configuration.

Classes IPC  ?

  • G06F 11/36 - Prévention d'erreurs par analyse, par débogage ou par test de logiciel

89.

SPEECH-TO-ANALYTICS FRAMEWORK WITH SUPPORT FOR LARGE N-GRAM CORPORA

      
Numéro d'application CN2021082572
Numéro de publication 2022/198474
Statut Délivré - en vigueur
Date de dépôt 2021-03-24
Date de publication 2022-09-29
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Yang, Xu
  • Li, Xiaolong
  • Wilsey, Biljana Belamaric
  • Liu, Haipeng
  • Peterson, Jared

Abrégé

An apparatus includes processor (s) to: generate a set of candidate n-grams based on probability distributions from an acoustic model for candidate graphemes of a next word most likely spoken following at least one preceding word spoken within speech audio; provide the set of candidate n-grams to multiple devices; provide, to each node device, an indication of which candidate n-grams are to be searched for within the n-gram corpus by each node device to enable searches for multiple candidate n-grams to be performed, independently and at least partially in parallel, across the node devices; receive, from each node device, an indication of a probability of occurrence of at least one candidate n-gram within the speech audio; based on the received probabilities of occurrence, identify the next word most likely spoken within the speech audio; and add the next word most likely spoken to a transcript of the speech audio.

Classes IPC  ?

  • G10L 15/32 - Reconnaisseurs multiples utilisés en séquence ou en parallèleSystèmes de combinaison de score à cet effet, p. ex. systèmes de vote
  • G10L 15/30 - Reconnaissance distribuée, p. ex. dans les systèmes client-serveur, pour les applications en téléphonie mobile ou réseaux
  • G10L 15/04 - SegmentationDétection des limites de mots
  • G10L 15/16 - Classement ou recherche de la parole utilisant des réseaux neuronaux artificiels
  • G10L 15/187 - Contexte phonémique, p. ex. règles de prononciation, contraintes phonotactiques ou n-grammes de phonèmes
  • G10L 15/197 - Grammaires probabilistes, p. ex. n-grammes de mots

90.

Directed acyclic graph machine learning system

      
Numéro d'application 17522062
Numéro de brevet 11443198
Statut Délivré - en vigueur
Date de dépôt 2021-11-09
Date de la première publication 2022-09-13
Date d'octroi 2022-09-13
Propriétaire SAS Institute, Inc. (USA)
Inventeur(s)
  • Chen, Xilong
  • Huang, Tao
  • Chvosta, Jan

Abrégé

A computing device learns a directed acyclic graph (DAG). An SSCP matrix is computed from variable values defined for observation vectors. A topological order vector is initialized that defines a topological order for the variables. A loss value is computed using the topological order vector and the SSCP matrix. (A) A neighbor determination method is selected. (B) A next topological order vector is determined relative to the initialized topological order vector using the neighbor determination method. (C) A loss value is computed using the next topological order vector and the SSCP matrix. (D) (B) and (C) are repeated until each topological order vector is determined in (B) based on the neighbor determination method. A best topological vector is determined from each next topological order vector based on having a minimum value for the computed loss value. An adjacency matrix is computed using the best topological vector and the SSCP matrix.

Classes IPC  ?

  • G06N 5/02 - Représentation de la connaissanceReprésentation symbolique
  • G06F 17/16 - Calcul de matrice ou de vecteur

91.

Machine-learning techniques for automatically identifying tops of geological layers in subterranean formations

      
Numéro d'application 17481839
Numéro de brevet 11435499
Statut Délivré - en vigueur
Date de dépôt 2021-09-22
Date de la première publication 2022-09-06
Date d'octroi 2022-09-06
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Peredriy, Sergiy
  • Holdaway, Keith Richard

Abrégé

Tops of geological layers can be automatically identified using machine-learning techniques as described herein. In one example, a system can receive well log records associated with wellbores drilled through geological layers. The system can generate well clusters by applying a clustering process to the well log records. The system can then obtain a respective set of training data associated with a well cluster, train a machine-learning model based on the respective set of training data, select a target well-log record associated with a target wellbore of the well cluster, and provide the target well-log record as input to the trained machine-learning model. Based on an output from the trained machine-learning model, the system can determine the geological tops of the geological layers in a region surrounding the target wellbore. The system may then transmit an electronic signal indicating the geological tops of the geological layers associated with the target wellbore.

Classes IPC  ?

  • E21B 49/00 - Test pour déterminer la nature des parois des trous de forageEssais de couchesProcédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits
  • G01V 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
  • G06N 20/00 - Apprentissage automatique

92.

Tabular data generation for machine learning model training system

      
Numéro d'application 17559735
Numéro de brevet 11436438
Statut Délivré - en vigueur
Date de dépôt 2021-12-22
Date de la première publication 2022-09-06
Date d'octroi 2022-09-06
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Zhang, Ruiwen
  • Wang, Weichen
  • Gomes Da Silva, Jorge Manuel
  • Liu, Ye
  • Azizsoltani, Hamoon
  • Mookiah, Prathaban

Abrégé

(A) Conditional vectors are defined. (B) Latent observation vectors are generated using a predefined noise distribution function. (C) A forward propagation of a generator model is executed with the conditional vectors and the latent observation vectors as input to generate an output vector. (D) A forward propagation of a decoder model of a trained autoencoder model is executed with the generated output vector as input to generate a plurality of decoded vectors. (E) Transformed observation vectors are selected from transformed data based on the defined plurality of conditional vectors. (F) A forward propagation of a discriminator model is executed with the transformed observation vectors, the conditional vectors, and the decoded vectors as input to predict whether each transformed observation vector and each decoded vector is real or fake. (G) The discriminator and generator models are updated and (A) through (G) are repeated until training is complete.

Classes IPC  ?

  • G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques
  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion

93.

Bias mitigating machine learning training system

      
Numéro d'application 17557298
Numéro de brevet 11436444
Statut Délivré - en vigueur
Date de dépôt 2021-12-21
Date de la première publication 2022-09-06
Date d'octroi 2022-09-06
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Wu, Xinmin
  • Hunt, Xin Jiang

Abrégé

A computing device trains a fair machine learning model. A prediction model is trained to predict a target value. For a number of iterations, a weight vector is computed using the bound value based on fairness constraints defined for a fairness measure type; a weight value is assigned to each observation vector based on the target value and a sensitive attribute value; the prediction model is trained with each weighted observation vector to predict the target value; and a conditional moments vector is computed based on the fairness constraints and the target and sensitive attribute values. Conditional moments difference values are computed. When the conditional moments difference values indicate to adjust the bound value, the bound value is updated and the process is repeated with the bound value replaced with the updated bound value until the conditional moments difference values indicate no further adjustment of the bound value is needed.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques

94.

Leveraging text profiles to select and configure models for use with textual datasets

      
Numéro d'application 17565824
Numéro de brevet 11423680
Statut Délivré - en vigueur
Date de dépôt 2021-12-30
Date de la première publication 2022-08-23
Date d'octroi 2022-08-23
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Jade, Teresa S.
  • Li, Xiao
  • Zuo, Chunqi
  • Kovach, Paul Jeffrey

Abrégé

Text profiles can be leveraged to select and configure models according to some examples described herein. In one example, a system can analyze a reference textual dataset and a target textual dataset using text-mining techniques to generate a first text profile and a second text profile, respectively. The first text profile can contain first metrics characterizing the reference textual dataset and the second text profile can contain second metrics characterizing the target textual dataset. The system can determine a similarity value by comparing the first text profile to the second text profile. The system can also receive a user selection of a model that is to be applied to the target textual dataset. The system can then generate an insight relating to an anticipated accuracy of the model on the target textual dataset based on the similarity value. The system can output the insight to the user.

Classes IPC  ?

  • G06F 16/335 - Filtrage basé sur des données supplémentaires, p. ex. sur des profils d’utilisateurs ou de groupes
  • G06V 30/19 - Reconnaissance utilisant des moyens électroniques
  • G06F 40/10 - Traitement de texte

95.

Tabular data generation with attention for machine learning model training system

      
Numéro d'application 17560474
Numéro de brevet 11416712
Statut Délivré - en vigueur
Date de dépôt 2021-12-23
Date de la première publication 2022-08-16
Date d'octroi 2022-08-16
Propriétaire SAS Institute, Inc. (USA)
Inventeur(s)
  • Dizche, Amirhassan Fallah
  • Liu, Ye
  • Hunt, Xin Jiang
  • Gomes Da Silva, Jorge Manuel

Abrégé

A computing device generates synthetic tabular data. Until a convergence parameter value indicates that training of an attention generator model is complete, conditional vectors are defined; latent vectors are generated using a predefined noise distribution function; a forward propagation of an attention generator model that includes an attention model integrated with a conditional generator model is executed to generate output vectors; transformed observation vectors are selected; a forward propagation of a discriminator model is executed with the transformed observation vectors, the conditional vectors, and the output vectors to predict whether each transformed observation vector and each output vector is real or fake; a discriminator model loss value is computed based on the predictions; the discriminator model is updated using the discriminator model loss value; an attention generator model loss value is computed based on the predictions; and the attention generator model is updated using the attention generator model loss value.

Classes IPC  ?

  • G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques
  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion

96.

Automated trending input recognition and assimilation in forecast modeling

      
Numéro d'application 17554281
Numéro de brevet 11409966
Statut Délivré - en vigueur
Date de dépôt 2021-12-17
Date de la première publication 2022-08-09
Date d'octroi 2022-08-09
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Phand, Anand Arun
  • Guhaneogi, Sudeshna
  • Veeraraghavan, Narender Ceechamangalam
  • Chauhan, Ravinder Singh
  • Bhat, Shikha
  • Khandwe, Kaustubh Yashvant
  • Sinha, Shalini
  • Roy, Vineet
  • Asadullina, Alina Olegovna
  • Plekhanov, Vitaly Igorevich
  • Lavrenova, Elizaveta Alekseevna
  • Bodunov, Dmitry Sergeevich
  • Kubaeva, Assol Raufjonovna
  • Ondrik, Stephen Joseph
  • Schlüter, Steffen-Horst
  • Martino, Joseph Michael
  • Zhao, John Zhiqiang
  • Bhalerao, Pravinkumar
  • Larina, Valentina

Abrégé

An apparatus to: analyze a data set to identify a candidate topic not in a set of topics; determine whether the prominence of the candidate topic within the data set meets a threshold; in response to meeting the threshold, retrieve a rate of increase in frequency of the candidate topic in online searches; in response to meeting a threshold rate of increase, retrieve the keyword most frequently used in online searches for the candidate topic, use the keyword to retrieve a supplemental data set, and analyze input data extracted from the supplemental data set to determine whether the candidate topic can change the accuracy of a forecast model; and in response to determining that the candidate topic can change the accuracy, add the candidate topic to the set of topics and replace the forecast model with a forecast model trained for the set of topics augmented with the candidate topic.

Classes IPC  ?

97.

Speech-to-analytics framework with support for large n-gram corpora

      
Numéro d'application 17370441
Numéro de brevet 11404053
Statut Délivré - en vigueur
Date de dépôt 2021-07-08
Date de la première publication 2022-08-02
Date d'octroi 2022-08-02
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Cheng, Xiaozhuo
  • Yang, Xu
  • Li, Xiaolong
  • Wilsey, Biljana Belamaric
  • Liu, Haipeng
  • Peterson, Jared

Abrégé

An apparatus includes processor(s) to: generate a set of candidate n-grams based on probability distributions from an acoustic model for candidate graphemes of a next word most likely spoken following at least one preceding word spoken within speech audio; provide the set of candidate n-grams to multiple devices; provide, to each node device, an indication of which candidate n-grams are to be searched for within the n-gram corpus by each node device to enable searches for multiple candidate n-grams to be performed, independently and at least partially in parallel, across the node devices; receive, from each node device, an indication of a probability of occurrence of at least one candidate n-gram within the speech audio; based on the received probabilities of occurrence, identify the next word most likely spoken within the speech audio; and add the next word most likely spoken to a transcript of the speech audio.

Classes IPC  ?

  • G06N 3/02 - Réseaux neuronaux
  • G06N 7/00 - Agencements informatiques fondés sur des modèles mathématiques spécifiques
  • G10L 15/04 - SegmentationDétection des limites de mots
  • G10L 15/16 - Classement ou recherche de la parole utilisant des réseaux neuronaux artificiels
  • G10L 15/18 - Classement ou recherche de la parole utilisant une modélisation du langage naturel
  • G10L 15/197 - Grammaires probabilistes, p. ex. n-grammes de mots
  • G10L 15/22 - Procédures utilisées pendant le processus de reconnaissance de la parole, p. ex. dialogue homme-machine
  • G10L 15/30 - Reconnaissance distribuée, p. ex. dans les systèmes client-serveur, pour les applications en téléphonie mobile ou réseaux

98.

Recommendation system with implicit feedback

      
Numéro d'application 17715214
Numéro de brevet 11544767
Statut Délivré - en vigueur
Date de dépôt 2022-04-07
Date de la première publication 2022-07-28
Date d'octroi 2023-01-03
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Liao, Xuejun
  • Koch, Patrick Nathan

Abrégé

A computing device determines a recommendation. A confidence matrix is computed using a predefined weight value. (A) A first parameter matrix is updated using the confidence matrix, a predefined response matrix, a first step-size parameter value, and a first direction matrix. The predefined response matrix includes a predefined response value by each user to each item and at least one matrix value for which a user has not provided a response to an item. (B) A second parameter matrix is updated using the confidence matrix, the predefined response matrix, a second step-size parameter value, and a second direction matrix. (C) An objective function value is updated based on the first and second parameter matrices. (D) The first and second parameter matrices are trained by repeating (A) through (C). The first and second parameter matrices output for use in predicting a recommended item for a requesting user.

Classes IPC  ?

  • G06Q 30/06 - Transactions d’achat, de vente ou de crédit-bail
  • G06F 17/16 - Calcul de matrice ou de vecteur
  • G06Q 30/02 - MarketingEstimation ou détermination des prixCollecte de fonds

99.

Federated area coherency across multiple devices in many-task computing

      
Numéro d'application 17682783
Numéro de brevet 11474863
Statut Délivré - en vigueur
Date de dépôt 2022-02-28
Date de la première publication 2022-06-23
Date d'octroi 2022-10-18
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Bequet, Henry Gabriel Victor
  • Zhang, Chaowang “ricky”

Abrégé

An apparatus includes a processor to: derive an order of performance of a set of tasks of a job flow; based on the order of performance, store, within a task queue, a first task routine execution request message to cause a first task to be performed; within a first task container, and in response to storage of the first task routine execution request message, execute instructions of a first task routine of a set of task routines, store a mid-flow data set output of the first task within a federated area, and store a first task completion message within the task queue after completion of storage of the mid-flow data set; and in response to the storage of the first task completion message, and based on the order of performance, store, within the task queue, a second task routine execution request message to cause a second task to be performed.

Classes IPC  ?

  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption

100.

Automated machine learning test system

      
Numéro d'application 17523607
Numéro de brevet 11775878
Statut Délivré - en vigueur
Date de dépôt 2021-11-10
Date de la première publication 2022-06-23
Date d'octroi 2023-10-03
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Gao, Yan
  • Griffin, Joshua David
  • Lin, Yu-Min
  • Pederson, Bengt Wisen
  • Tharrington, Jr., Ricky Dee
  • Tan, Pei-Yi
  • Wright, Raymond Eugene

Abrégé

A computing device selects new test configurations for testing software. Software under test is executed with first test configurations to generate a test result for each test configuration. Each test configuration includes a value for each test parameter where each test parameter is an input to the software under test. A predictive model is trained using each test configuration of the first test configurations in association with the test result generated for each test configuration based on an objective function value. The predictive model is executed with second test configurations to predict the test result for each test configuration of the second test configurations. Test configurations are selected from the second test configurations based on the predicted test results to define third test configurations. The software under test is executed with the defined third test configurations to generate the test result for each test configuration of the third test configurations.

Classes IPC  ?

  • G06N 20/20 - Techniques d’ensemble en apprentissage automatique
  • G06N 7/01 - Modèles graphiques probabilistes, p. ex. réseaux probabilistes
  1     2     3     ...     8        Prochaine page