The computing device trains a first model on a first data set using a first graph to predict relevant links between a plurality of nodes. The computing device applies the trained first model to the one or more links between the plurality of nodes from a first node, iteratively connects each node to the one or more first sets of generated networks for each of the relevant links until the relevant links for connection to the plurality of nodes are not present, and outputs the one or more first sets of generated networks. The computing device also applies the trained first model to the one or more links between the plurality of nodes, removes the non-relevant links, connects each node of the plurality of nodes with the relevant links to generate one or more second sets of networks, and outputs the one or more second sets of generated networks.
The computing device trains a first model on a first data set using a first graph to predict relevant links between a plurality of nodes. The computing device obtains the first data set or a second data set associated with the plurality of nodes. The computing device determines the one or more features for the one or more links between the plurality of nodes, applies the trained first model to the one or more links between the plurality of nodes, outputs the relevant links and non-relevant links of the one or more links between the plurality of nodes, removes the non-relevant links between the plurality of nodes, connects each node of the plurality of nodes with the relevant links to generate one or more second sets of networks, and outputs the one or more second sets of generated networks.
In some examples, a system can store a first array, which is a one-dimensional array of values (e.g., matrix values), in memory. The system can also store a second array in the memory, where the second array is a one-dimensional array of pointers that point to positions of a subset of the values in the first array. The subset of values can be a first entry of each row or column of a matrix. The system can then provide the second array as input to a program routine, which can perform a matrix operation. To do so, the program routine can access the first array and the second array in memory, select a set of values for the matrix from the first array by using the pointers, execute the matrix operation using the using the selected set of values, and output the result.
A computer-program product, computer-implemented method, and computer-implemented system includes obtaining a raw dataset; executing an outlier filtration process based on obtaining the raw dataset; training a model using a refined outlier-reduced dataset; and predicting, via the trained model, a value of the target entity at a future time.
A system and method include receiving a first set of variables associated with a real-time request, extracting a predetermined subset of the first set of variables for generating a second set of variables, identifying historical request data, computing a set of parameters based on the first set of variables and the historical request data, generating a plurality of numeric sequences and a plurality of string sequences for the real-time request, converting each of the plurality of string sequences into an encoded string sequence to obtain a plurality of encoded string sequences, inputting the plurality of numeric sequences and the plurality of encoded string sequences into a trained deep machine learning model, and computing a score from the trained deep machine learning model, the score indicative of a likelihood that the real-time request belongs to an unauthorized classification.
G06N 3/086 - Méthodes d'apprentissage en utilisant les algorithmes évolutionnaires, p. ex. les algorithmes génétiques ou la programmation génétique
G06F 18/21 - Conception ou mise en place de systèmes ou de techniquesExtraction de caractéristiques dans l'espace des caractéristiquesSéparation aveugle de sources
G06F 18/214 - Génération de motifs d'entraînementProcédés de Bootstrapping, p. ex. ”bagging” ou ”boosting”
G06F 18/22 - Critères d'appariement, p. ex. mesures de proximité
A graphical user interface (GUI) and pipeline for processing text documents is provided herein. In one example, a system can receive unstructured text documents. The system can determine entity-issue descriptions corresponding to the unstructured text documents. The system can then generate a GUI indicating the entity-issue descriptions. The GUI can also indicate assignments of the unstructured text documents to categories of a predefined schema. The GUI can allow the user to adjust the assignments of the unstructured text documents to the categories. The GUI can also include a table of rows, where each row corresponds to one of the unstructured text documents. Each row can indicate an entity-issue description in the corresponding unstructured text document and the categories assigned to the unstructured text document. Each row can also include a graphical button that is selectable to allow the user to view the unstructured text document corresponding to the row.
A graphical user interface (GUI) and pipeline for processing text documents is provided herein. In one example, a system can receive unstructured text documents. The system can determine entity-issue descriptions corresponding to the unstructured text documents. The system can then generate a GUI indicating the entity-issue descriptions. The GUI can also indicate assignments of the unstructured text documents to categories of a predefined schema. The GUI can allow the user to adjust the assignments of the unstructured text documents to the categories. The GUI can also include a table of rows, where each row corresponds to one of the unstructured text documents. Each row can indicate an entity-issue description in the corresponding unstructured text document and the categories assigned to the unstructured text document. Each row can also include a graphical button that is selectable to allow the user to view the unstructured text document corresponding to the row.
A computing system trains a classification model using distributed training data. A first worker index and a second worker index are received from a controller device and together uniquely identify a segment of a lower triangular matrix. The first and second worker indices have values from one to a predefined block size value. In response to receipt of a first computation request from the controller device, a first kernel matrix block is computed at each computing device based on the first worker index and the second worker index. In response to receipt of a second computation request from the controller device, an objective function value is computed for each observation vector included in an accessed training data subset. The computed objective function value is sent to the controller device. Model parameters for a trained classification model are output.
A computing system is configured to receive, at a service entity, from a data exchange entity, an execution command indicating to store an instance of a data program in a memory portion of the computing system by storing computer instructions based on an external data program of an external computing system. The computing system is configured to receive, at a service entity, from a data exchange entity, an indication of availability of the input data. The input data is available for use by the instance of the data program. The computing system is configured to send from the service entity an indication of availability of the output data. The output data is generated based on execution of the instance of the data program.
G06F 15/173 - Communication entre processeurs utilisant un réseau d'interconnexion, p. ex. matriciel, de réarrangement, pyramidal, en étoile ou ramifié
G06F 16/11 - Administration des systèmes de fichiers, p. ex. détails de l’archivage ou d’instantanés
G06F 16/178 - Techniques de synchronisation des fichiers dans les systèmes de fichiers
H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
10.
Systems and methods for dynamic allocation of compute resources via a machine learning-informed feedback sequence
A system, method, and computer-program product includes obtaining an analytical request that specifies an analytical task to be performed using computing resources of an adaptive analytics compute service, determining, by the adaptive analytics compute service, an initial set of compute resources for executing the analytical request based on identifying a type of the analytical request, deploying, by the adaptive analytics compute service, a compute environment for executing the analytical request based on the initial set of compute resources, observing utilization data of the initial set of compute resources during a period of executing the analytical request within the compute environment, and commencing a machine learning-informed feedback sequence for autonomously adapting the compute environment, wherein one iteration of the machine learning-informed feedback sequence includes: generating a proposed set of compute resources, and encoding, based on the proposed set of compute resources, a set of instructions for automatically adapting the compute environment.
G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT]
G06F 9/455 - ÉmulationInterprétationSimulation de logiciel, p. ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation
G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption
In one example, a system can receive information about a data structure including a set of data entries. The system can generate a proxy data table including a set of columns. The system can use a data access layer to generate a mapping from the data entries to the columns. The system can receive an input to cause an operation to be performed on the data structure by performing the operation on the data structure. Generating a result can involve issuing read commands to the data access layer to perform the operation on the data structure such that the data access layer obtains the associated data entries and provides them as responses to the read commands by performing a translation between the data entries and the columns based on the mapping. The system can then output the result of the operation.
In one example, a system can receive an input from a user indicating a target variable to be forecasted over a future time window. The system can then determine independent variables that influence the target variable and generate a set of candidate variables, including combinations of the independent variables. The system can then execute a random forest classifier to identify a subset of candidate variables having a threshold level of influence on the target variable. The system can then construct a machine-learning model configured to receive the identified subset of candidate variables as inputs and generate a forecast of the target variable. After constructing the machine-learning model, the system can train the machine-learning model using historical data and then execute the machine-learning model to generate the forecast.
A graphical user interface (GUI) and pipeline for processing text documents is provided herein. In one example, a system can receive unstructured text documents. The system can determine entity-issue descriptions corresponding to the unstructured text documents. The system can then generate a GUI indicating the entity-issue descriptions. The GUI can also indicate assignments of the unstructured text documents to categories of a predefined schema. The GUI can allow the user to adjust the assignments of the unstructured text documents to the categories. The GUI can also include a table of rows, where each row corresponds to one of the unstructured text documents. Each row can indicate an entity-issue description in the corresponding unstructured text document and the categories assigned to the unstructured text document. Each row can also include a graphical button that is selectable to allow the user to view the unstructured text document corresponding to the row.
Techniques described herein provide for automated detection of near-duplicate documents. In one example, a system can cluster documents into a set of clusters based on character frequencies associated with the documents. For a given cluster, the system can generate first similarity scores associated with every pair of documents in the cluster. The system can then select a filtered group of documents associated with first similarity scores that meet or exceed a first predefined similarity threshold. Next, the system can convert the filtered group of documents into matrix representations. The system can generate second similarity scores for every pair of matrix representations. The system can then identify documents, from among the filtered group of documents, associated with second similarity scores that meet or exceed a second predefined similarity threshold. The identified documents can be duplicate or near-duplicate text documents.
A treatment model trained to compute an estimated treatment variable value for each observation vector of a plurality of observation vectors is executed. Each observation vector includes covariate variable values, a treatment variable value, and an outcome variable value. An outcome model trained to compute an estimated outcome value for each observation vector using the treatment variable value for each observation vector is executed. A standard error value associated with the outcome model is computed using a first variance value computed using the treatment variable value of the plurality of observation vectors, using a second variance value computed using the treatment variable value and the estimated treatment variable value of the plurality of observation vectors, and using a third variance value computed using the estimated outcome value of the plurality of observation vectors. The standard error value is output.
A method, system, and computer-program product includes identifying a set of heterogeneous sensors, configuring a plurality of model training compositions for each of the set of heterogeneous sensors, computing, for each of the plurality of model training compositions, a first efficacy metric value based on predictive outputs of the at least two machine learning models, identifying, for each sensor of the set of heterogeneous sensors, a champion model training composition of the subject sensor, the champion model training composition having a highest efficacy metric value, and electing, from a plurality of champion model training compositions corresponding to the champion model training compositions identified for each sensor of the set of heterogeneous sensors, an overall champion model training composition corresponding to a champion sensor of the set of heterogeneous sensors based on an assessment of second efficacy metric values of the plurality of champion model training compositions.
A point estimate value for an individual is computed using a Bayesian neural network model (BNN) by training a first BNN model that computes a weight mean value, a weight standard deviation value, a bias mean value, and a bias standard deviation value for each neuron of a plurality of neurons using observations. A plurality of BNN models is instantiated using the first BNN model. Instantiating each BNN model of the plurality of BNN models includes computing, for each neuron, a weight value using the weight mean value, the weight standard deviation value, and a weight random draw and a bias value using the bias mean value, the bias standard deviation value, and a bias random draw. Each instantiated BNN model is executed with the observations to compute a statistical parameter value for each observation vector of the observations. The point estimate value is computed from the statistical parameter value.
A system, method, and computer-program product includes receiving speech audio of a multi-turn conversation, generating, via a speech-to-text process, a transcript of the speech audio, wherein the transcript of the speech audio textually segments speech spoken during the multi-turn conversation into a plurality of utterances, generating a speaker diarization prompt that includes contextual information about a plurality of speakers participating in the multi-turn conversation, inputting, to a large language model, the speaker diarization prompt and the transcript of the speech audio, and obtaining, from the large language model, an output comprising an enhanced transcript of the speech audio, wherein the enhanced transcript of the speech audio textually segments the speech spoken during the multi-turn conversation into a plurality of refined utterances and associates a speaker identification value with each of the plurality of refined utterances.
G10L 15/22 - Procédures utilisées pendant le processus de reconnaissance de la parole, p. ex. dialogue homme-machine
G10L 15/02 - Extraction de caractéristiques pour la reconnaissance de la paroleSélection d'unités de reconnaissance
G10L 15/04 - SegmentationDétection des limites de mots
G10L 15/26 - Systèmes de synthèse de texte à partir de la parole
G10L 25/30 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes caractérisées par la technique d’analyse utilisant des réseaux neuronaux
G10L 25/78 - Détection de la présence ou de l’absence de signaux de voix
19.
Graphical user interface and alerting system for detecting and mitigating problems in an agent network
In some examples a system can receive sets of usage data from agent computer systems associated with agents. The agents can be associated with service providers that provide services to service users. The system can generate a corresponding set of metric values for a common set of metrics for each agent based on a corresponding set of usage data. The common set of metrics can be used for all of the agents to detect anomalies related to the agents. The system can generate a score for each agent based on the corresponding set of metric values, wherein the score indicates a risk level associated with the agent. The system can compare the scores for the agents to a predefined threshold to identify one or more agents that may be problematic. The system can then generate a graphical user interface indicating the one or more identified agents.
H04L 41/06 - Gestion des fautes, des événements, des alarmes ou des notifications
H04L 41/046 - Architectures ou dispositions de gestion de réseau comprenant des agents de gestion de réseau ou des agents mobiles à cet effet
H04L 41/22 - Dispositions pour la maintenance, l’administration ou la gestion des réseaux de commutation de données, p. ex. des réseaux de commutation de paquets comprenant des interfaces utilisateur graphiques spécialement adaptées [GUI]
20.
Source code evaluator and modified parameter structure for enabling automated validation of parameter values in source code
Parameter values in source code can be automatically validated using the techniques described herein. For example, a system can receive source code that includes a call to an action. The action can have a parameter that is set to a selected value in the source code. The parameter can be defined in definition data. The system can also receive a file that separate from the source code and includes metadata for the parameter. The system can extract the metadata from the file and modify the definition data to include the metadata. The system can then execute a validation process on the selected value for the parameter. The validation process can involve retrieving the metadata from the modified definition data, evaluating the selected value using the metadata to determine whether the selected value is invalid, and if it is invalid, outputting an error notification indicating that the selected value is invalid.
A method, system, and computer-program product includes identifying a set of heterogeneous sensors, configuring a plurality of model training compositions for each of the set of heterogeneous sensors, computing, for each of the plurality of model training compositions, a first efficacy metric value based on predictive outputs of the at least two machine learning models, identifying, for each sensor of the set of heterogeneous sensors, a champion model training composition of the subject sensor, the champion model training composition having a highest efficacy metric value, and electing, from a plurality of champion model training compositions corresponding to the champion model training compositions identified for each sensor of the set of heterogeneous sensors, an overall champion model training composition corresponding to a champion sensor of the set of heterogeneous sensors based on an assessment of second efficacy metric values of the plurality of champion model training compositions.
G06F 18/2135 - Extraction de caractéristiques, p. ex. en transformant l'espace des caractéristiquesSynthétisationsMappages, p. ex. procédés de sous-espace basée sur des critères d'approximation, p. ex. analyse en composantes principales
22.
Topological order determination using machine learning
A computing device learns a best topological order vector of a plurality of variables. A target variable and zero or more input variables are defined. (A) A machine learning model is trained with observation vectors using the target variable and the zero or more input variables. (B) The machine learning model is executed to compute an equation loss value. (C) The equation loss value is stored with the identifier. (D) The identifier is incremented. (E) (A) through (D) are repeated a plurality of times. (F) A topological order vector is defined. (G) A loss value is computed from a subset of the stored equation loss values based on the topological order vector. (F) through (G) are repeated for each unique permutation of the topological order vector. A best topological order vector is determined based on a comparison between the loss value computed for each topological order vector in (G).
A system, method, and computer-program product includes detecting, via a localization machine learning model, a target object within a scene based on downsampled image data of the scene, identifying a likely position of the target object within original image data of the scene, extracting, from the original image data of the scene, a target sub-image containing the target object, classifying, via an object classification machine learning model, the target object to a probable object class of a plurality of distinct object classes, routing the target image resolution of the target sub-image to a target object-condition machine learning classification model of a plurality of distinct object-condition machine learning classification models, classifying, via the target object-condition machine learning classification model, the target object to a probable object-condition class, and displaying, via a graphical user interface, a representation of the target object in association with the probable object-condition class.
G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
24.
Cutoff value optimization for bias mitigating machine learning training system with multi-class target
A computing device trains a fair prediction model while defining an optimal event cutoff value. (A) A prediction model is trained with observation vectors. (B) The prediction model is executed to define a predicted target variable value and a probability associated with an accuracy of the predicted target variable value. (C) A conditional moments matrix is computed based on fairness constraints, the predicted target variable value, and the sensitive attribute variable value of each observation vector. The predicted target variable value has a predefined target event value only when the probability is greater than a predefined event cutoff value. (D) (A) through (C) are repeated. (E) An updated value is computed for the predefined event cutoff value. (F) (A) through (E) are repeated. An optimal event cutoff value is defined from the predefined event cutoff values used when repeating (A) through (E). The optimal value and prediction model are output.
A system, method, and computer-program product includes detecting, via a localization machine learning model, a target object within target image data of a scene, classifying, via an object classification machine learning model, the target object to a probable object class of a plurality of distinct object classes, routing, via the one or more processors, the target image data of the scene to a target object-condition machine learning classification model of a plurality of distinct object-condition machine learning classification models based on a mapping between the plurality of distinct object classes and the plurality of distinct object-condition machine learning classification models, classifying, via the target object-condition machine learning classification model, the target object to a probable object-condition class of a plurality of distinct object-condition classes, and displaying, via a graphical user interface, a representation of the target object in association with the probable object-condition class.
G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
G06V 10/94 - Architectures logicielles ou matérielles spécialement adaptées à la compréhension d’images ou de vidéos
26.
Method and system for digital traffic campaign management
The computing device receives data for a plurality of events that includes a timestamp associated with a digital traffic campaign in an event processing system. Based on the timestamp of the data for each event, the computing device executes operations comprising: applying filtering using digital signal processing to the event count for the combined data for each of the one or more intervals, executing a model to compute one or more backward difference approximations for the one or more candidate systems time constants from the evaluated exponential curve, and selecting a system time constant that predicts a first time instant wherein the data for the plurality of events approaches a point on a horizontal asymptote for the evaluated exponential curve. The computing device determines an epoch for the selected system time constant and outputs the determined epoch for the selected system time constant in the graphical user interface.
A computer determines a solution to a nonlinear optimization problem. A conjugate gradient (CG) iteration is performed with a first order derivative vector and a second order derivative matrix to update a CG residual vector, an H-conjugate vector, and a residual weight vector. A CG solution vector is updated using a previous CG solution vector, the H-conjugate vector, and the residual weight vector. An eigenvector of the second order derivative matrix having a smallest eigenvalue is computed. A basis matrix is defined that includes a cubic regularization (CR) solution vector, a CR residual vector, the CG solution vector, the CG residual vector, and the eigenvector. A CR iteration is performed to update the CR solution vector. The CR residual vector is updated using the first order derivative vector, the second order derivative matrix, and the updated CR solution vector. The process is repeated until a stop criterion is satisfied.
A system, method, and computer-program product includes displaying a plurality of factor-setting user interface (UI) control elements configured to receive an input of characters for specifying a set of design of experiment factors for creating a design of experiment (DOE), displaying a plurality of factor type UI control elements configured to receive input for specifying a factor type of a plurality of factor types, displaying a plurality of dynamic rows of editable UI control elements configured to receive inputs of experimental values for the set of DOE factors, and displaying a composite factor UI control component configured to receive inputs for generating one or more control signals that add or remove one or more DOE factors of the set of DOE factors.
G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p. ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO
G06F 3/0482 - Interaction avec des listes d’éléments sélectionnables, p. ex. des menus
G06F 3/04847 - Techniques d’interaction pour la commande des valeurs des paramètres, p. ex. interaction avec des règles ou des cadrans
29.
Combining user feedback with an automated entity-resolution process executed on a computer system
One example described herein involves a system that can receive a set of data records and execute an automated entity resolution (AER) process configured to assign the set of data records to a set of entities. For each entity in the set of entities, the system can generate a respective consistency score for the entity, generate a respective confidence score for the entity based on the respective consistency score for the entity, and determine a respective visual indicator based on the respective confidence score for the entity. The respective visual indicator can indicate a risk of record misassignment to a user. The system can then generate a graphical user interface that includes the respective visual indicator for each of the entities.
G06F 16/21 - Conception, administration ou maintenance des bases de données
G06F 16/215 - Amélioration de la qualité des donnéesNettoyage des données, p. ex. déduplication, suppression des entrées non valides ou correction des erreurs typographiques
One example described herein involves a system that can receive a set of data records and execute an automated entity resolution (AER) process configured to assign the set of data records to a set of entities. For each entity in the set of entities, the system can generate a respective consistency score for the entity, generate a respective confidence score for the entity based on the respective consistency score for the entity, and determine a respective visual indicator based on the respective confidence score for the entity. The respective visual indicator can indicate a risk of record misassignment to a user. The system can then generate a graphical user interface that includes the respective visual indicator for each of the entities.
G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
G06F 16/215 - Amélioration de la qualité des donnéesNettoyage des données, p. ex. déduplication, suppression des entrées non valides ou correction des erreurs typographiques
A heart-rate detection system can receive heartbeat data generated by a wearable heart-rate sensor worn by a wearer. The system can then execute a noise-reduction process for reducing noise in the heartbeat data. The noise-reduction process can involve applying a lowpass filter to the heartbeat data, generating wavelet coefficients by applying a wavelet transform to the filtered heartbeat data, and generating a reduced set of wavelet coefficients by thresholding the wavelet coefficients. An inverse wavelet signal can then be generated by applying an inverse wavelet transform to the reduced set of wavelet coefficients. R-peaks can be identified by performing peak detection on the instantaneous amplitudes of the data points in the inverse wavelet signal. A heart rate curve can then be generated based on the R-peaks and modified by applying a Hampel filter. Heartbeat data can then be generated based on the modified heart rate curve for output.
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
A61B 5/024 - Mesure du pouls ou des pulsations cardiaques
G16H 40/67 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement à distance
G16H 50/70 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour extraire des données médicales, p. ex. pour analyser les cas antérieurs d’autres patients
32.
Systems, methods, and graphical user interfaces for configuring design of experiments
A system, method, and computer-program product includes displaying a plurality of factor-setting user interface (UI) control elements configured to receive an input of characters for specifying a set of design of experiment factors for creating a design of experiment (DOE), displaying a plurality of factor type UI control elements configured to receive input for specifying a factor type of a plurality of factor types, displaying a plurality of dynamic rows of editable UI control elements configured to receive inputs of experimental values for the set of DOE factors, and displaying a composite factor UI control component configured to receive inputs for generating one or more control signals that add or remove one or more DOE factors of the set of DOE factors.
A computing device determines a node traversal order for computing a computational parameter value for each node of a data model of a system that includes a plurality of disconnected graphs. The data model represents a flow of a computational parameter value through the nodes from a source module to an end module. A flow list defines an order for selecting and iteratively processing each node to compute the computational parameter value in a single iteration through the flow list. Each node from the flow list is selected to compute a driver quantity for each node. Each node is selected from the flow list in a reverse order to compute a driver rate and the computational parameter value for each node. The driver quantity or the computational parameter value is output for each node to predict a performance of the system.
A computing device identifies an anomaly among a plurality of observation vectors. An observation vector is projected using a predefined orthogonal complement matrix. The predefined orthogonal complement matrix is determined from a decomposition of a low-rank matrix. The low-rank matrix is computed using a robust principal component analysis algorithm. The projected observation vector is multiplied by a predefined demixing matrix to define a demixed observation vector. The predefined demixing matrix is computed using an independent component analysis algorithm and the predefined orthogonal complement matrix. A detection statistic value is computed from the defined, demixed observation vector. When the computed detection statistic value is greater than or equal to a predefined anomaly threshold value, an indicator is output that the observation vector is an anomaly.
A computer-implemented system includes identifying a target hierarchical taxonomy comprising a plurality of distinct hierarchical taxonomy categories; extracting a plurality of distinct taxonomy tokens from the plurality of distinct hierarchical taxonomy categories; computing a taxonomy vector corpus based on the plurality of distinct taxonomy tokens; computing a plurality of distinct taxonomy clusters based on an input of the taxonomy vector corpus; constructing a hierarchical taxonomy classifier based on the plurality of distinct taxonomy clusters; converting a volume of unlabeled structured datasets to a plurality of distinct corpora of taxonomy-labeled structured datasets based on the hierarchical taxonomy classifier; and outputting at least one corpus of taxonomy-labeled structured datasets of the plurality of distinct corpora of taxonomy-labeled structured datasets based on an input of a data classification query.
A computer monitors a status of grid devices using sensor measurements. Sensor data is clustered using a predefined grouping distance value to define one or more sensor event clusters. A plurality of monitored devices is clustered using a predefined clustering distance value to define one or more asset clusters. A location is associated with each monitored device of the plurality of monitored devices. A distance is computed between each sensor event cluster and each asset cluster. When the computed distance is less than or equal to a predefined asset/sensor distance value for a sensor event cluster and an asset cluster, an asset identifier of the asset cluster associated with the computed distance is added to an asset event list. For each asset cluster included in the asset event list, an asset location of an asset is shown on a map in a graphical user interface presented in a display.
G01R 31/08 - Localisation de défauts dans les câbles, les lignes de transmission ou les réseaux
G06Q 30/01 - Services de relation avec la clientèle
H02J 13/00 - Circuits pour pourvoir à l'indication à distance des conditions d'un réseau, p. ex. un enregistrement instantané des conditions d'ouverture ou de fermeture de chaque sectionneur du réseauCircuits pour pourvoir à la commande à distance des moyens de commutation dans un réseau de distribution d'énergie, p. ex. mise en ou hors circuit de consommateurs de courant par l'utilisation de signaux d'impulsion codés transmis par le réseau
37.
Anomaly detection and diagnostics based on multivariate analysis
Anomalies in a target object can be detected and diagnosed using improved Mahalanobis-Taguchi system (MTS) techniques. For example, an anomaly detection and diagnosis (ADD) system can receive a set of measurements associated with attributes of a target object. A Mahalanobis distance (MD) can be determined using a generalized inverse matrix. An abnormal condition can be detected when the MD is greater than a predetermined threshold value. The ADD system can determine an importance score for each measurement of a corresponding attribute. The attribute whose measurement has the highest importance score can be determined to be responsible for the abnormal condition.
A system, method, and computer-program product includes detecting, via a localization machine learning model, a target object within a scene based on downsampled image data of the scene, identifying a likely position of the target object within original image data of the scene, extracting, from the original image data of the scene, a target sub-image containing the target object, classifying, via an object classification machine learning model, the target object to a probable object class of a plurality of distinct object classes, routing the target image resolution of the target sub-image to a target object-condition machine learning classification model of a plurality of distinct object-condition machine learning classification models, classifying, via the target object-condition machine learning classification model, the target object to a probable object-condition class, and displaying, via a graphical user interface, a representation of the target object in association with the probable object-condition class.
G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
G06T 3/40 - Changement d'échelle d’images complètes ou de parties d’image, p. ex. agrandissement ou rétrécissement
G06T 7/70 - Détermination de la position ou de l'orientation des objets ou des caméras
A system, method, and computer-program product includes constructing a transcript adaptation training data corpus that includes a plurality of transcript normalization training data samples, wherein each of the plurality of transcript normalization training data samples includes: a predicted audio transcript that includes at least one numerical expression, an adapted audio transcript that includes an alphabetic representation of the at least one numerical expression, and a transcript normalization identifier that, when applied to a model input comprising a target audio transcript, defines a text-to-text transformation objective causing a numeric-to-alphabetic expression machine learning model to predict an alphabetic-equivalent audio transcript that represents each numerical expression included in the target audio transcript in one or more alphabetic tokens; configuring the numeric-to-alphabetic expression machine learning model based on a training of a machine learning text-to-text transformer model using the transcript adaptation training data corpus; and executing the numeric-to-alphabetic expression machine learning model.
G10L 15/22 - Procédures utilisées pendant le processus de reconnaissance de la parole, p. ex. dialogue homme-machine
G10L 15/02 - Extraction de caractéristiques pour la reconnaissance de la paroleSélection d'unités de reconnaissance
G10L 15/04 - SegmentationDétection des limites de mots
G10L 15/26 - Systèmes de synthèse de texte à partir de la parole
G10L 25/30 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes caractérisées par la technique d’analyse utilisant des réseaux neuronaux
G10L 25/78 - Détection de la présence ou de l’absence de signaux de voix
40.
Systems and methods for configuring and using an audio transcript correction machine learning model
A system, method, and computer-program product includes constructing a transcript correction training data corpus that includes a plurality of labeled audio transcription training data samples, wherein each of the plurality of labeled audio transcription training data samples includes: an incorrect audio transcription of a target piece of audio data; a correct audio transcription of the target piece of audio data; and a transcript correction identifier that, when applied to a model input that includes a likely incorrect audio transcript, defines a text-to-text transformation objective causing an audio transcript correction machine learning model to predict a corrected audio transcript based on the likely incorrect audio transcript; configuring the audio transcript correction machine learning model based on a training of a machine learning text-to-text transformer model using the transcript correction training data corpus; and executing the audio transcript correction machine learning model within a speech-to-text post-processing sequence of a speech-to-text service.
G10L 15/22 - Procédures utilisées pendant le processus de reconnaissance de la parole, p. ex. dialogue homme-machine
G10L 15/02 - Extraction de caractéristiques pour la reconnaissance de la paroleSélection d'unités de reconnaissance
G10L 15/04 - SegmentationDétection des limites de mots
G10L 15/26 - Systèmes de synthèse de texte à partir de la parole
G10L 25/30 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes caractérisées par la technique d’analyse utilisant des réseaux neuronaux
G10L 25/78 - Détection de la présence ou de l’absence de signaux de voix
41.
Bias mitigating machine learning training system with multi-class target
A computing device trains a fair prediction model. A prediction model is trained and executed with observation vectors. A weight value is computed for each observation vector based on whether the predicted target variable value of a respective observation vector of the plurality of observation vectors has a predefined target event value. An observation vector is relabeled based on the computed weight value. The prediction model is retrained with each observation vector weighted by a respective computed weight value and with the target variable value of any observation vector that was relabeled. The retrained prediction model is executed. A conditional moments matrix is computed. A constraint violation matrix is computed. Computing the weight value through computing the constraint violation matrix is repeated until a stop criterion indicates retraining of the prediction model is complete. The retrained prediction model is output.
A computer-implemented system includes identifying a target hierarchical taxonomy comprising a plurality of distinct hierarchical taxonomy categories; extracting a plurality of distinct taxonomy tokens from the plurality of distinct hierarchical taxonomy categories; computing a taxonomy vector corpus based on the plurality of distinct taxonomy tokens; computing a plurality of distinct taxonomy clusters based on an input of the taxonomy vector corpus; constructing a hierarchical taxonomy classifier based on the plurality of distinct taxonomy clusters; converting a volume of unlabeled structured datasets to a plurality of distinct corpora of taxonomy-labeled structured datasets based on the hierarchical taxonomy classifier; and outputting at least one corpus of taxonomy-labeled structured datasets of the plurality of distinct corpora of taxonomy-labeled structured datasets based on an input of a data classification query.
A parallel processing technique can be used to expedite reconciliation of a hierarchy of forecasts on a computer system. As one example, the computer system can receive forecasts that have a hierarchical relationship with respect to one another. The computer system can distribute the forecasts among a group of computing nodes by time point, so that all data points corresponding to the same time point in the forecasts are assigned to the same computing node. The computing nodes can receive the datasets corresponding to the time points, organize the data points in each of the datasets by forecast to generate ordered datasets, and assign the ordered datasets to processing threads. The processing threads (across the computing nodes) can then execute a reconciliation process in parallel to one another to generate reconciled values, which can be output by the computing nodes.
A computing system detects a defective object. An image is received of a manufacturing line that includes objects in a process of being manufactured. Each pixel included in the image is classified as a background pixel class, a non-defective object class, or a defective object class using a trained neural network model. The pixels included in the image that were classified as the non-defective object class or the defective object class are grouped into polygons. Each polygon is defined by a contiguous group of pixels classified as the non-defective object class or the defective object class. Each polygon is classified in the non-defective object class or in the defective object class based on a number of pixels included in a respective polygon that are classified in the non-defective object class relative to a number of pixels included in the respective polygon that are classified in the defective object class.
G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
G06V 10/24 - Alignement, centrage, détection de l’orientation ou correction de l’image
G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
G06V 10/26 - Segmentation de formes dans le champ d’imageDécoupage ou fusion d’éléments d’image visant à établir la région de motif, p. ex. techniques de regroupementDétection d’occlusion
A system, method, and computer-program product includes distributing a plurality of audio data files of a speech data corpus to a plurality of computing nodes that each implement a plurality of audio processing threads, executing the plurality of audio processing threads associated with each of the plurality of computing nodes to detect a plurality of tentative speakers participating in each of the plurality of audio data files, generating, via a clustering algorithm, a plurality of clusters of embedding signatures based on a plurality of embedding signatures associated with the plurality of tentative speakers in each of the plurality of audio data files, and detecting a plurality of global speakers associated with the speech data corpus based on the plurality of clusters of embedding signatures.
G10L 17/00 - Techniques d'identification ou de vérification du locuteur
G10L 15/16 - Classement ou recherche de la parole utilisant des réseaux neuronaux artificiels
G10L 15/26 - Systèmes de synthèse de texte à partir de la parole
G10L 15/04 - SegmentationDétection des limites de mots
G10L 25/78 - Détection de la présence ou de l’absence de signaux de voix
G10L 25/30 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes caractérisées par la technique d’analyse utilisant des réseaux neuronaux
G10L 15/02 - Extraction de caractéristiques pour la reconnaissance de la paroleSélection d'unités de reconnaissance
46.
Computer system for automatically analyzing a video of a physical activity using a model and providing corresponding feedback
A computer system can automatically analyze a video of a physical activity and provide corresponding feedback. For example, the system can receive a video file including image frames showing an entity performing a physical activity that involves a sequence of movement phases. The system can generate coordinate sets by performing image analysis on the image frames. The system can provide the coordinate sets as input to a trained model, the trained model being configured to assign scores and movement phases to the image frames based on the coordinate sets. The system can then select a particular movement phase for which to provide feedback, based on the scores and movement phases assigned to the image frames. The system can generate the feedback for the entity about their performance of the particular movement phase, which may improve the entity's future performance of that particular movement phase.
G06V 10/84 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les modèles graphiques de probabilités à partir de caractéristiques d’images ou de vidéos, p. ex. les modèles de Markov ou les réseaux bayésiens
G06N 3/042 - Réseaux neuronaux fondés sur la connaissanceReprésentations logiques de réseaux neuronaux
G06N 3/047 - Réseaux probabilistes ou stochastiques
G06T 7/246 - Analyse du mouvement utilisant des procédés basés sur les caractéristiques, p. ex. le suivi des coins ou des segments
G06V 10/44 - Extraction de caractéristiques locales par analyse des parties du motif, p. ex. par détection d’arêtes, de contours, de boucles, d’angles, de barres ou d’intersectionsAnalyse de connectivité, p. ex. de composantes connectées
An apparatus includes at least one node device to host a computing cluster, and at least one processor to generate a UI providing guidance through a set of configuration settings for the computing cluster, wherein, for each configuration setting that is received as an input during configuration, the at least one processor is caused to: perform a check of the set of configuration settings to determine whether the received configuration setting creates a conflict among the set of configuration settings; and in response to a determination that the received configuration setting creates a conflict among the set of configuration settings, perform operations including generate an indication of the conflict for presentation by the UI, and receive a change to a configuration setting as an input from the input device.
G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT]
G06F 9/451 - Dispositions d’exécution pour interfaces utilisateur
G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption
G06F 9/455 - ÉmulationInterprétationSimulation de logiciel, p. ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation
48.
Automated job flow generation to provide object views in container-supported many task computing
An apparatus includes a processor to receive a request to provide a view of an object associated with a job flow, and in response to determining that the object is associated with a task type requiring access to a particular resource not accessible to a first interpretation routine: store, within a job queue, a job flow generation request message to cause generation of a job flow definition the defines another job flow for generating the requested view; within a task container in which a second interpretation routine that does have access to the particular resource is executed, generate the job flow definition; store, within a task queue, a job flow generation completion message that includes a copy of the job flow definition; use the job flow definition to perform the other job flow to generate the requested view; and transmit the requested view to the requesting device.
Groups of connected nodes in a network of nodes can be detected for evaluating and mitigating risks of the network of nodes. For example, a system can process one or more subnetworks of the network of nodes in parallel. For each subnetwork, the system can identify root nodes and their reachable nodes to create rooted groups of connected nodes. The system then can determine outdegrees of the remaining nodes in the network. The system can identify reachable nodes from a remaining node of the highest outdegree to create a nonrooted group of connected nodes. The system can estimate a risk value based on the number of rooted groups and nonrooted groups, the number of nodes in each rooted group and nonrooted group, and the attributes of the nodes in each group. The system can mitigate potential risks by reconfiguring the network of nodes.
H04L 41/12 - Découverte ou gestion des topologies de réseau
H04L 41/0604 - Gestion des fautes, des événements, des alarmes ou des notifications en utilisant du filtrage, p. ex. la réduction de l’information en utilisant la priorité, les types d’éléments, la position ou le temps
H04L 41/22 - Dispositions pour la maintenance, l’administration ou la gestion des réseaux de commutation de données, p. ex. des réseaux de commutation de paquets comprenant des interfaces utilisateur graphiques spécialement adaptées [GUI]
H04L 41/0631 - Gestion des fautes, des événements, des alarmes ou des notifications en utilisant l’analyse des causes profondesGestion des fautes, des événements, des alarmes ou des notifications en utilisant l’analyse de la corrélation entre les notifications, les alarmes ou les événements en fonction de critères de décision, p. ex. la hiérarchie ou l’analyse temporelle ou arborescente
Some examples can involve a system that can receive a first user selection of time series data and a second user selection of a type of forecasting model to apply to the time series data. The system can then obtain a first set of candidate values and a second set of candidate values for a first parameter and a second parameter, respectively, of the selected type of forecasting model. The candidate values may be determined based on statistical information derived from the time series data. The system can then provide the first set of candidate values and the second set of candidate values to the user, receive user selections of a first parameter value and a second parameter value, and determine whether a conflict exists between the first parameter value and the second parameter value. If so, the system can generate an output indicating that the conflict exists.
A data protection system is provided to detect data and execute security actions on the detected data using multiple tiers of parallel processing and incremental processing. For example, the data protection system can employ parallel job-submission and parallel-job execution to cataloging, scanning, searching, and other processes. Only source data that has not already been processed or has modified may be loaded to a cataloging data queue and a scanning data queue to reduce processing time. Scan results can include different data groups and can be used to search for specific data sets.
The computing device obtains a training data set related to a plurality of historic user inputs associated with preferences of one or more services or items from an entity. For each of the one or more services or items, the computing device executes operations to train a plurality of models using the training data set to generate a plurality of recommended models, apply a validation data set to generate a plurality of predictions from the plurality of recommended models, obtain a weight of each metric of a plurality of metrics from the entity, obtain user inputs associated with user preferences, and determine a relevancy score for each metric. The computing device selects a recommended model based on the relevancy score of the selected metric or a combination of selected metrics, generates one or more recommendations for the users, and outputs the one or more generated recommendations to the users.
An apparatus includes at least one node device to host a computing cluster, and at least one processor to: use at least one of a level of resource observed to be consumed by operation of the computing cluster or a level of performance observed to be provided by operation of the computing cluster as an input to a pre-existing cluster model to derive a predicted level; compare the predicted level to a corresponding observed level of resource consumed or performance provided; and in response to the predicted level not matching the observed level to within a pre-selected degree, derive a new cluster model from observations of the operation of the computing cluster, and generate a prompt to perform repeat the configuration of the computing cluster using the new cluster model in place of the pre-existing cluster model to generate a new set of configuration settings for the computing cluster.
An apparatus includes a processor to: receive a request to perform a job flow; within a performance container, based on the data dependencies among a set of tasks of the job flow, derive an order of performance of the set of tasks that includes a subset able to be performed in parallel, and derive a quantity of task containers to enable the parallel performance of the subset; based on the derived quantity of task containers, derive a quantity of virtual machines (VMs) to enable the parallel performance of the subset; provide, to a VM allocation routine, an indication of a need for provision of the quantity of VMs; and store, within a task queue, multiple task routine execution request messages to enable parallel execution of task routines within the quantity of task containers to cause the parallel performance of the subset.
A computer system can automatically generate a directed graph interface for use in detecting and mitigating anomalies in entity interactions. For example, the system can receive interaction data describing a set of interactions at two entities. The system can then generate a directed network graph based on the interaction data. To do so, the system can identify pairs of interactions associated with the two entities in the set of interactions. The system can classify the pairs of interactions as outbound and/or inbound interaction pairs. The system can then generate one or more directed links in the directed network graph to represent the outbound and/or inbound interaction pairs. The system can further determine a characteristic of the outbound and/or inbound interaction pairs, automatically detect an anomaly that may be suggestive of malicious activity by one or both entities based on the characteristic, and output an indicator of the detected anomaly.
A computer monitors a state of a system. A time branch is defined for each valid value of each discrete variable. A system model is executed with observed values to update each time branch and determine a probability associated with each time branch. A discrete variable is selected, and a sequence duration value is incremented. When the incremented sequence duration value is greater than a predefined minimum sequence duration value, a probability change value is computed for the discrete variable, and, when the computed probability change value is less than or equal to a synchronization probability change value, a continuous value for each continuous variable for each time branch of the discrete variable is synchronized, and the sequence duration value for the selected discrete variable is reinitialized. The continuous value for at least one non-observed continuous variable is output.
A flexible computer architecture for performing digital image analysis is described herein. In some examples, the computer architecture can include a distributed messaging platform (DMP) for receiving images from cameras and storing the images in a first queue. The computer architecture can also include a first container for receiving the images from the first queue, applying an image analysis model to the images, and transmitting the image analysis result to the DMP for storage in a second queue. Additionally, the computer architecture can include a second container for receiving the image analysis result from the second queue, performing a post-processing operation on the image analysis result, and transmitting the post-processing result to the DMP for storage in a third queue. The computer architecture can further include an output container for receiving the post-processing result from the third queue and generating an alert notification based on the post-processing result.
A computer trains a neural network. A neural network is executed with a weight vector to compute a gradient vector using a batch of observation vectors. Eigenvalues are computed from a Hessian approximation matrix, a regularization parameter value is computed using the gradient vector, the eigenvalues, and a step-size value, a search direction vector is computed using the eigenvalues, the gradient vector, the Hessian approximation matrix, and the regularization parameter value, a reduction ratio value is computed, an updated weight vector is computed from the weight vector, a learning rate value, and the search direction vector or the gradient vector based on the computed reduction ratio value, and an updated Hessian approximation matrix is computed from the Hessian approximation matrix, the predefined learning rate value, and the search direction vector or the gradient vector based on the reduction ratio value. The step-size value is updated using the search direction vector.
In one example, a system can receive a set of text samples and generate a set of summaries based on the set of text samples. The system can then generate a training dataset by iteratively executing a training-sample generation process. Each iteration can involve selecting multiple text samples from the set of text samples, combining the multiple text samples together into a training sample, determining a text category and a summary corresponding to a selected one of the multiple text samples, and including the text category and the summary in the training sample. After generating the training dataset, the system can use it to train a model. The trained model can then receive a target textual dataset and a target category as input, identify a portion of the target textual dataset corresponding to the target category, and generate a summarization of the portion of that target textual dataset.
An apparatus including a processor to: within a kill container, in response to a set of error messages indicative of errors in executing multiple instances of a task routine to perform a task of a job flow with multiple data object blocks of a data object, and in response to the quantity of error messages reaching a threshold, output a kill tasks request message that identifies the job flow; within a task container, in response to the kill tasks request message, cease execution of the task routine and output a task cancelation message that identifies the task and the job flow; and within a performance container, in response to he task cancelation message, output a job cancelation message to cause the transmission of an indication of cancelation of the job flow, via a network, and to a requesting device that requested the performance of the job flow.
A computing device trains a fair machine learning model. A predicted target variable is defined using a trained prediction model. The prediction model is trained with weighted observation vectors. The predicted target variable is updated using the prediction model trained with weighted observation vectors. A true conditional moments matrix and a false conditional moments matrix are computed. The training and updating with weighted observation vectors are repeated until a number of iterations is performed. When a computed conditional moments matrix indicates to adjust a bound value, the bound value is updated based on an upper bound value or a lower bound value, and the repeated training and updating with weighted observation vectors is repeated with the bound value replaced with the updated bound value until the conditional moments matrix indicates no further adjustment of the bound value is needed. A fair prediction model is trained with the updated bound value.
A computing device determines a disaggregated solution vector of a plurality of variables. A first value is computed for a known variable using a predefined density distribution function, and a second value is computed for an unknown variable using the computed first value, a predefined correlation value, and a predefined aggregate value. The predefined correlation value indicates a correlation between the known variable and the unknown variable. A predefined number of solution vectors is computed by repeating the first value and the second value computations. A solution vector is the computed first value and the computed second value. A centroid vector is computed from solution vectors computed by repeating the computations. A predefined number of closest solution vectors to the computed centroid vector are determined from the solution vectors. The determined closest solution vectors are output.
G06F 17/11 - Opérations mathématiques complexes pour la résolution d'équations
G06F 18/2413 - Techniques de classification relatives au modèle de classification, p. ex. approches paramétriques ou non paramétriques basées sur les distances des motifs d'entraînement ou de référence
G06Q 10/0635 - Analyse des risques liés aux activités d’entreprises ou d’organisations
G06F 18/2411 - Techniques de classification relatives au modèle de classification, p. ex. approches paramétriques ou non paramétriques basées sur la proximité d’une surface de décision, p. ex. machines à vecteurs de support
G06F 18/23213 - Techniques non hiérarchiques en utilisant les statistiques ou l'optimisation des fonctions, p. ex. modélisation des fonctions de densité de probabilité avec un nombre fixe de partitions, p. ex. K-moyennes
63.
Data object preparation for execution of multiple task routine instances in many task computing
An apparatus includes a processor to: output a request message to cause a first task to be performed; within a task container, in response to the request message and a data object not being divided, divide the data object into a set of data object blocks based on at least the sizes of the data object and the atomic unit of organization of data therein, as well as the storage resources allocated to task containers, and output a task completion message indicating that the first task has been performed, and including a set of data block identifiers indicating the location of the set of data object blocks within at least one federated area; and in response to the task completion message, output a set of request messages to cause a second task to be performed by executing multiple instances of a task routine within multiple task containers.
A computing device selects a piecewise linear regression model for multivariable data. A hyperplane is fit to observation vectors using a linear multivariable regression. A baseline fit quality measure is computed for the fit hyperplane. For each independent variable, the observation vectors are sorted, contiguous segments to evaluate are defined, for each contiguous segment, a segment hyperplane is fit to the sorted observation vectors using a multivariable linear regression, path distances are computed between a first observation of the and a last observation of the sorted observation vectors based on a predefined number of segments, a shortest path associated with a smallest value of the computed path distances is selected, and a fit quality measure is computed for the selected shortest path. A best independent variable is selected from the independent variables based on having an extremum value for the computed fit quality measure.
An apparatus including a processor to: output a first request message onto a group sub-queue shared by multiple task containers to request execution of a first task routine; within a task container, respond to the first request message, by outputting a first task in-progress message onto an individual sub-queue not shared with other task containers to accede to executing the first task routine, followed by a task completion message; and respond to the task completion message by allowing the task completion message to remain on the individual sub-queue to keep the task container from executing another task routine from another request message on the group sub-queue, outputting a second request message onto the individual sub-queue to cause execution of a second task routine within the same task container to perform a second task, and responding to the second task in-progress message by de-queuing the task completion message.
A computing device determines an optimal number of threads for a computer task. Execution of a computing task is controlled in a computing environment based on each task configuration included in a plurality of task configurations to determine an execution runtime value for each task configuration. An optimal number of threads value is determined for each set of task configurations having common values for a task parameter value, a dataset indicator, and a hardware indicator. The optimal number of threads value is an extremum value of an execution parameter value as a function of a number of threads value. A dataset parameter value is determined for a dataset. A hardware parameter value is determined as a characteristic of each distinct executing computing device in the computing environment. The optimal number of threads value for each set of task configurations is stored in a performance dataset in association with the common values.
G06F 9/455 - ÉmulationInterprétationSimulation de logiciel, p. ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation
G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption
G06N 20/10 - Apprentissage automatique utilisant des méthodes à noyaux, p. ex. séparateurs à vaste marge [SVM]
An apparatus includes a processor to: receive, from a requesting device, a request to perform speech-to-text conversion of a speech data set; within a first thread of a thread pool, perform a first pause detection technique to identify a first set of likely sentence pauses; within a second thread of the thread pool, perform a second pause detection technique to identify a second set of likely sentence pauses; perform a speaker diarization technique to identify a set of likely speaker changes; divide the speech data set into data segments representing speech segments based on a combination of at least the first set of likely sentence pauses, the second set of likely sentence pauses, and the set of likely speaker changes; use at least an acoustic model with each data segment to identify likely speech sounds; and generate a transcript based, at least in part, on the identified likely speech sounds.
G10L 15/22 - Procédures utilisées pendant le processus de reconnaissance de la parole, p. ex. dialogue homme-machine
G10L 15/26 - Systèmes de synthèse de texte à partir de la parole
G10L 15/04 - SegmentationDétection des limites de mots
G10L 25/78 - Détection de la présence ou de l’absence de signaux de voix
G10L 25/30 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes caractérisées par la technique d’analyse utilisant des réseaux neuronaux
G10L 15/02 - Extraction de caractéristiques pour la reconnaissance de la paroleSélection d'unités de reconnaissance
An apparatus includes a processor to: receive a request to perform speech-to-text conversion of a speech data set; perform pause detection to identify a set of likely sentence pauses and/or speaker diarization technique to identify a set of likely speaker changes; based the set of likely sentence pauses and/or the set of likely speaker changes, divide the speech data set into data segments representing speech segments; use an acoustic model with the data segments to derive sets of probabilities of speech sounds uttered; store the sets of probabilities in temporal order within a buffer queue; distribute the sets of probabilities from the buffer queue in temporal order among threads of a thread pool; and within each thread, and based on set(s) of probabilities, derive one candidate word and select either the candidate word or an alternate candidate word derived from a language model as the next word most likely spoken.
G10L 15/26 - Systèmes de synthèse de texte à partir de la parole
G10L 15/22 - Procédures utilisées pendant le processus de reconnaissance de la parole, p. ex. dialogue homme-machine
G10L 15/02 - Extraction de caractéristiques pour la reconnaissance de la paroleSélection d'unités de reconnaissance
G10L 15/04 - SegmentationDétection des limites de mots
G10L 25/78 - Détection de la présence ou de l’absence de signaux de voix
G10L 25/30 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes caractérisées par la technique d’analyse utilisant des réseaux neuronaux
69.
Process to geographically associate potential water quality stressors to monitoring stations
A computing device obtains data indicating a topography for an area comprising water and receives an indication of an identified data object representing a stressor to the area or a first monitoring station configurable to monitor the stressor. The computing device also determines a location for the identified data object in the topography and selects one or more related data objects to be related to the identified data object by determining a classification indicating whether the identified data object operates in water and selecting the one or more related data objects based on the location and the classification. The computing device also generates one or more controls for monitoring the area based on the selected one or more related data objects.
A computing device accesses a machine learning model trained on training data of first bonding operations (e.g., a ball and/or stitch bond). The first bonding operations comprise operations to bond a first set of multiple wires to a first set of surfaces. The machine learning model is trained by supervised learning. The device receives input data indicating process data generated from measurements of second bonding operations. The second bonding operations comprise operations to bond a second set of multiple wires to a second set of surfaces. The device weights the input data according to the machine learning model. The device generates an anomaly predictor indicating a risk for an anomaly occurrence in the second bonding operations based on weighting the input data according to the machine learning model. The device outputs the anomaly predictor to control the second bonding operations.
G06K 9/00 - Méthodes ou dispositions pour la lecture ou la reconnaissance de caractères imprimés ou écrits ou pour la reconnaissance de formes, p.ex. d'empreintes digitales
G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques
A computing device (2002) accesses a machine learning model (2050) trained on training data (2032) of first bonding operations (1308, 2040A) (e.g., a ball and/or stitch bond). The first bonding operations comprise operations to bond a first set of wires (1504) to a first set of surfaces (1506, 1508). The machine learning model is trained by supervised learning. The device receives input data (2070) indicating process data (2074) generated from measurements of second bonding operations (2040B). The second bonding operations comprise operations to bond a second set of wires to a second set of surfaces. The device weights the input data according to the machine learning model. The device generates an anomaly predictor (2052) indicating a risk for an anomaly occurrence in the second bonding operations based on weighting the input data according to the machine learning model. The device outputs the anomaly predictor to control the second bonding operations.
An event stream processing (ESP) model is read that describes computational processes. (A) An event block object is received. (B) A new measurement value, a timestamp value, and a sensor identifier are extracted. (C) An in-memory data store is updated with the new measurement value, the timestamp value, and the sensor identifier. (A) through (C) are repeated until an output update time is reached. When the output update time is reached, data stored in the in-memory data store is processed and updated using data enrichment windows to define enriched data values that are output. The data enrichment windows include a gate window before each window that uses values computed by more than one window. The gate window sends a trigger to a next window when each value of the more than one window has been computed. The enrichment windows are included in the ESP model.
An apparatus includes processor(s) to: receive a request to test goodness-of-fit of a spatial process model; generate a KD tree from observed spatial point dataset including locations within a region at which instances of an event occurred; derive, from the observed spatial point dataset, multiple quadrats into which the region is divided; receive, from multiple processors, current levels of availability of processing resources including quantities of currently available execution threads; select, based on the quantity of currently available execution threads, a subset of the multiple processors to perform multiple iterations of a portion of the test in parallel; provide, to each processor of the subset, the KD tree, the spatial process model, and the multiple quadrats; receive, from each processor of the subset, per-quadrat data portions indicative of results of an iteration; derive a goodness-of-fit statistic from the per-quadrat data portions; and transmit an indication of goodness-of-fit to another device.
A computing system obtains a first preconfigured feature set. The first preconfigured feature set defines: a first feature definition defining an input variable, and first computer instructions for locating first data. The first data is available for retrieval because it is stored, or set-up to arrive, in the feature storage according to the first preconfigured feature set. The computing system receives a requested data set for the input variable. The computing system generates an availability status indicating whether the request data set is available for retrieval according to the first preconfigured feature set. Based on the availability status, generating, by the computing system, the requested data set by: retrieving historical data for the first preconfigured feature set; retrieving a data definition associated with the historical data; and generating the requested data based on the historical data and the data definition.
A computing device create a user interface application. A user interface (UI) tag is read in a UI application. The UI tag is executed to identify a UI template tag. The identified UI template tag is executed to define a top-level container initializer for the UI application and to define a plurality of widget initializers for inclusion in a top-level container rendered using the top-level container initializer. The top-level container is rendered in a display using the top-level container initializer. Each widget of a plurality of widgets in the rendered top-level container is rendered using the defined plurality of widget initializers to create a UI.
A computing device trains a fair machine learning model. A prediction model is trained to predict a target value. For a number of iterations, a weight vector is computed using the bound value based on fairness constraints defined for a fairness measure type; a weight value is assigned to each observation vector based on the target value and a sensitive attribute value; the prediction model is trained with each weighted observation vector to predict the target value; and a conditional moments vector is computed based on the fairness constraints and the target and sensitive attribute values. Conditional moments difference values are computed. When the conditional moments difference values indicate to adjust the bound value, the bound value is updated and the process is repeated with the bound value replaced with the updated bound value until the conditional moments difference values indicate no further adjustment of the bound value is needed.
Embodiments are directed to techniques for image content extraction. Some embodiments include extracting contextually structured data from document images, such as by automatically identifying document layout, document data, document metadata, and/or correlations therebetween in a document image, for instance. Some embodiments utilize breakpoints to enable the system to match different documents with internal variations to a common template. Several embodiments include extracting contextually structured data from table images, such as gridded and non-gridded tables. Many embodiments are directed to generating and utilizing a document template database for automatically extracting document image contents into a contextually structured format. Several embodiments are directed to automatically identifying and associating document metadata with corresponding document data in a document image to generate a machine-facilitated annotation of the document image. In some embodiments, the machine-facilitated annotation may be used to generate a template for the template database.
G06K 9/00 - Méthodes ou dispositions pour la lecture ou la reconnaissance de caractères imprimés ou écrits ou pour la reconnaissance de formes, p.ex. d'empreintes digitales
A computing device trains a machine state predictive model. A generative adversarial network with an autoencoder is trained using a first plurality of observation vectors. Each observation vector of the first plurality of observation vectors includes state variable values for state variables and an action variable value for an action variable. The state variables define a machine state, wherein the action variable defines a next action taken in response to the machine state. The first plurality of observation vectors successively defines sequential machine states to manufacture a product. A second plurality of observation vectors is generated using the trained generative adversarial network with the autoencoder. A machine state machine learning model is trained to predict a subsequent machine state using the first plurality of observation vectors and the generated second plurality of observation vectors. A description of the machine state machine learning model is output.
A computing device accesses a machine learning model trained on training data of first bonding operations (e.g., a ball and/or stitch bond). The first bonding operations comprise operations to bond a first set of multiple wires to a first set of surfaces. The machine learning model is trained by supervised learning. The device receives input data indicating process data generated from measurements of second bonding operations. The second bonding operations comprise operations to bond a second set of multiple wires to a second set of surfaces. The device weights the input data according to the machine learning model. The device generates an anomaly predictor indicating a risk for an anomaly occurrence in the second bonding operations based on weighting the input data according to the machine learning model. The device outputs the anomaly predictor to control the second bonding operations.
G06K 9/00 - Méthodes ou dispositions pour la lecture ou la reconnaissance de caractères imprimés ou écrits ou pour la reconnaissance de formes, p.ex. d'empreintes digitales
G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques
H01L 21/66 - Test ou mesure durant la fabrication ou le traitement
Text profiles can be leveraged to select and configure models according to some examples described herein. In one example, a system can analyze a reference textual dataset and a target textual dataset using text-mining techniques to generate a first text profile and a second text profile, respectively. The first text profile can contain first metrics characterizing the reference textual dataset and the second text profile can contain second metrics characterizing the target textual dataset. The system can determine a similarity value by comparing the first text profile to the second text profile. The system can also receive a user selection of a model that is to be applied to the target textual dataset. The system can then generate an insight relating to an anticipated accuracy of the model on the target textual dataset based on the similarity value. The system can output the insight to the user.
In one example, a system can execute a first machine-learning model to determine an overall classification for a textual dataset. The system can also determine classification scores indicating the level of influence that each token in the textual dataset had on the overall classification. The system can select a first subset of the tokens based on their classification scores. The system can also execute a second machine-learning model to determine probabilities that the textual dataset falls into various categories. The system can determine category scores indicating the level of influence that each token had on a most-likely category determination. The system can select a second subset of the tokens based on their category scores. The system can then generate a first visualization depicting the first subset of tokens color-coded to indicate their classification scores and a second visualization depicting the second subset of tokens color-coded to indicate their category scores.
A computing system establishes a hierarchy for monitoring model(s). The hierarchy comprises an association between each of multiple measures of a measure level of the hierarchy and intermediate level(s) of the hierarchy. An intermediate level comprises one or more of a measurement category or analysis type. The hierarchy comprises an association between the intermediate level(s) and at least one model. The system monitors the model(s) by generating health measurements. Each of the health measurements corresponds to one of the multiple measures. Each of the health measurements indicates a performance of a monitored model according to a measurement category or analysis type associated in the hierarchy with the respective measure of the multiple measures. The system generates a visualization in a graphical user interface. The visualization comprises a graphical representation of an indication of a health measurement for each of measure(s), and associations in the hierarchy.
One example described herein involves a system receiving task data and distribution criteria for a state space model from a client device. The task data can indicate a type of sequential Monte Carlo (SMC) task to be implemented. The distribution criteria can include an initial distribution, a transition distribution, and a measurement distribution for the state space model. The system can generate a set of program functions based on the task data and the distribution criteria. The system can then execute an SMC module to generate a distribution and a corresponding summary, where the SMC module is configured to call the set of program functions during execution of an SMC process and apply the results returned from the set of program functions in one or more subsequent steps of the SMC process. The system can then transmit an electronic communication to the client device indicating the distribution and its corresponding summary.
G06F 30/23 - Optimisation, vérification ou simulation de l’objet conçu utilisant les méthodes des éléments finis [MEF] ou les méthodes à différences finies [MDF]
G06F 30/27 - Optimisation, vérification ou simulation de l’objet conçu utilisant l’apprentissage automatique, p. ex. l’intelligence artificielle, les réseaux neuronaux, les machines à support de vecteur [MSV] ou l’apprentissage d’un modèle
84.
Speech segmentation based on combination of pause detection and speaker diarization
An apparatus includes at least one processor to, in response to a request to perform speech-to-text conversion: perform a pause detection technique including analyzing speech audio to identify pauses, and analyzing lengths of the pauses to identify likely sentence pauses; perform a speaker diarization technique including dividing the speech audio into fragments, analyzing vocal characteristics of speech sounds of each fragment to identify a speaker of a set of speakers, and identifying instances of a change in speakers between each temporally consecutive pair of fragments to identify likely speaker changes; and perform speech-to-text operations including dividing the speech audio into segments based on at least the likely sentence pauses and likely speaker changes, using at least an acoustic model with each segment to identify likely speech sounds in the speech audio, and generating a transcript of the speech audio based at least on the likely speech sounds.
G10L 15/04 - SegmentationDétection des limites de mots
G10L 15/16 - Classement ou recherche de la parole utilisant des réseaux neuronaux artificiels
G10L 15/26 - Systèmes de synthèse de texte à partir de la parole
G10L 25/78 - Détection de la présence ou de l’absence de signaux de voix
G10L 25/30 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes caractérisées par la technique d’analyse utilisant des réseaux neuronaux
G10L 15/02 - Extraction de caractéristiques pour la reconnaissance de la paroleSélection d'unités de reconnaissance
85.
Dynamic per-node pre-pulling in distributed computing
An apparatus includes a processor to: receive an indication of ability of a node device to provide a resource for executing application routines, at least one identifier of at least one image including an executable routine stored within a cache of the node device, and an indication of at least one revision level of the at least one image; analyze the ability to provide the resource; in response to being able to support execution of the application routine, identify a first image in a repository; compare identifiers to determine whether there is a second image including a matching executable routine; in response to a match, compare revision levels; and in response to the revision level of the most recent version of the first image being more recent, retrieve the most recent version of the first image from the repository, and store it within the node device.
Tops of geological layers can be automatically identified using machine-learning techniques as described herein. In one example, a system can receive well log records associated with wellbores drilled through geological layers. The system can generate well clusters by applying a clustering process to the well log records. The system can then obtain a respective set of training data associated with a well cluster, train a machine-learning model based on the respective set of training data, select a target well-log record associated with a target wellbore of the well cluster, and provide the target well-log record as input to the trained machine-learning model. Based on an output from the trained machine-learning model, the system can determine the geological tops of the geological layers in a region surrounding the target wellbore. The system may then transmit an electronic signal indicating the geological tops of the geological layers associated with the target wellbore.
G06F 16/587 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des informations géographiques ou spatiales, p. ex. la localisation
G06F 16/909 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des informations géographiques ou spatiales, p. ex. la localisation
G01V 1/40 - SéismologieProspection ou détection sismique ou acoustique spécialement adaptées au carottage
G06F 16/387 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des informations géographiques ou spatiales, p. ex. la localisation
87.
User interfaces for converting node-link data into audio outputs
Node-link data can be converted into audio outputs. For example, a system can generate a graphical user interface (GUI) depicting a node-link diagram having nodes and links. The GUI can include a virtual reference point in the node-link diagram and a virtual control element that is rotatable around the virtual reference point by a user to contact one or more of the nodes in the node-link diagram. The system can receive user input for rotating the virtual control element around the virtual reference point, which can generate a contact between the virtual control element and a particular node of the node-link diagram. In response to detecting the contact, the system can determine a sound characteristic configured to indicate an attribute associated with the particular node. The system can then generate a sound having the sound characteristic, for example to assist the user in exploring the node-link diagram.
G06F 3/04817 - Techniques d’interaction fondées sur les interfaces utilisateur graphiques [GUI] fondées sur des propriétés spécifiques de l’objet d’interaction affiché ou sur un environnement basé sur les métaphores, p. ex. interaction avec des éléments du bureau telles les fenêtres ou les icônes, ou avec l’aide d’un curseur changeant de comportement ou d’aspect utilisant des icônes
A computing device selects new test configurations for testing software. (A) First test configurations are generated using a random seed value. (B) Software under test is executed with the first test configurations to generate a test result for each. (C) Second test configurations are generated from the first test configurations and the test results generated for each. (D) The software under test is executed with the second test configurations to generate the test result for each. (E) When a restart is triggered based on a distance metric value computed between the second test configurations, a next random seed value is selected as the random seed value and (A) through (E) are repeated. (F) When the restart is not triggered, (C) through (F) are repeated until a stop criterion is satisfied. (G) When the stop criterion is satisfied, the test result is output for each test configuration.
An apparatus includes processor (s) to: generate a set of candidate n-grams based on probability distributions from an acoustic model for candidate graphemes of a next word most likely spoken following at least one preceding word spoken within speech audio; provide the set of candidate n-grams to multiple devices; provide, to each node device, an indication of which candidate n-grams are to be searched for within the n-gram corpus by each node device to enable searches for multiple candidate n-grams to be performed, independently and at least partially in parallel, across the node devices; receive, from each node device, an indication of a probability of occurrence of at least one candidate n-gram within the speech audio; based on the received probabilities of occurrence, identify the next word most likely spoken within the speech audio; and add the next word most likely spoken to a transcript of the speech audio.
A computing device learns a directed acyclic graph (DAG). An SSCP matrix is computed from variable values defined for observation vectors. A topological order vector is initialized that defines a topological order for the variables. A loss value is computed using the topological order vector and the SSCP matrix. (A) A neighbor determination method is selected. (B) A next topological order vector is determined relative to the initialized topological order vector using the neighbor determination method. (C) A loss value is computed using the next topological order vector and the SSCP matrix. (D) (B) and (C) are repeated until each topological order vector is determined in (B) based on the neighbor determination method. A best topological vector is determined from each next topological order vector based on having a minimum value for the computed loss value. An adjacency matrix is computed using the best topological vector and the SSCP matrix.
Tops of geological layers can be automatically identified using machine-learning techniques as described herein. In one example, a system can receive well log records associated with wellbores drilled through geological layers. The system can generate well clusters by applying a clustering process to the well log records. The system can then obtain a respective set of training data associated with a well cluster, train a machine-learning model based on the respective set of training data, select a target well-log record associated with a target wellbore of the well cluster, and provide the target well-log record as input to the trained machine-learning model. Based on an output from the trained machine-learning model, the system can determine the geological tops of the geological layers in a region surrounding the target wellbore. The system may then transmit an electronic signal indicating the geological tops of the geological layers associated with the target wellbore.
E21B 49/00 - Test pour déterminer la nature des parois des trous de forageEssais de couchesProcédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits
G01V 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
(A) Conditional vectors are defined. (B) Latent observation vectors are generated using a predefined noise distribution function. (C) A forward propagation of a generator model is executed with the conditional vectors and the latent observation vectors as input to generate an output vector. (D) A forward propagation of a decoder model of a trained autoencoder model is executed with the generated output vector as input to generate a plurality of decoded vectors. (E) Transformed observation vectors are selected from transformed data based on the defined plurality of conditional vectors. (F) A forward propagation of a discriminator model is executed with the transformed observation vectors, the conditional vectors, and the decoded vectors as input to predict whether each transformed observation vector and each decoded vector is real or fake. (G) The discriminator and generator models are updated and (A) through (G) are repeated until training is complete.
A computing device trains a fair machine learning model. A prediction model is trained to predict a target value. For a number of iterations, a weight vector is computed using the bound value based on fairness constraints defined for a fairness measure type; a weight value is assigned to each observation vector based on the target value and a sensitive attribute value; the prediction model is trained with each weighted observation vector to predict the target value; and a conditional moments vector is computed based on the fairness constraints and the target and sensitive attribute values. Conditional moments difference values are computed. When the conditional moments difference values indicate to adjust the bound value, the bound value is updated and the process is repeated with the bound value replaced with the updated bound value until the conditional moments difference values indicate no further adjustment of the bound value is needed.
Text profiles can be leveraged to select and configure models according to some examples described herein. In one example, a system can analyze a reference textual dataset and a target textual dataset using text-mining techniques to generate a first text profile and a second text profile, respectively. The first text profile can contain first metrics characterizing the reference textual dataset and the second text profile can contain second metrics characterizing the target textual dataset. The system can determine a similarity value by comparing the first text profile to the second text profile. The system can also receive a user selection of a model that is to be applied to the target textual dataset. The system can then generate an insight relating to an anticipated accuracy of the model on the target textual dataset based on the similarity value. The system can output the insight to the user.
A computing device generates synthetic tabular data. Until a convergence parameter value indicates that training of an attention generator model is complete, conditional vectors are defined; latent vectors are generated using a predefined noise distribution function; a forward propagation of an attention generator model that includes an attention model integrated with a conditional generator model is executed to generate output vectors; transformed observation vectors are selected; a forward propagation of a discriminator model is executed with the transformed observation vectors, the conditional vectors, and the output vectors to predict whether each transformed observation vector and each output vector is real or fake; a discriminator model loss value is computed based on the predictions; the discriminator model is updated using the discriminator model loss value; an attention generator model loss value is computed based on the predictions; and the attention generator model is updated using the attention generator model loss value.
An apparatus to: analyze a data set to identify a candidate topic not in a set of topics; determine whether the prominence of the candidate topic within the data set meets a threshold; in response to meeting the threshold, retrieve a rate of increase in frequency of the candidate topic in online searches; in response to meeting a threshold rate of increase, retrieve the keyword most frequently used in online searches for the candidate topic, use the keyword to retrieve a supplemental data set, and analyze input data extracted from the supplemental data set to determine whether the candidate topic can change the accuracy of a forecast model; and in response to determining that the candidate topic can change the accuracy, add the candidate topic to the set of topics and replace the forecast model with a forecast model trained for the set of topics augmented with the candidate topic.
An apparatus includes processor(s) to: generate a set of candidate n-grams based on probability distributions from an acoustic model for candidate graphemes of a next word most likely spoken following at least one preceding word spoken within speech audio; provide the set of candidate n-grams to multiple devices; provide, to each node device, an indication of which candidate n-grams are to be searched for within the n-gram corpus by each node device to enable searches for multiple candidate n-grams to be performed, independently and at least partially in parallel, across the node devices; receive, from each node device, an indication of a probability of occurrence of at least one candidate n-gram within the speech audio; based on the received probabilities of occurrence, identify the next word most likely spoken within the speech audio; and add the next word most likely spoken to a transcript of the speech audio.
A computing device determines a recommendation. A confidence matrix is computed using a predefined weight value. (A) A first parameter matrix is updated using the confidence matrix, a predefined response matrix, a first step-size parameter value, and a first direction matrix. The predefined response matrix includes a predefined response value by each user to each item and at least one matrix value for which a user has not provided a response to an item. (B) A second parameter matrix is updated using the confidence matrix, the predefined response matrix, a second step-size parameter value, and a second direction matrix. (C) An objective function value is updated based on the first and second parameter matrices. (D) The first and second parameter matrices are trained by repeating (A) through (C). The first and second parameter matrices output for use in predicting a recommended item for a requesting user.
An apparatus includes a processor to: derive an order of performance of a set of tasks of a job flow; based on the order of performance, store, within a task queue, a first task routine execution request message to cause a first task to be performed; within a first task container, and in response to storage of the first task routine execution request message, execute instructions of a first task routine of a set of task routines, store a mid-flow data set output of the first task within a federated area, and store a first task completion message within the task queue after completion of storage of the mid-flow data set; and in response to the storage of the first task completion message, and based on the order of performance, store, within the task queue, a second task routine execution request message to cause a second task to be performed.
A computing device selects new test configurations for testing software. Software under test is executed with first test configurations to generate a test result for each test configuration. Each test configuration includes a value for each test parameter where each test parameter is an input to the software under test. A predictive model is trained using each test configuration of the first test configurations in association with the test result generated for each test configuration based on an objective function value. The predictive model is executed with second test configurations to predict the test result for each test configuration of the second test configurations. Test configurations are selected from the second test configurations based on the predicted test results to define third test configurations. The software under test is executed with the defined third test configurations to generate the test result for each test configuration of the third test configurations.