The application relates to a hybrid solar element (100) for collecting solar radiation. The hybrid solar element comprises a transparent front cover (102), a photovoltaic structure (204), a heat exchanger (208), and a back cover (116). The front cover is configured to permit the solar radiation to penetrate inside the hybrid solar element. The photovoltaic structure comprises photovoltaic cells (106) configured to convert the solar radiation into electricity. The heat exchanger is configured to circulate a heat transfer fluid within the heat exchanger and to transfer heat from the photovoltaic structure to the heat transfer fluid. The hybrid solar element further comprises a thermoplastic spacer (218) between the front and back covers (102, 116), which thermoplastic spacer is configured to attach the front and back covers to each other and to insulate the photovoltaic structure hermetically to protect the photovoltaic structure.
A solar thermal collector includes a solar thermal absorber element which includes a cover glass, a direct-flow absorber, a fore thermoplastic sealing for attaching the cover glass and absorber to each other leaving a distance (h1) therebetween, and a fore sealed space, formed by the cover glass, absorber, and fore sealing. The fore space is filled up with a first low thermal conductive gas. The element further includes a back insulation part, a back thermoplastic sealing for attaching the insulation part and the absorber to each other leaving a distance (h2) therebetween, and a back sealed space, formed by the insulation part, absorber, and back sealing. The back space is filled up with a second low thermal conductive gas. The element may include a TPS-direct-flow absorber-glass element, wherein the back glass insulation part is hermetically sealed with the TPS sealing and the back space is filled with the second gas.
A method for providing a thermal absorber, which can be used in solar thermal collectors. The method includes a step of depositing on a substrate a first layer having a composition that comprises titanium, aluminium, nitrogen, and one of following elements: silicon, yttrium, cerium, and chromium. The method further optionally includes a step of depositing a second layer deposited on the first layer, the second layer having a composition including titanium, aluminium, nitrogen, oxygen and one of the elements of silicon, yttrium, cerium, and chromium, and a step of depositing a third layer having a composition including titanium, aluminium, silicon, nitrogen, and oxygen, the third layer being a top layer of the thermal absorber.
C23C 14/00 - Revêtement par évaporation sous vide, pulvérisation cathodique ou implantation d'ions du matériau composant le revêtement
C23C 14/06 - Revêtement par évaporation sous vide, pulvérisation cathodique ou implantation d'ions du matériau composant le revêtement caractérisé par le matériau de revêtement
4.
METHOD FOR PRODUCING A DIRECT FLOW ALUMINIUM ABSORBER FOR A SOLAR THERMAL COLLECTOR AND A DIRECT FLOW ALUMINIUM ABSORBER AND A SOLAR THERMAL COLLECTOR
The application relates to a method (100) for producing a direct flow aluminium absorber of a solar thermal collector, the absorber comprising an absorber plate having at least one tube for a heat transport fluid, and at least one end tube for a heat transport fluid, the at least one end tube being connected to the absorber plate. The method com-prises laser welding (130) the at least one end tube to the absorber plate for producing the complete absorber to be coated by at least one layer configured to absorb light.
The invention relates to a method (100) for manufacturing a thermal absorber for a solar thermal collector that comprises arranging (120) a substrate of the thermal absorber on a vacuum coating line and depositing (160) by means of a physical vapour deposition on the substrate that is arranged on the vacuum coating line layers configured to absorb light.
F24J 2/48 - caractérisés par le matériau absorbant
F24J 2/46 - Parties constitutives, détails ou accessoires de collecteurs de chaleur solaire
C23C 14/56 - Appareillage spécialement adapté au revêtement en continuDispositifs pour maintenir le vide, p. ex. fermeture étanche
C23C 14/06 - Revêtement par évaporation sous vide, pulvérisation cathodique ou implantation d'ions du matériau composant le revêtement caractérisé par le matériau de revêtement
C23C 16/30 - Dépôt de composés, de mélanges ou de solutions solides, p. ex. borures, carbures, nitrures
The invention relates to a method for providing a thermal absorber, which can be used in solar thermal collectors. The method comprises a step of depositing on a substrate (220) a first layer (230) having a composition that comprises titanium, aluminium, nitrogen, and one of following elements: silicon, yttrium, cerium, and chromium.
F24J 2/48 - caractérisés par le matériau absorbant
C23C 14/06 - Revêtement par évaporation sous vide, pulvérisation cathodique ou implantation d'ions du matériau composant le revêtement caractérisé par le matériau de revêtement