This mesh is composed of a skeleton comprising a plurality of support parts and a plurality of node parts. Each of the plurality of node parts connects two or more support parts among the plurality of support parts. The skeleton consists of a skeleton body and an internal part surrounded by the skeleton body. The skeleton body consists essentially of nickel or a nickel alloy.
D03D 15/283 - Tissus caractérisés par la matière, la structure ou les propriétés des fibres, des filaments, des filés, des fils ou des autres éléments utilisés en chaîne ou en trame caractérisés par la matière des fibres ou des filaments formant les filés ou les fils à base de polymères synthétiques, p. ex. fibres polyamides ou fibres polyesters
D04C 1/02 - Tresses ou dentelles, p. ex. dentelles aux fuseauxLeurs procédés de fabrication faites avec des matériaux particuliers
D04C 1/06 - Tresses ou dentelles destinées à des usages particuliers
H01M 8/026 - CollecteursSéparateurs, p. ex. séparateurs bipolairesInterconnecteurs caractérisés par la configuration des canaux, p. ex. par le champ d’écoulement du réactif ou du réfrigérant caractérisés par les rainures, p. ex. leur pas ou leur profondeur
2.
ALUMINUM ALLOY WIRE AND METHOD FOR PRODUCING ALUMINUM ALLOY WIRE
Provided is an aluminum alloy wire which is formed of an aluminum alloy, wherein: the aluminum alloy contains 1.0% by mass to 1.3% by mass of silicon, 0.5% by mass to 1.2% by mass of magnesium, 0.3% by mass to 0.8% by mass of iron, 0.1% by mass to 0.4% by mass of copper, 0.2% by mass to 0.5% by mass of manganese, 0.001% by mass to 0.3% by mass of chromium, 0% by mass to 0.25% by mass of zinc, 0% by mass to 0.075% by mass of titanium, 0% by mass to 0.17% by mass of zirconium, with the balance being made up of aluminum and inevitable impurities; the 0.2% proof stress at compression is 360 MPa or more; the crystal grain size of the aluminum alloy is 200 μm or less; and the compressive deformation degree is 0.6 to 1.0 inclusive.
C22C 21/02 - Alliages à base d'aluminium avec le silicium comme second constituant majeur
C22C 21/06 - Alliages à base d'aluminium avec le magnésium comme second constituant majeur
C22F 1/00 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid
C22F 1/05 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages de type Al-Si-Mg, c.-à-d. contenant du silicium et du magnésium en proportions sensiblement égales
A metal porous body includes: a metal framework; and a separation wall formed in one piece with the metal framework, the separation wall being composed of the same material as a material of the metal framework. A plurality of cells each having a polyhedral shape exist inside the metal porous body. A side of the polyhedral shape is constituted of the metal framework. A location in which an opening of a cell of the plurality of cells is closed by the separation wall exists inside the metal porous body, the opening being defined by a side of a polyhedral shape of the cell.
The present disclosure provides a flat metal sheet having a principal surface located on one side along a thickness direction, a plurality of struts, and a node part where end portions of the plurality of struts are connected to one another, wherein the strut and the node part form a mesh structure, and the plurality of the struts are in close contact with each other, and a plurality of through holes penetrating the principal surface in the thickness direction.
An aluminum alloy has a composition including silicon in an amount of 0.6 mass % to 1.5 mass %, magnesium in an amount of 0.5 mass % to 1.3 mass %, copper in an amount of 0.1 mass % to 1.2 mass %, and manganese in an amount of 0.2 mass % to 1.15 mass %, with the balance consisting of aluminum and inevitable impurities. An average of degrees of orientation of a 111 plane determined by X-ray diffraction of a whole area of a section in a state of having been subjected to solution treatment and aging treatment is 50% or more, and a variance of the degrees of orientation of the 111 plane is 45% or less.
C22C 21/02 - Alliages à base d'aluminium avec le silicium comme second constituant majeur
B21C 23/00 - Extrusion des métauxExtrusion par percussion
C22F 1/043 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages avec le silicium comme second constituant majeur
6.
METAL SHEET, BATTERY, NICKEL-ZINC BATTERY, AND METAL SHEET MANUFACTURING METHOD
This disclosure provides a plate-shaped metal sheet having a main surface located on one side in the thickness direction, the metal sheet comprising: a plurality of strut sections; and node sections where ends of the plurality of strut sections are connected to each other. The strut sections and the node sections form a mesh structure, and the plurality of strut sections are in close contact.
The present disclosure provides a metal sheet which is plate-shaped and has a principal surface positioned toward one side in the thickness direction, said sheet having a plurality of struts and a node section where the end sections of the plurality of struts are connected to one another, and being configured in a manner such that a network structure is formed from the struts and the node section, the plurality of struts are tightly adhered to one another, and there are a plurality of through-holes which pass through the principal surface in the thickness direction.
A flat metal sheet has a principal surface located on one side along a thickness direction, a plurality of struts, and a node part where end portions of the plurality of struts are connected to one another. The strut and the node part form a mesh structure, and the plurality of the struts are in close contact with each other.
Provided is a surface-coated metal porous body having a three-dimensional network structure, the surface-coated metal porous body including: a framework forming the three-dimensional network structure; and a coating film provided on a surface of the framework, wherein the framework has a body including a metal element as a constituent element, the coating film includes a scale-like carbon material and a fine-grained conductive material, a distance D between two points that are farthest from each other on an outer perimeter of a main surface of the scale-like carbon material is 5% or more and 120% or less relative to a thickness of the framework, and the scale-like carbon material is deposited on the surface of the framework.
A current collector made of a metallic material and having a first main surface and a second main surface, which are the end surfaces along the thickness direction of the current collector. The first main surface has a plurality of first recesses depressed from the first-main-surface side toward the second-main-surface side. The first recesses have been arranged apart from one another in a plan view. In the plan view, the area of each of the bottom surfaces of the first recesses is 30-70 percent of the apparent area of the first recess.
A nickel-chromium porous body includes a skeleton having a three-dimensional mesh-like structure. The skeleton has a hollow inner portion and has a main metal layer and a surface oxide layer formed on each surface side of the main metal layer. The surface oxide layer has a thickness of 0.5 μm or more and contains chromium oxide as a main component. The main metal layer is formed of nickel-chromium having a chromium content of 10 mass % or more as a whole and has a chromium content of 20 mass % or more in a region extending at least 3 μm from an interface in contact with the surface oxide layer. The surface oxide layer and the main metal layer are in close contact with each other without a gap therebetween.
A metal porous body includes a three-dimensional mesh-like skeleton. The metal porous body has a bottom surface having a polygonal shape and has a curved shape from the bottom surface toward an apex. The bottom surface has a side having a length of 2 mm to 10 mm, and a height from the bottom surface to the apex is 1 mm to 5 mm.
B01D 39/20 - Autres substances filtrantes autoportantes en substance inorganique, p. ex. papier d'amiante ou substance filtrante métallique faite de fils métalliques non-tissés
13.
METAL POROUS BODY, NICKEL-ZINC BATTERY, AND ZINC AIR BATTERY
This metal porous body is provided with a metal skeleton. The inside of the metal skeleton is hollow. The metal skeleton contains tin at an amount of 99.99 mass% or more.
H01M 12/08 - Éléments hybridesLeur fabrication composés d'un demi-élément du type élément à combustible et d'un demi-élément du type à élément secondaire
This metallic porous body comprises: metallic skeletons; and partition walls which are integrally formed with the metallic skeletons and which are formed from the same material as that of the metallic skeletons. The metallic porous body has thereinside a plurality of cells of a polyhedral shape. The edges of the polyhedral shapes are formed from the metallic skeletons. This metallic porous body has thereinside portions where openings of the cells demarcated by the edges are occluded by the partition walls.
An aluminum alloy includes more than or equal to 1.0 mass% and less than or equal to 1.8 mass% of Si, more than or equal to 0.5 mass% and less than or equal to 1.2 mass% of Mg, more than or equal to 0.3 mass% and less than or equal to 0.8 mass% of Fe, more than or equal to 0.1 mass% and less than or equal to 0.4 mass% of Cu, more than or equal to 0.2 mass% and less than or equal to 0.5 mass% of Mn, more than or equal to 0 mass% and less than or equal to 0.3 mass% of Cr, at least one of more than or equal to 0.005 mass% and less than or equal to 0.6 mass% of Ni and more than or equal to 0.005 mass% and less than or equal to 0.6 mass% of Sn, Al, and an inevitable impurity.
C22C 21/02 - Alliages à base d'aluminium avec le silicium comme second constituant majeur
C21D 9/52 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour fils métalliquesTraitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour bandes métalliques
C21D 9/00 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet
16.
ALUMINUM ALLOY, ALUMINUM ALLOY WIRE, AND METHOD FOR MANUFACTURING ALUMINUM ALLOY WIRE
Provided is an aluminum alloy having a composition comprising 0.6 -1.5 mass% of silicon, 0.5-1.3 mass% of magnesium, 0.1-1.2 mass% of copper, and 0.2-1.15 mass% of manganese, with the remainder constituted of aluminum and unavoidable impurities. An average value of a degree of orientation of a 111 surface determined by X-ray diffraction of an entire region of a cross section in a state in which a solution treatment and an aging treatment have been carried out is 50% or more and the dispersion of the degree of orientation of the 111 surface is 45% or less.
C22C 21/02 - Alliages à base d'aluminium avec le silicium comme second constituant majeur
C22C 21/06 - Alliages à base d'aluminium avec le magnésium comme second constituant majeur
C22C 21/12 - Alliages à base d'aluminium avec le cuivre comme second constituant majeur
C22F 1/00 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid
C22F 1/02 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid en atmosphère neutre ou contrôlée ou dans le vide
C22F 1/04 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages
C22F 1/05 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages de type Al-Si-Mg, c.-à-d. contenant du silicium et du magnésium en proportions sensiblement égales
C22F 1/057 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages avec le cuivre comme second constituant majeur
17.
ALUMINUM ALLOY, ALUMINUM ALLOY WIRE, AND METHOD FOR MANUFACTURING ALUMINUM ALLOY WIRE
This aluminum alloy has a composition containing 0.6-1.5 mass% of silicon, 0.5-1.3 mass% of magnesium, 0.3-1.2 (exclusive of 0.3) mass% of copper, and 0.2-1.15 mass% of manganese, with the remainder consisting of aluminum and inevitable impurities, wherein the abundance ratio of subgrain boundaries, as determined through crystal analysis of the cross section of the aluminum alloy, which has been subjected to a solution heat treatment and an aging treatment, by means of the SEM-EBSD method, is at least 15%.
C22C 21/02 - Alliages à base d'aluminium avec le silicium comme second constituant majeur
C22C 21/06 - Alliages à base d'aluminium avec le magnésium comme second constituant majeur
C22C 21/12 - Alliages à base d'aluminium avec le cuivre comme second constituant majeur
C22F 1/00 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid
C22F 1/02 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid en atmosphère neutre ou contrôlée ou dans le vide
C22F 1/04 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages
C22F 1/05 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages de type Al-Si-Mg, c.-à-d. contenant du silicium et du magnésium en proportions sensiblement égales
C22F 1/057 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages avec le cuivre comme second constituant majeur
18.
NICKEL-CHROMIUM POROUS BODY, AND METHOD FOR PRODUCING NICKEL-CHROMIUM POROUS BODY
A nickel-chromium porous body according to the present invention, which has a backbone having a three-dimensional net-like structure, in which a thicker nickel-chromium film region and a thinner nickel-chromium film region which constitute the backbone are laminated in a layered structure, at least two layers of the thinner nickel-chromium film regions are contained, and the thickness is 3 mm or more.
A porous metal body according to the present invention has a three-dimensional network skeleton, a polygonal bottom face, and a curved shape that extends from the bottom face towards an apex, the length of one side of the bottom face being 2-10 mm inclusive, and the height of the apex from the bottom face being 1-5 mm inclusive.
A nickel-chromium porous body having a skeleton that has a three-dimensional mesh structure, wherein: the skeleton has a hollow interior, and has a main metal layer and surface oxide layers formed on both surface sides of the main metal layer; the surface oxide layers have a thickness of 0.5 μm or greater and have chromium oxide as a main component; the main metal layer is made of nickel-chromium having a chromium content of 10 mass% or greater overall; ranges of the main metal layer measuring at least 3 μm from the interfaces in contact with the surface oxide layers have a chromium content of 20 mass% or greater; and the surface oxide layers and the main metal layer are in intimate contact without any gaps present therebetween.
Provided is a porous metal body in the shape of a flat plate having a three-dimensional net-like skeleton, the porous metal body comprising a plurality of cells, wherein expressions (1) and (2) below are satisfied. (1): 0.4≤cell diameter ratio≤1.0, (2): 0.50
A package body includes a porous metal body having an elongated sheet shape, a core member having a cylindrical shape, a protective sheet, and a resin film. The porous metal body is wound around the core member. The protective sheet is wound around the wound porous metal body to cover an outer surface of the wound porous metal body. The protective sheet and the porous metal body are covered with the resin film. The core member is made of paper or a resin.
B65D 85/672 - Réceptacles, éléments d'emballage ou paquets spécialement adaptés à des objets ou à des matériaux particuliers pour matériaux du genre bande ou ruban enroulés en spirale plate sur noyaux
B65D 81/03 - Enveloppes ou emballages souples avec des propriétés d'amortissement des chocs, p. ex. feuilles avec des bulles incorporées
B65D 85/30 - Réceptacles, éléments d'emballage ou paquets spécialement adaptés à des objets ou à des matériaux particuliers pour objets particulièrement sensibles aux dommages par chocs ou compression
23.
ALUMINUM ALLOY, ALUMINUM ALLOY WIRE, ALUMINUM ALLOY MEMBER, AND BOLT
Provided is an aluminum alloy having a composition containing: 1.0-1.8 mass% of Si; 0.5-1.2 mass% of Mg; 0.3-0.8 mass% of Fe; 0.1-0.4 mass% of Cu; 0.2-0.5 mass% of Mn; 0-0.3 mass% of Cr; and at least one of 0.005-0.6 mass% of Ni and 0.005-0.6 mass% of Sn, with the balance consisting of Al and unavoidable impurities.
C22C 21/02 - Alliages à base d'aluminium avec le silicium comme second constituant majeur
C22C 21/06 - Alliages à base d'aluminium avec le magnésium comme second constituant majeur
C22F 1/05 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages de type Al-Si-Mg, c.-à-d. contenant du silicium et du magnésium en proportions sensiblement égales
F16B 35/00 - Boulons filetésBoulons d'ancrageGoujons filetésVisVis de pression
C22F 1/00 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid
This surface-coated metallic porous body has a three-dimensional net structure, and includes a skeleton constituting the three-dimensional net structure and a coating provided on the surface of the skeleton, wherein: the body of the skeleton contains a metal element as a constituent element; the coating contains a scale-like carbon material and a fine-grained electrically conductive material; the distance D between two points that are farthest apart from each other on the outer perimeter of a main surface of the scale-like carbon material is 5-120% of the thickness of the skeleton; and the scale-like carbon material is deposited on the surface of the skeleton.
A plating processing apparatus in which a plating object is immersed in a plating solution to form a plating layer on a surface of the plating object. A plating tank contains the plating solution, and a power supply roller is rotated while supplying electric power to the plating object, and conveys the plating object to be immersed into the plating solution contained in the plating tank and then moved to the outside of the plating solution. An anode case is disposed inside the plating tank and held in electrical contact with the plating solution contained in the plating tank, and a control panel controls electric power supplied to the power supply roller and the anode case. A first busbar electrically connects the power supply roller and the control panel, and a second busbar electrically connects the anode case and the control panel.
A porous metal body according to the present invention is a long sheet-like porous metal body which has a skeleton of a three-dimensional network structure, while having a defective part. The defective part is provided with a recess. The defective part is a portion where a part of the skeleton is missing or a portion where a foreign substance adheres to the skeleton.
3) layer as an outermost layer and includes a chromium carbide layer located under the chromium oxide layer, the chromium oxide layer has a thickness not less than 0.1 μm and not more than 3 μm, and the chromium carbide layer has a thickness not less than 0.1 μm and not more than 1 μm.
A fuel cell according to the present disclosure includes a flat plate-shaped metal porous body having a framework of a three-dimensional network structure as a gas diffusion layer. The framework is made of metal or alloy. In the metal porous body, a ratio of an average pore diameter in a direction parallel to a gas flow direction to an average pore diameter in a direction perpendicular to the gas flow direction is greater than or equal to 1.4 and less than or equal to 2.5.
C22C 1/08 - Alliages poreux avec pores ouverts ou fermés
B21B 1/08 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer des pièces de section particulière, p. ex. des cornières
B22F 3/18 - Fabrication de pièces ou d'objets à partir de poudres métalliques, caractérisée par le mode de compactage ou de frittageAppareils spécialement adaptés à cet effet en utilisant des rouleaux presseurs
C22C 1/04 - Fabrication des alliages non ferreux par métallurgie des poudres
H01M 4/80 - Plaques poreuses, p. ex. supports frittés
29.
Method for producing metal porous body, and plating apparatus
A method for producing a metal porous body includes the steps of: performing electrical conduction treatment on a surface of a skeleton of a sheet-like resin porous body having the skeleton with a three-dimensional network structure, to obtain a conductive resin porous body having a conductive layer; performing electroplating treatment on a surface of a skeleton of the conductive resin porous body to obtain a plated resin porous body having a metal plating layer; and performing treatment of removing at least the resin porous body from the plated resin porous body to obtain a metal porous body. In the electroplating treatment, the conductive resin porous body is supplied with power by a rotating electrode roller, the electrode roller is supplied with power by bringing a power supply brush formed by a material containing iron as a main component into sliding contact with a part of a rotation shaft, and at least a surface of at least the part of the rotation shaft with which the power supply brush is brought into contact is formed by a material containing iron or nickel as a main component.
H01M 4/74 - Grillage ou matériau tisséMétal déployé
H01M 4/80 - Plaques poreuses, p. ex. supports frittés
B01D 39/20 - Autres substances filtrantes autoportantes en substance inorganique, p. ex. papier d'amiante ou substance filtrante métallique faite de fils métalliques non-tissés
30.
Method for producing metal porous body, and plating apparatus
A method for producing a metal porous body includes the steps of: performing electrical conduction treatment on a surface of a skeleton of a sheet-like resin porous body having the skeleton with a three-dimensional network structure, to obtain a conductive resin porous body having a conductive layer; performing electroplating treatment on a surface of a skeleton of the conductive resin porous body to obtain a plated resin porous body having a metal plating layer; and performing treatment of removing at least the resin porous body from the plated resin porous body to obtain a metal porous body. In the electroplating treatment, power is supplied to a rotation shaft of a rotating electrode roller while a contact surface of a power supply brush composed of a sintered body is brought into sliding contact with the rotation shaft, with a lubricant, not containing conductive metal powder, interposed therebetween.
This packaging body includes a metal porous body having a long sheet-like shape, a core material having a cylindrical shape, a protective sheet, and a resin film. The metal porous body is wrapped around the core material, the protective sheet is wrapped around so as to cover the outer surface of the wrapped metal porous body, the protective sheet and the metal porous body are covered by the resin film, and the core material is made from paper or a resin.
B65D 85/672 - Réceptacles, éléments d'emballage ou paquets spécialement adaptés à des objets ou à des matériaux particuliers pour matériaux du genre bande ou ruban enroulés en spirale plate sur noyaux
B65H 75/00 - Stockage des bandes, rubans ou d'un matériau filiforme, p. ex. sur tourets
B65H 75/14 - Genres ou types de section transversale circulaire ou polygonale avec deux rebords d'extrémité
32.
Metal porous body and current collector for nickel-metal hydride battery
2 being present in a surface of the framework, when the metal porous body is subjected to at least 30 potential scans between a lower limit potential of −0.10 V and an upper limit potential of +0.65 V with respect to a hydrogen standard potential in not less than 10% by mass and not more than 35% by mass of a potassium hydroxide aqueous solution, at least oxygen being detected within a depth of 5 nm from the surface, and hydrogen being detected at least in the surface.
This metal porous body has a porous metal skeleton and a metal oxide thin film formed on at least a portion of the metal skeleton surface. The metal skeleton is Ni or an Ni alloy, and the metal oxide is a metal oxide other than NiO.
C25D 1/08 - Articles perforés ou foraminés, p. ex. tamis
C25B 1/04 - Hydrogène ou oxygène par électrolyse de l'eau
C25B 9/00 - Cellules ou assemblages de cellulesÉléments de structure des cellulesAssemblages d'éléments de structure, p. ex. assemblages d'électrode-diaphragmeCaractéristiques des cellules relatives aux procédés
C25B 9/10 - Cellules comportant des électrodes fixes de dimensions stables; Assemblages de leurs éléments de structure avec des diaphragmes comprenant une membrane d'échange d'ions dans ou sur laquelle est incrusté du matériau pour électrode
C25B 11/03 - ÉlectrodesLeur fabrication non prévue ailleurs caractérisées par la configuration ou la forme perforées ou foraminées
C25B 11/04 - ÉlectrodesLeur fabrication non prévue ailleurs caractérisées par le matériau
H01M 4/86 - Électrodes inertes ayant une activité catalytique, p. ex. pour piles à combustible
A metal porous body having a connection portion where end portions in a longitudinal direction X of at least two long sheet-shaped metal porous materials are connected in a manner overlapping with each other, each of the metal porous materials having a frame with a three-dimensional network structure, the metal porous body having a recess with a thickness thinner than a thickness of each of the metal porous materials, in the connection portion, the frames of the at least two metal porous materials being entangled with each other, in the recess.
H01M 4/80 - Plaques poreuses, p. ex. supports frittés
B23K 20/04 - Soudage non électrique par percussion ou par une autre forme de pression, avec ou sans chauffage, p. ex. revêtement ou placage au moyen d'un laminoir
B21D 39/03 - Utilisation de procédés permettant d'assembler des objets ou des parties d'objets, p. ex. revêtement par des tôles, autrement que par placageDispositifs de mandrinage des tubes des tôles autrement que par pliage
A method for manufacturing plated wire rod, having: a step for preparing a plated wire rod precursor having a drawn wire-shaped base material and a plating coating provided on the surface of the base material, the base material in the step comprising a first metal, and the plating coating comprising a second metal having a different composition than the first metal; a step for performing skin-pass processing of the plated wire rod precursor using a die, and obtaining a plated wire rod intermediate; a step for inspecting the plated wire rod intermediate for the presence of defects using an eddy current flaw detector and a camera inspection device after the skin-pass processing; and a step for removing defects in the plated wire rod intermediate detected in the inspection step and obtaining a plated wire rod.
B21C 51/00 - Dispositifs de mesure, de calibrage, d'indication, de comptage ou de marquage, spécialement conçus pour être utilisés dans la production ou la manipulation des matériaux concernés par les sous-classes
B21B 1/00 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes
B21C 37/04 - Fabrication de tôles, barres, fils, tubes ou profilés métalliques ou de produits semi-finis similaires, non prévue ailleursFabrication de tubes de forme particulière des barres ou fils métalliques
G01N 21/892 - Recherche de la présence de criques, de défauts ou de souillures dans un matériau mobile, p. ex. du papier, des textiles caractérisée par la crique, le défaut ou la caractéristique de l'objet examiné
G01N 27/90 - Recherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant des variables magnétiques pour rechercher la présence des criques en utilisant les courants de Foucault
H01B 5/02 - Barres, barreaux, fils ou rubans simplesBarres omnibus
H01B 13/00 - Appareils ou procédés spécialement adaptés à la fabrication de conducteurs ou câbles
36.
METAL POROUS BODY, FUEL CELL, AND PRODUCTION METHOD FOR METAL POROUS BODY
233) layer as an outermost layer and has a chromium carbide layer below the chromium oxide layer. The thickness of the chromium oxide layer is 0.1–3 μm, and the thickness of the chromium carbide layer is 0.1–1 μm.
A metal porous body that has a skeleton that has a three-dimensional network structure. The metal porous body is shaped like a sheet. The skeleton: is an alloy that includes at least nickel and chromium; and has iron dissolved therein. Per 1 cm2 of apparent area of the metal porous body, there are 10 or fewer particles of aluminum oxide dust stuck to the surface of the skeleton.
The metallic porous body according to one embodiment of the present invention has a connection part formed by overlapping and connecting respective ends in a longitudinal direction (X) of at least two long sheets of metallic porous material. The metallic porous material has a skeleton having a three-dimensional net-like structure. The connection part includes recessed parts having a thickness less than that of the porous metallic material. The respective skeletons of the at least two sheets of the porous metallic material are intertwined with each other in the recessed parts.
C22C 1/08 - Alliages poreux avec pores ouverts ou fermés
B21D 39/03 - Utilisation de procédés permettant d'assembler des objets ou des parties d'objets, p. ex. revêtement par des tôles, autrement que par placageDispositifs de mandrinage des tubes des tôles autrement que par pliage
39.
METAL POROUS BODY AND METHOD FOR MANUFACTURING METAL POROUS BODY
This metal porous body is shaped like a long sheet and has a skeleton having a three-dimensional mesh-like structure. At an end part of the metal porous body in the short direction, the number of burrs having a length of at least 0.3 mm is at most 0.4 pieces/m.
This plating treatment device forms a plating layer on the surface of an article to be plated by immersing the article to be plated in a plating liquid, the plating treatment device comprising: a plating tank for storing the plating liquid; a power supply roller that rotates while supplying power to the article to be plated, thereby immersing the article to be plated in the plating liquid stored in the plating tank, and then conveying the article to be plated outside of the plating liquid; an anode case disposed inside the plating tank and electrically contacting the plating liquid stored in the plating tank; a control board for controlling the power supplied to the power supply roller and the anode case; a first bus bar for electrically connecting the power supply roller and the control board; and a second bus bar for electrically connecting the anode case and the control board. The first bus bar and the second bus bar are each formed of a plurality of bus bar members including a copper base material and a titanium coating layer which covers the base material surface, and the first bus bar and the second bus bar have a first connection part where the bus bar members connect to each other, and a second connection part where the bus bar members connect to the power supply roller, the anode case, or the control board. The bus bar members have an interval between the base material and the covering layer at a section other than the first connection part and the second connection part.
This method for producing a porous metallic body comprises: a step for obtaining an electroconductive porous resin body having an electroconductive layer by making conductive the surface of a skeleton of a sheet-shaped porous resin body, the skeleton having a three-dimensional network structure; a step for electroplating the surface of the skeleton of the electroconductive porous resin body to obtain a plated porous resin body having a metal-plated layer; and a step for removing at least the porous resin body from the plated porous resin body to obtain a porous metallic body. In the electroplating, the electroconductive porous resin body is supplied with power by a rotating electrode roller; the electrode roller is supplied with power by the sliding contact of a power-supplying brush, constituted of a material composed mainly of iron, with a part of a rotating shaft; and at least the portion of the rotating shaft where the power-supplying brush is in contact is constituted, at least at the surface, of a material composed mainly of iron or nickel.
This method for producing a porous metallic body comprises: a step for obtaining an electroconductive porous resin body having an electroconductive layer by making conductive the surface of a skeleton of a sheet-shaped porous resin body, the skeleton having a three-dimensional network structure; a step for electroplating the surface of the skeleton of the electroconductive porous resin body to obtain a plated porous resin body having a metal-plated layer; and a step for removing at least the porous resin body from the plated porous resin body to obtain a porous metallic body. In the electroplating, power feed is carried as a result of a contact surface of a power-supplying brush formed of a sintered body making sliding contact with the rotating shaft of a rotating electrode roller with a lubricant that does not contain a conductive metal powder provided therebetween.
This method for producing a porous metallic body comprises: a step for obtaining an electroconductive porous resin body having an electroconductive layer by making conductive the surface of a skeleton of a sheet-shaped porous resin body, the skeleton having a three-dimensional network structure; a step for electroplating the surface of the skeleton of the electroconductive porous resin body to obtain a plated porous resin body having a metal-plated layer; and a step for removing at least the porous resin body from the plated porous resin body to obtain a porous metallic body. In the electroplating, power feed is carried as a result of a power-supplying brush, which is formed of a material having carbon as the main component thereof, making sliding contact with the rotating shaft of a rotating electrode roller.
The fuel cell according to the present disclosure is provided with a gas diffusion layer composed of a plate-like metal porous body having a skeleton of three-dimensional network-like structure. The skeleton is formed from a metal or an alloy. The metal porous body is configured such that the ratio of the average pore diameter in a direction parallel to a gas flow direction to the average pore diameter in a direction orthogonal to the gas flow direction is 1.4-2.5.
22 is present at the surface of the skeleton, and in cases where the porous metal body is subjected to at least 30 potential scans between a lower potential limit of -0.10 V and an upper potential limit of +0.65 V relative to a hydrogen standard potential in a 10-35 mass% aqueous solution of potassium hydroxide, at least oxygen is detected within a depth of 5 nm from the surface and hydrogen is detected at least at the surface.
This connector terminal wire comprises 0.1% by mass to 1.5% by mass Fe, 0.02% by mass to 0.7% by mass P, and a total of 0% by mass to 0.7% by mass Sn and/or Mg, the remainder being constituted by Cu and impurities.
H01B 1/02 - Conducteurs ou corps conducteurs caractérisés par les matériaux conducteurs utilisésEmploi de matériaux spécifiés comme conducteurs composés principalement de métaux ou d'alliages
C22F 1/00 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid
C22F 1/08 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du cuivre ou de ses alliages
47.
ALUMINUM ALLOY WIRE, OVERHEAD TRANSMISSION LINE, AND METHOD FOR PRODUCING ALUMINUM ALLOY WIRE
OSAKA PREFECTURE UNIVERSITY PUBLIC CORPORATION (Japon)
Inventeur(s)
Okamoto, Shinya
Iwayama, Isao
Kuwabara, Tetsuya
Kitamura, Shinichi
Akasofu, Yasuhiro
Higashi, Kenji
Takigawa, Yorinobu
Uesugi, Tokuteru
Nagano, Koji
Watabe, Masato
Abrégé
Provided is an aluminum alloy wire containing 0-0.03% by mass of Si, 0.05-0.25% by mass of Fe, and 0.01-0.05% by mass of Zr, the balance being configured from Al and impurities, and the wire diameter being greater than 1.5 mm.
B22D 11/00 - Coulée continue des métaux, c.-à-d. en longueur indéfinie
B22D 11/124 - Accessoires pour le traitement ultérieur ou le travail sur place des barres coulées pour le refroidissement
C22F 1/04 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages
H01B 1/02 - Conducteurs ou corps conducteurs caractérisés par les matériaux conducteurs utilisésEmploi de matériaux spécifiés comme conducteurs composés principalement de métaux ou d'alliages
H01B 5/02 - Barres, barreaux, fils ou rubans simplesBarres omnibus
H01B 13/00 - Appareils ou procédés spécialement adaptés à la fabrication de conducteurs ou câbles
C22F 1/00 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid
According to the present invention, a wire material for a connector terminal contains 0.1-1.5 mass% Fe, 0.05-0.7 mass% Ti, 0-0.5 mass% Mg, and the remainder comprises Cu and impurities.
H01B 1/02 - Conducteurs ou corps conducteurs caractérisés par les matériaux conducteurs utilisésEmploi de matériaux spécifiés comme conducteurs composés principalement de métaux ou d'alliages
H01B 5/02 - Barres, barreaux, fils ou rubans simplesBarres omnibus
H01R 13/03 - Contacts caractérisés par le matériau, p. ex. matériaux de plaquage ou de revêtement
C22F 1/00 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid
C22F 1/08 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du cuivre ou de ses alliages
Provided are a porous metal body that is excellent in terms of corrosion resistance and that is suitable for a collector for batteries such as lithium-ion batteries, capacitors, or fuel cells; and methods for producing the porous metal body. A production method includes a step of coating a porous nickel body with an alloy containing at least nickel and tungsten or a metal containing at least tin; and a subsequent step of a heat treatment. Another production method includes a step of forming a nickel-plated layer on a porous base and then continuously forming an alloy-plated layer containing at least nickel and tungsten or tin, a step of removing the porous base, and a step of reducing metal. Such a method can provide a porous metal body in which tungsten or tin is diffused in a porous nickel body or a nickel-plated layer.
H01M 4/80 - Plaques poreuses, p. ex. supports frittés
C22C 19/03 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
C25D 3/30 - Dépôt électrochimiqueBains utilisés à partir de solutions d'étain
C25D 5/50 - Post-traitement des surfaces revêtues de métaux par voie électrolytique par traitement thermique
H01G 11/68 - Collecteurs de courant caractérisés par leur matériau
H01G 11/70 - Collecteurs de courant caractérisés par leur structure
H01M 4/86 - Électrodes inertes ayant une activité catalytique, p. ex. pour piles à combustible
B32B 15/01 - Produits stratifiés composés essentiellement de métal toutes les couches étant composées exclusivement de métal
C23C 10/28 - Diffusion à l'état solide uniquement d'éléments métalliques ou de silicium dans la couche superficielle de matériaux métalliques au moyen de solides, p. ex. au moyen de poudres, de pâtes
C23C 30/00 - Revêtement avec des matériaux métalliques, caractérisé uniquement par la composition du matériau métallique, c.-à-d. non caractérisé par le procédé de revêtement
C23F 17/00 - Procédés à étapes multiples pour le traitement de surface de matériaux métalliques utilisant au moins un procédé couvert par la classe et au moins un procédé couvert soit par la sous-classe , soit par la sous-classe , soit par la classe
C25D 3/56 - Dépôt électrochimiqueBains utilisés à partir de solutions d'alliages
C25D 5/48 - Post-traitement des surfaces revêtues de métaux par voie électrolytique
C25D 1/08 - Articles perforés ou foraminés, p. ex. tamis
C22C 1/04 - Fabrication des alliages non ferreux par métallurgie des poudres
B22F 3/11 - Fabrication de pièces ou d'objets poreux
H01M 8/0245 - Composites sous forme de produits en couches ou enrobés
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
A heat exchanger equipped with: a heat transfer unit; a fluid passage unit which includes a metal porous body and is disposed in contact with the heat transfer unit, the interior of the fluid passage unit allowing fluid to pass therethrough; and an introducing flow path unit which defines an introducing flow path that guides the fluid into the fluid passage unit. The inflow surface of the fluid passage unit, which is a surface into which the fluid flows, has an area greater than that of an introducing flow path cross section, which is the cross section of the introducing flow path perpendicular to the travel direction of the fluid, the introducing flow path cross section being located in a region adjacent to the upstream side of an inflow position, which is the position where the introducing flow path cross-section makes contact with the fluid flow passage when being moved toward the fluid passage unit along the travel direction of fluid.
F28F 13/02 - Dispositions pour modifier le transfert de chaleur, p. ex. accroissement, diminution en influençant la couche limite
F28D 1/04 - Appareils échangeurs de chaleur comportant des ensembles de canalisations fixes pour une seule des sources de potentiel calorifique, les deux sources étant en contact chacune avec un côté de la paroi de la canalisation, dans lesquels l'autre source de potentiel calorifique est une grande masse de fluide, p. ex. radiateurs domestiques ou de moteur de voiture avec des canalisations d'échange de chaleur immergées dans la masse du fluide avec canalisations tubulaires
51.
Porous metal body and method for producing porous metal body
C25D 1/08 - Articles perforés ou foraminés, p. ex. tamis
C25D 5/12 - Dépôt de plusieurs couches du même métal ou de métaux différents au moins une couche étant du nickel ou du chrome
C25D 5/50 - Post-traitement des surfaces revêtues de métaux par voie électrolytique par traitement thermique
C22C 1/08 - Alliages poreux avec pores ouverts ou fermés
C22C 21/08 - Alliages à base d'aluminium avec le magnésium comme second constituant majeur avec du silicium
B22F 3/11 - Fabrication de pièces ou d'objets poreux
C25D 3/12 - Dépôt électrochimiqueBains utilisés à partir de solutions de nickel ou de cobalt
C25D 5/54 - Dépôt électrochimique sur des surfaces non métalliques
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
C22F 1/11 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du chrome ou de ses alliages
C23C 14/20 - Matériau métallique, bore ou silicium sur des substrats organiques
C23C 24/00 - Revêtement à partir de poudres inorganiques
C25D 3/30 - Dépôt électrochimiqueBains utilisés à partir de solutions d'étain
C25D 5/56 - Dépôt électrochimique sur des surfaces non métalliques de matières plastiques
H01G 11/68 - Collecteurs de courant caractérisés par leur matériau
H01G 11/70 - Collecteurs de courant caractérisés par leur structure
H01M 4/80 - Plaques poreuses, p. ex. supports frittés
C22C 19/05 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel avec du chrome
C25D 3/32 - Dépôt électrochimiqueBains utilisés à partir de solutions d'étain caractérisé par les constituants organiques utilisés pour le bain
C23C 18/16 - Revêtement chimique par décomposition soit de composés liquides, soit de solutions des composés constituant le revêtement, ne laissant pas de produits de réaction du matériau de la surface dans le revêtementDépôt par contact par réduction ou par substitution, p. ex. dépôt sans courant électrique
C23C 18/36 - Revêtement avec l'un des métaux fer, cobalt ou nickelRevêtement avec des mélanges de phosphore ou de bore et de l'un de ces métaux en utilisant des agents réducteurs d'hypophosphites
A method for producing a nickel alloy porous body, which comprises: a step wherein the surface of the skeleton of a resin molded body having a three-dimensional network structure is coated with a coating material that contains a nickel alloy powder of nickel and an additive metal having a volume average particle diameter of 10 μm or less; a step wherein the surface of the skeleton of the resin molded body, which has been coated with the coating material, is plated with nickel; a step wherein the resin molded body is removed; and a step wherein the additive metal is diffused into the nickel by means of a heat treatment.
A porous metal body is provided that is inexpensive, usable for an electrode of a fuel cell or the like, and has excellent corrosion resistance. There is provided a porous metal body for a fuel cell, which is a sheet-shaped porous metal body, including at least nickel, tin, and chromium, in which the chromium concentration of at least one surface of the porous metal body is 3% to 50% by mass. In the porous metal body, preferably, the chromium concentration of one surface is higher than the chromium concentration of another surface.
C22C 19/05 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel avec du chrome
C25D 5/14 - Dépôt de plusieurs couches du même métal ou de métaux différents au moins une couche étant du nickel ou du chrome plusieurs couches étant du nickel ou du chrome, p. ex. couches doubles ou triples
C25D 5/50 - Post-traitement des surfaces revêtues de métaux par voie électrolytique par traitement thermique
C23F 17/00 - Procédés à étapes multiples pour le traitement de surface de matériaux métalliques utilisant au moins un procédé couvert par la classe et au moins un procédé couvert soit par la sous-classe , soit par la sous-classe , soit par la classe
C25D 3/04 - Dépôt électrochimiqueBains utilisés à partir de solutions de chrome
C25D 3/12 - Dépôt électrochimiqueBains utilisés à partir de solutions de nickel ou de cobalt
C25D 3/30 - Dépôt électrochimiqueBains utilisés à partir de solutions d'étain
C23C 18/16 - Revêtement chimique par décomposition soit de composés liquides, soit de solutions des composés constituant le revêtement, ne laissant pas de produits de réaction du matériau de la surface dans le revêtementDépôt par contact par réduction ou par substitution, p. ex. dépôt sans courant électrique
C23C 18/32 - Revêtement avec l'un des métaux fer, cobalt ou nickelRevêtement avec des mélanges de phosphore ou de bore et de l'un de ces métaux
Provided is a porous metal body having superior corrosion resistance to conventional metal porous bodies composed of nickel-tin binary alloys and conventional metal porous bodies composed of nickel-chromium binary alloys. The porous metal body has a three-dimensional network skeleton and contains at least nickel, tin, and chromium. The concentration of chromium contained in the porous metal body is highest at the surface of the skeleton of the porous metal body and decreases toward the inner side of the skeleton. In one embodiment, the chromium concentration at the surface of the skeleton of the porous metal body is more preferably 3% by mass or more and 70% by mass or less.
C21D 9/00 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet
C25D 1/08 - Articles perforés ou foraminés, p. ex. tamis
C25D 5/12 - Dépôt de plusieurs couches du même métal ou de métaux différents au moins une couche étant du nickel ou du chrome
C25D 7/00 - Dépôt électrochimique caractérisé par l'objet à revêtir
C22C 1/08 - Alliages poreux avec pores ouverts ou fermés
H01M 4/80 - Plaques poreuses, p. ex. supports frittés
C25D 5/14 - Dépôt de plusieurs couches du même métal ou de métaux différents au moins une couche étant du nickel ou du chrome plusieurs couches étant du nickel ou du chrome, p. ex. couches doubles ou triples
C25D 5/50 - Post-traitement des surfaces revêtues de métaux par voie électrolytique par traitement thermique
C25D 5/56 - Dépôt électrochimique sur des surfaces non métalliques de matières plastiques
C25D 15/00 - Production électrolytique ou électrophorétique de revêtements contenant des matériaux incorporés, p. ex. particules, "whiskers", fils
B22F 7/00 - Fabrication de couches composites, de pièces ou d'objets à base de poudres métalliques, par frittage avec ou sans compactage
C22C 1/04 - Fabrication des alliages non ferreux par métallurgie des poudres
C22F 1/02 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid en atmosphère neutre ou contrôlée ou dans le vide
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
C22F 1/11 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du chrome ou de ses alliages
C22F 1/16 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid des autres métaux ou de leurs alliages
C23C 14/14 - Matériau métallique, bore ou silicium
C25D 3/06 - Dépôt électrochimiqueBains utilisés à partir de solutions de chrome à partir des solutions de chrome trivalent
C25D 3/12 - Dépôt électrochimiqueBains utilisés à partir de solutions de nickel ou de cobalt
C25D 3/30 - Dépôt électrochimiqueBains utilisés à partir de solutions d'étain
55.
Three-dimensional network aluminum porous body, electrode using the aluminum porous body, and nonaqueous electrolyte battery, capacitor and lithium-ion capacitor with nonaqueous electrolytic solution, each using the electrode
A three-dimensional network aluminum porous body which enables to produce an electrode continuously, an electrode using the aluminum porous body, and a method for producing the electrode is disclosed. A long sheet-shaped three-dimensional network aluminum porous body is provided to be used as a base material in a method for producing an electrode including at least winding off, a thickness adjustment step, a lead welding step, an active material filling step, a drying step, a compressing step, a cutting step and winding-up, wherein the three-dimensional network aluminum porous body has a tensile strength of 0.2 MPa or more and 5 MPa or less.
H01M 4/74 - Grillage ou matériau tisséMétal déployé
H01G 11/70 - Collecteurs de courant caractérisés par leur structure
H01G 11/06 - Condensateurs hybrides avec une des électrodes permettant de doper les ions de façon réversible, p. ex. condensateurs lithium-ion
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
H01M 4/80 - Plaques poreuses, p. ex. supports frittés
H01M 10/39 - Accumulateurs non prévus dans les groupes fonctionnant à haute température
B22F 3/11 - Fabrication de pièces ou d'objets poreux
C22C 1/08 - Alliages poreux avec pores ouverts ou fermés
56.
Three-dimensional net-like aluminum porous body, electrode using the aluminum porous body, nonaqueous electrolyte battery using the electrode, and nonaqueous electrolyte capacitor using the electrode
Provided are a three-dimensional net-like aluminum porous body in which the diameter of cells in the porous body is uneven in the thickness direction of the porous body; a current collector and an electrode each using the aluminum porous body; and methods for producing these members. The porous body is a three-dimensional net-like aluminum porous body in a sheet form, for a current collector, in which the diameter of cells in the porous body is uneven in the thickness direction of the porous body. When a cross section in the thickness direction of the three-dimensional net-like aluminum porous body is divided into three regions of a region 1, a region 2 and a region 3 in this order, the average cell diameter of the regions 1 and 3 is preferably different from the cell diameter of the region 2.
H01M 4/80 - Plaques poreuses, p. ex. supports frittés
H01M 4/74 - Grillage ou matériau tisséMétal déployé
H01M 4/70 - Supports ou collecteurs caractérisés par la forme ou la configuration
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
H01G 11/56 - Électrolytes solides, p. ex. gelsAdditifs pour ceux-ci
H01G 11/50 - Électrodes caractérisées par leur matériau spécialement adaptées aux condensateurs lithium-ion, p. ex. pour doper le lithium ou pour intercalation
H01G 11/06 - Condensateurs hybrides avec une des électrodes permettant de doper les ions de façon réversible, p. ex. condensateurs lithium-ion
An aluminum alloy, an aluminum alloy wire, an aluminum alloy stranded wire, a covered electric wire, and a wire harness that are of high toughness and high electrical conductivity, and a method of manufacturing an aluminum alloy wire are provided. The aluminum alloy wire contains not less than 0.005% and not more than 2.2% by mass of Fe, and a remainder including Al and an impurity. It may further contain not less than 0.005% and not more than 1.0% by mass in total of at least one additive element selected from Mg, Si, Cu, Zn, Ni, Mn, Ag, Cr, and Zr. The Al alloy wire has an electrical conductivity of not less than 58% IACS and an elongation of not less than 10%. The Al alloy wire is manufactured through the successive steps of casting, rolling, wiredrawing, and softening treatment. The softening treatment can be performed to provide an excellent toughness such as elongation and impact resistance and thereby reduce fracture of the electric wire in the vicinity of a terminal portion when the wire harness is installed.
H01B 1/02 - Conducteurs ou corps conducteurs caractérisés par les matériaux conducteurs utilisésEmploi de matériaux spécifiés comme conducteurs composés principalement de métaux ou d'alliages
B21C 1/00 - Fabrication des tôles, fils, barres, tubes métalliques ou d'autres produits semi-finis similaires par étirage
C22F 1/00 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid
C22F 1/02 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid en atmosphère neutre ou contrôlée ou dans le vide
C22F 1/04 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages
58.
POROUS METAL BODY AND METHOD FOR PRODUCING POROUS METAL BODY
The purpose of the present invention is to provide, at low cost, a porous metal body which has more excellent corrosion resistance and is able to be utilized for electrodes of fuel cells. A porous metal body which contains nickel (Ni), tin (Sn) and chromium (Cr) and has a three-dimensional network structure. The content ratio of the tin is from 10% by mass to 25% by mass (inclusive), and the content ratio of the chromium is from 1% by mass to 10% by mass (inclusive). A cross-section of the skeleton of this porous metal body contains a solid solution phase of chromium, nickel and tin. This solid solution phase contains a solid solution phase of chromium and trinickel tin (Ni3Sn) having a chromium content ratio in the solid solution phase of 2% by mass or less, but does not contain a solid solution phase other than the solid solution phase of chromium and trinickel tin (Ni3Sn), which has a chromium content ratio in the solid solution phase of less than 1.5% by mass.
The purpose of the present invention is to provide, at a low price, a metal porous body usable for the electrode of a fuel cell, etc., as well as having exceptional corrosion resistance. The present invention provides a sheet-shaped metal porous body for a fuel cell, wherein the metal porous body includes at least nickel, tin, and chromium, the concentration of chromium on at least one surface of the metal porous body being 3 mass% to 50 mass% inclusive. It is more preferable that the concentration of chromium on one surface of the metal porous body is higher than the concentration of chromium on the other surface.
Provided is a porous metal body that excels in corrosion resistance in comparison to conventional porous metal bodies comprising nickel-tin binary alloys or nickel-chromium binary alloys. The porous metal body has a three-dimensional mesh-like skeleton and contains at least nickel, tin and chromium, wherein the concentration of chromium in the porous metal body is highest at the surface of skeleton of the porous metal body and decreases towards the inner part of the skeleton. In addition, as one embodiment, it is preferred that the concentration of chromium at the surface of the skeleton of the porous metal body is 3-70 mass %.
Provided is a metallic porous body exhibiting excellent corrosion resistance compared to conventional metallic porous bodies formed from a nickel-tin binary alloy and metallic porous bodies formed from a nickel-chrome binary alloy. A metallic porous body at least containing nickel, tin, and chrome. One example of a method for producing such a metallic porous body is a method involving: a conductive cover layer formation step in which a conductive cover layer containing chrome is formed on the surface of a porous body base material formed from a resin material; a metal layer formation step in which a nickel layer and a tin layer are formed in a given order on the surface of the conductive cover layer; a removal step in which the porous body base material is removed; and a dispersion step in which the metal atoms in the nickel layer and the tin layer are dispersed between the nickel layer and the tin layer by being subjected to heat treatment, and the chrome contained in the conductive cover layer is dispersed into the nickel layer and the tin layer.
It is an object of the present invention to provide a method for producing an electrode for an electrochemical element, which can easily adjust a capacity and can produce the electrochemical element at low cost. The method for producing an electrode for an electrochemical element of the present invention includes a thickness adjustment step of compressing an aluminum porous body having continuous pores to adjust the thickness of the aluminum porous body to a predetermined thickness, and a filling step of filling the aluminum porous body, the thickness of which is adjusted, with an active material.
Three-dimensional network aluminum porous body for current collector, and current collector, electrode, nonaqueous electrolyte battery, capacitor and lithium-ion capacitor, each using aluminum porous body
It is an object of the present invention to provide a current collector including an aluminum porous body suitable for an electrode for a nonaqueous electrolyte battery and an electrode for a capacitor electrode, and an electrode using the current collector. In the three-dimensional network aluminum porous body for a current collector of the present invention, when a sheet-shaped three-dimensional aluminum porous body is divided in the width direction into a central region and two end regions with the central region situated therebetween, the weight per unit area of aluminum in the aluminum porous body at the two end regions is larger than the weight per unit area of aluminum in the aluminum porous body at the central region.
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
H01M 4/13 - Électrodes pour accumulateurs à électrolyte non aqueux, p. ex. pour accumulateurs au lithiumLeurs procédés de fabrication
H01M 4/58 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFyEmploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de structures polyanioniques, p. ex. phosphates, silicates ou borates
H01G 11/70 - Collecteurs de courant caractérisés par leur structure
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
An aluminum electric wire includes an annealing conductor that is made up of elemental wires made of an aluminum alloy containing 0.90-1.20 mass % Fe, 0.10-0.25 mass % Mg, 0.01-0.05 mass % Ti, 0.0005-0.0025 mass % B, and the balance being Al and has a tensile strength of 110 MPa or more, a breaking elongation of 15% or more, and an electric conductivity of 58% IACS or more, and an insulating material covering the conductor. The wire is produced by casting an aluminum alloy prepared by rapidly solidifying a molten aluminum alloy having the above composition, producing the wires by subjecting the alloy to plasticity processing, producing the conductor by bunching the wires, subjecting the wires or the conductor to annealing at 250° C. or higher, and then covering the conductor with the insulator.
H01B 13/06 - Isolation des conducteurs ou des câbles
H01B 1/02 - Conducteurs ou corps conducteurs caractérisés par les matériaux conducteurs utilisésEmploi de matériaux spécifiés comme conducteurs composés principalement de métaux ou d'alliages
C22F 1/02 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid en atmosphère neutre ou contrôlée ou dans le vide
C22F 1/04 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages
H01B 13/00 - Appareils ou procédés spécialement adaptés à la fabrication de conducteurs ou câbles
65.
METHOD FOR PRODUCING POROUS METAL BODY AND POROUS METAL BODY
A method for producing a porous metal body, the method being characterized in comprising: a step for forming an electroconductive covering layer by applying a coating on at least a skeleton surface of a porous resin in the form of a three-dimensional mesh, the coating containing at least one type of microparticle selected from the group consisting of metallic microparticles and metallic oxide microparticles having a volume-average grain size of 10 μm or less, and a carbon powder having a volume-average grain size of 10 μm or less; a step for forming at least one type of metal plating layer; and a step for using a heat-treatment to remove the three-dimensional-mesh-form resin, reduce the metal microparticles or metallic oxide microparticles and the metal plating layer, and carry out heat diffusion.
An aluminum alloy, an aluminum alloy wire, an aluminum alloy stranded wire, a covered electric wire, and a wire harness that are of high toughness and high electrical conductivity, and a method of manufacturing an aluminum alloy wire are provided. The aluminum alloy wire contains not less than 0.005% and not more than 2.2% by mass of Fe, and a remainder including Al and an impurity. It may further contain not less than 0.005% and not more than 1.0% by mass in total of at least one additive element selected from Mg, Si, Cu, Zn, Ni, Mn, Ag, Cr, and Zr. The Al alloy wire has an electrical conductivity of not less than 58% IACS and an elongation of not less than 10%. The Al alloy wire is manufactured through the successive steps of casting, rolling, wiredrawing, and softening treatment. The softening treatment can be performed to provide an excellent toughness such as elongation and impact resistance and thereby reduce fracture of the electric wire in the vicinity of a terminal portion when the wire harness is installed.
H01B 1/02 - Conducteurs ou corps conducteurs caractérisés par les matériaux conducteurs utilisésEmploi de matériaux spécifiés comme conducteurs composés principalement de métaux ou d'alliages
B21C 1/00 - Fabrication des tôles, fils, barres, tubes métalliques ou d'autres produits semi-finis similaires par étirage
C22F 1/00 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid
C22F 1/02 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid en atmosphère neutre ou contrôlée ou dans le vide
C22F 1/04 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages
67.
ALUMINUM ALLOY WIRE FOR USE IN BOLTS, BOLT, AND MANUFACTURING METHOD OF THESE.
This aluminum alloy wire for use in bolts contains, in mass %, Si:0.60-1.5%, Fe:0.02-0.40%, Cu:0.50-1.2%, Mn:0.50-1.1%, Mg:0.70-1.3%, Cr:0.01-0.30%, Zn:0.005-0.50%, Ti:0.01-0.20% and Zr:0.05-0.20%, the remainder being Al and unavoidable impurities. A part of the Si and Mg content is in the form of Mg2Si, and Mg2Si/(Mn+Cr), the ratio of the content of Mg2Si to the total content of Mn and Cr, is 1.0-2.1.
C22C 21/02 - Alliages à base d'aluminium avec le silicium comme second constituant majeur
B21B 3/00 - Laminage des matériaux faits d'alliages particuliers dans la mesure où la nature de l'alliage exige ou permet l'emploi de méthodes ou de séquences particulières
C22C 21/06 - Alliages à base d'aluminium avec le magnésium comme second constituant majeur
C22F 1/05 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages de type Al-Si-Mg, c.-à-d. contenant du silicium et du magnésium en proportions sensiblement égales
F16B 35/00 - Boulons filetésBoulons d'ancrageGoujons filetésVisVis de pression
C22F 1/00 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid
68.
Electrode using three-dimensional network aluminum porous body, and nonaqueous electrolyte battery, capacitor and lithium-ion capacitor with nonaqueous electrolytic solution, each using the electrode
In an electrode according to the present invention including a three-dimensional network aluminum porous body as a base material, the electrode is a sheet-shaped electrode, and a cell of the three-dimensional network aluminum porous body has an elliptic shape having a minor axis in the thickness direction of the electrode in a cross section parallel to the longitudinal direction and thickness direction of the electrode, and a cell of the three-dimensional network aluminum porous body has an elliptic shape having a minor axis in the thickness direction of the electrode in a cross section parallel to the width direction and thickness direction of the electrode. The electrode is preferably obtained by subjecting the three-dimensional network aluminum porous body to at least a current collecting lead welding step, an active material filling step and a compressing step.
H01M 10/39 - Accumulateurs non prévus dans les groupes fonctionnant à haute température
70.
Three-dimensional network aluminum porous body, electrode using the aluminum porous body, and nonaqueous electrolyte battery, capacitor using nonaqueous electrolytic solution and lithium-ion capacitor using nonaqueous electrolytic solution, each using the electrode
A three-dimensional network aluminum porous body in which the amount of aluminum forming a skeleton of the three-dimensional network aluminum porous body is uneven in the thickness direction, and a current collector and an electrode each using the aluminum porous body, and a manufacturing method thereof. In such a sheet-shaped three-dimensional network aluminum porous body for a current collector, the amount of aluminum forming a skeleton of the three-dimensional network aluminum porous body is uneven in the thickness direction. For example, in the case where a cross section in the thickness direction of the three-dimensional network aluminum porous body is divided into three regions of a region 1, a region 2 and a region 3 in this order, each region is configured so that the average of the amounts of aluminum in the region 1 and the region 3 differs from the amount of aluminum in the region 2.
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
H01G 9/045 - Électrodes caractérisées par le matériau à base d'aluminium
It is an object of the present invention to provide a method for producing an electrode for an electrochemical element, which can easily adjust a capacity and can produce the electrochemical element at low cost. The method for producing an electrode for an electrochemical element of the present invention includes a thickness adjustment step of compressing an aluminum porous body having continuous pores to adjust the thickness of the aluminum porous body to a predetermined thickness, and a filling step of filling the aluminum porous body, the thickness of which is adjusted, with an active material.
B21B 45/00 - Dispositifs pour le traitement de surface des pièces spécialement combinés aux laminoirs, disposés dans les laminoirs, ou adaptés pour être utilisés avec les laminoirs
H01R 43/00 - Appareils ou procédés spécialement adaptés à la fabrication, l'assemblage, l'entretien ou la réparation de connecteurs de lignes ou de collecteurs de courant ou pour relier les conducteurs électriques
72.
Three-dimensional network aluminum porous body, electrode using the aluminum porous body, and nonaqueous electrolyte battery, capacitor and lithium-ion capacitor with nonaqueous electrolytic solution, each using the electrode
A three-dimensional network aluminum porous body which enables to produce an electrode continuously, an electrode using the aluminum porous body, and a method for producing the electrode. A long sheet-shaped three-dimensional network aluminum porous body is provided to be used as a base material in a method for producing an electrode including at least winding off, a thickness adjustment step, a lead welding step, an active material filling step, a drying step, a compressing step, a cutting step and winding-up, wherein the three-dimensional network aluminum porous body has a tensile strength of 0.2 MPa or more and 5 MPa or less.
H01G 11/06 - Condensateurs hybrides avec une des électrodes permettant de doper les ions de façon réversible, p. ex. condensateurs lithium-ion
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
H01G 11/70 - Collecteurs de courant caractérisés par leur structure
H01M 4/80 - Plaques poreuses, p. ex. supports frittés
H01M 10/39 - Accumulateurs non prévus dans les groupes fonctionnant à haute température
B22F 3/11 - Fabrication de pièces ou d'objets poreux
C22C 1/08 - Alliages poreux avec pores ouverts ou fermés
73.
Current collector using three-dimensional network aluminum porous body, electrode using the current collector, and nonaqueous electrolyte battery, capacitor and lithium-ion capacitor with nonaqueous electrolytic solution, each using the electrode, and method for producing the electrode
It is an object of the present invention to provide an electrode using a current collector made of an aluminum porous body which is suitably used for an electrode for a nonaqueous electrolyte battery and an electrode for a capacitor, and a method for producing the electrode. In the current collector of the present invention, a strip-shaped compressed part compressed in a thickness direction is formed at one end part of a three-dimensional network aluminum porous body and a tab lead is bonded to the compressed part by welding. The width of the compressed part is 2 to 10 mm. Further, the electrode is formed by filling the current collector with an active material.
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
74.
Three-dimensional network aluminum porous body for current collector, electrode using the aluminum porous body, and battery, capacitor and lithium-ion capacitor each using the electrode
It is an object of the present invention to provide a sheet-shaped three-dimensional network aluminum porous body for a current collector which is suitably used for electrodes for nonaqueous electrolyte batteries and electrodes for capacitors, an electrode and a capacitor each using the same. In such a three-dimensional network aluminum porous body for a current collector, the aluminum porous body has been made to have a compressive strength in a thickness direction of 0.2 MPa or more in order to efficiently fill an active material into the sheet-shaped three-dimensional network aluminum porous body.
H01M 4/80 - Plaques poreuses, p. ex. supports frittés
75.
THREE-DIMENSIONAL POROUS ALUMINUM MESH FOR USE IN COLLECTOR, COLLECTOR USING SAID POROUS ALUMINUM MESH, ELECTRODE USING SAID COLLECTOR, AND NONAQUEOUS-ELECTROLYTE BATTERY, CAPACITOR, AND LITHIUM-ION CAPACITOR USING SAID ELECTRODE
The purpose of the present invention is to provide: a sheet-shaped three-dimensional porous aluminum mesh suitable for use as a collector substrate for an electrode in a nonaqueous-electrolyte battery or a capacitor using a nonaqueous liquid electrolyte; and an electrode, capacitor, and lithium-ion capacitor using said porous aluminum mesh. This three-dimensional porous aluminum mesh for use in a collector is sheet-shaped, and the surface roughness (Ra) of the skeleton forming said porous aluminum mesh is at least 3 µm and preferably no greater than 50 µm.
THREE-DIMENSIONAL POROUS ALUMINUM MESH, ELECTRODE USING SAME, NONAQUEOUS-ELECTROLYTE BATTERY USING SAID ELECTRODE, AND CAPACITOR AND LITHIUM-ION CAPACITOR USING NONAQUEOUS LIQUID ELECTROLYTE
The purpose of the present invention is to provide: a three-dimensional porous aluminum mesh that allows continuous manufacture of electrodes; an electrode using said porous aluminum mesh; and a manufacturing method therefor. This invention is an elongated sheet-shaped three-dimensional porous aluminum mesh used as a substrate in an electrode manufacturing method that includes, at least, spool-out, a thickness-adjustment step, a lead-welding step, an active-material packing step, a drying step, a compression step, a cutting step, and take-up. Said porous aluminum mesh is characterized by a tensile strength of 0.2 to 5 MPa.
H01M 4/80 - Plaques poreuses, p. ex. supports frittés
B22F 3/11 - Fabrication de pièces ou d'objets poreux
B22F 7/04 - Fabrication de couches composites, de pièces ou d'objets à base de poudres métalliques, par frittage avec ou sans compactage de couches successives avec une ou plusieurs couches non réalisées à partir de poudre, p. ex. à partir de tôles
H01G 11/06 - Condensateurs hybrides avec une des électrodes permettant de doper les ions de façon réversible, p. ex. condensateurs lithium-ion
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
H01G 11/70 - Collecteurs de courant caractérisés par leur structure
Provided is an electrochemical device such as a nonaqueous-electrolyte battery that exhibits excellent characteristics such as discharge characteristics due to the use of a collector comprising porous metal (e.g., aluminum) bodies to form a thick electrode. The electrode in said electrochemical device, in which an active material is packed into porous metal bodies, is characterized in that said porous metal bodies are sheet-shaped and the electrode is a layered porous body comprising a plurality of single-layer porous metal bodies layered together and electrically connected to each other. Porous aluminum bodies having three-dimensional mesh structures are suitable for said porous metal bodies.
H01M 10/0585 - Structure ou fabrication d'accumulateurs ayant uniquement des éléments de structure plats, c.-à-d. des électrodes positives plates, des électrodes négatives plates et des séparateurs plats
H01M 4/13 - Électrodes pour accumulateurs à électrolyte non aqueux, p. ex. pour accumulateurs au lithiumLeurs procédés de fabrication
Provided is a structure for effectively using a novel porous metal (e.g., aluminum) body, provided with a three-dimensional mesh structure, in a battery electrode. An air battery that uses oxygen as the positive-electrode active material, uses a porous aluminum body having a three-dimensional mesh structure as the positive-electrode collector, and uses an electrode wherein a positive-electrode layer comprising a catalyst and a binder is provided on the surface of the skeleton of the porous aluminum body. Also, an electrode provided with a hole connecting a porous aluminum body with a positive-electrode layer on the surface of the skeleton thereof, or an electrode having a cavity that connects to the interior of said skeleton; and an air battery using said electrode.
H01M 12/06 - Éléments hybridesLeur fabrication composés d'un demi-élément du type élément à combustible et d'un demi-élément du type élément primaire avec une électrode métallique et une électrode à gaz
H01M 12/08 - Éléments hybridesLeur fabrication composés d'un demi-élément du type élément à combustible et d'un demi-élément du type à élément secondaire
79.
THREE-DIMENSIONAL POROUS ALUMINUM MESH FOR USE IN COLLECTOR, AND COLLECTOR, ELECTRODE, NONAQUEOUS-ELECTROLYTE BATTERY, CAPACITOR, AND LITHIUM-ION CAPACITOR USING SAID POROUS ALUMINUM
The purpose of the present invention is to provide: a collector comprising porous aluminum that is suitable for use in an electrode for a nonaqueous-electrolyte battery or a capacitor; and an electrode using said collector. If this sheet-shaped three-dimensional porous aluminum mesh for use in a collector is divided, in the width direction thereof, into a middle region and two end regions on either side thereof, the mass of aluminum per unit area is higher in the end regions than in the middle region.
H01M 4/80 - Plaques poreuses, p. ex. supports frittés
H01G 11/06 - Condensateurs hybrides avec une des électrodes permettant de doper les ions de façon réversible, p. ex. condensateurs lithium-ion
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
H01G 11/70 - Collecteurs de courant caractérisés par leur structure
H01M 10/0585 - Structure ou fabrication d'accumulateurs ayant uniquement des éléments de structure plats, c.-à-d. des électrodes positives plates, des électrodes négatives plates et des séparateurs plats
H01M 4/13 - Électrodes pour accumulateurs à électrolyte non aqueux, p. ex. pour accumulateurs au lithiumLeurs procédés de fabrication
THREE-DIMENSIONAL POROUS ALUMINUM MESH FOR USE IN COLLECTOR, ELECTRODE USING SAME, AND BATTERY, CAPACITOR, AND LITHIUM-ION CAPACITOR USING SAID ELECTRODE
The purpose of the present invention is to provide: a sheet-shaped three-dimensional porous aluminum mesh for use in a collector, said porous aluminum mesh being suitable for use in an electrode for a nonaqueous-electrolyte battery or a capacitor; and an electrode and capacitor using same. In order to be able to efficiently pack an active material into this sheet-shaped three-dimensional porous aluminum mesh for use in a collector, the compressive strength of said porous aluminum in the thickness direction thereof is made at least 0.2 MPa, the surface roughness (Ra) of the skeleton forming said porous aluminum is set to between 0.5 and 10 µm, inclusive, and the mean cell diameter of said porous aluminum is set to between 50 and 800 µm, inclusive.
H01M 4/80 - Plaques poreuses, p. ex. supports frittés
H01G 11/06 - Condensateurs hybrides avec une des électrodes permettant de doper les ions de façon réversible, p. ex. condensateurs lithium-ion
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
H01G 11/70 - Collecteurs de courant caractérisés par leur structure
H01M 10/0585 - Structure ou fabrication d'accumulateurs ayant uniquement des éléments de structure plats, c.-à-d. des électrodes positives plates, des électrodes négatives plates et des séparateurs plats
H01M 4/13 - Électrodes pour accumulateurs à électrolyte non aqueux, p. ex. pour accumulateurs au lithiumLeurs procédés de fabrication
The purpose of the present invention is to provide an electrode comprising a porous aluminum member having a three-dimensional reticulated structure, and a battery, capacitor and lithium ion capacitor comprising the electrode. The electrode as recited in the present invention comprises a porous aluminum member having a three-dimensional reticulated structure as the base material, and is sheet shaped. In a cross section parallel to the lengthwise direction and the thickness direction of the electrode, the cells of the porous aluminum member having a three-dimensional reticulated structure have an elliptical shape such that the short axis is oriented in the thickness direction of the electrode. In a cross section parallel to the widthwise direction and the thickness direction of the electrode, the cells of the porous aluminum member having a three-dimensional reticulated structure have an elliptical shape such that the short axis is oriented in the thickness direction of the electrode. Preferably, the electrode is obtained by subjecting the porous aluminum member having a three-dimensional reticulated structure to at least a collector-lead welding step, an active substance loading step, and a compression step.
H01M 4/80 - Plaques poreuses, p. ex. supports frittés
H01G 11/06 - Condensateurs hybrides avec une des électrodes permettant de doper les ions de façon réversible, p. ex. condensateurs lithium-ion
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
H01G 11/70 - Collecteurs de courant caractérisés par leur structure
H01G 9/055 - Électrodes à feuille mince gravée chimiquemennt
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
The purpose of the present invention is to provide an electrode for an electrochemical element, said electrode making it possible to obtain an electrochemical element that has a sufficiently high output relative to the prior art, and a method of manufacturing the electrode. The method of manufacturing an electrode for an electrochemical element includes a slurry loading step for loading a slurry comprising an active substance into the interconnected pores of a porous aluminum member that has interconnected pores, and a slurry drying step for drying the loaded slurry; therein, the electrode for an electrochemical element is prepared without including a compression step for compressing the porous aluminum body after loading and drying the slurry subsequent to the slurry drying step. In the electrode for an electrochemical element, a mixture comprising an active substance is loaded into the interconnected pores of the porous aluminum member that has interconnected pores, and the porosity (%) of the porous aluminum member, as defined by the formula indicated below, is within the range of 15-55%. Porosity (%) = {1-(the volume of the electrode material/the apparent volume of the electrode)} x 100
The purpose of the present invention is to provide an inexpensive method of manufacturing an electrode for an electrochemical element. The method of manufacturing an electrode for an electrochemical element comprises a slurry preparation step for preparing a slurry of a mixture comprising an active substance, a slurry loading step for loading the slurry into the interconnected pores of a porous aluminum member that has interconnected pores, and a slurry drying step for drying the loaded slurry. During the slurry preparation step, the slurry is prepared using water as a solvent.
The purpose of the present invention is to provide an inexpensive, high-capacity electrochemical element. The electrochemical element is equipped with an electrode for an electrochemical element in which the positive collector and/or the negative collector is a porous metal member that has interconnected pores into which a mixture comprising an active substance is loaded.
H01M 4/131 - Électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p. ex. LiCoOx
H01M 4/133 - Électrodes à base de matériau carboné, p. ex. composés d'intercalation du graphite ou CFx
H01M 4/134 - Électrodes à base de métaux, de Si ou d'alliages
H01M 4/136 - Électrodes à base de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFy
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/485 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques d'oxydes ou d'hydroxydes mixtes pour insérer ou intercaler des métaux légers, p. ex. LiTi2O4 ou LiTi2OxFy
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/58 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFyEmploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de structures polyanioniques, p. ex. phosphates, silicates ou borates
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
The purpose of the present invention is to provide an electrode for use in an electrochemical device that has sufficiently large capacity and output. This electrode for use in an electrochemical device is characterized in that: a mixture containing an active material, a conduction aid, and a binder is packed into connecting holes in a porous aluminum body; the conduction aid constitutes no more than 4% of the mass of the mixture; and the binder constitutes less than 5% of the mass of the mixture.
The purpose of the present invention is to provide an method of manufacturing an electrode for an electrochemical element, said method making it possible to adjust the capacity easily and produce the electrode inexpensively. The method of manufacturing an electrode for an electrochemical element comprises a thickness adjustment step in which a porous aluminum body that has interconnected pores is compressed so as to attain a prescribed thickness, and a loading step in which an active substance is loaded into the porous aluminum member after adjusting the thickness thereof.
H01M 4/80 - Plaques poreuses, p. ex. supports frittés
87.
THREE-DIMENSIONAL POROUS ALUMINUM MESH, ELECTRODE USING SAME, NONAQUEOUS-ELECTROLYTE BATTERY USING SAID ELECTRODE, AND CAPACITOR AND LITHIUM-ION CAPACITOR USING NONAQUEOUS LIQUID ELECTROLYTE
The present invention provides: a three-dimensional porous aluminum mesh having a cell diameter that is not uniform in a thickness direction; a collector and electrode using said porous aluminum mesh; and manufacturing methods therefor. This sheet-shaped three-dimensional porous aluminum mesh for use in a collector has a cell diameter that is not uniform in the thickness direction. In particular, if the cross-section of said three-dimensional porous aluminum mesh in the thickness direction is divided into a first region, a second region, and a third region, in that order, the mean of the cell diameters in the first and third regions is preferably different from the cell diameter in the second region.
H01M 4/80 - Plaques poreuses, p. ex. supports frittés
H01G 11/06 - Condensateurs hybrides avec une des électrodes permettant de doper les ions de façon réversible, p. ex. condensateurs lithium-ion
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
H01G 11/70 - Collecteurs de courant caractérisés par leur structure
C22C 1/08 - Alliages poreux avec pores ouverts ou fermés
C25D 7/00 - Dépôt électrochimique caractérisé par l'objet à revêtir
88.
COLLECTOR USING THREE-DIMENSIONAL POROUS ALUMINUM MESH, ELECTRODE USING SAID COLLECTOR, NONAQUEOUS-ELECTROLYTE BATTERY USING SAID ELECTRODE, CAPACITOR AND LITHIUM-ION CAPACITOR USING NONAQUEOUS LIQUID ELECTROLYTE, AND ELECTRODE MANUFACTURING METHOD
The purpose of the present invention is to provide: an electrode using a collector comprising porous aluminum that is suitable for an electrode in a nonaqueous-electrolyte battery or a capacitor; and a method for manufacturing said electrode. In this collector, a compressed band that is compressed in a thickness direction is formed in one end of a three-dimensional porous aluminum mesh, and a tab lead is welded to said compressed band. The compressed band is 2 to 10 mm wide. The abovementioned electrode consists of an active material packed into this collector.
The purpose of the present invention is to provide an electrochemical device that is easy to manufacture and has excellent characteristics. Said electrochemical device comprises the following layered together: first electrodes each comprising porous aluminum containing a through-hole filled with an active material; separators; and second electrodes. The electrochemical device comprises a plurality of electrode bodies layered but not wound, each of which contains a first electrode, separator, and second electrode as described above.
H01M 4/80 - Plaques poreuses, p. ex. supports frittés
H01G 11/06 - Condensateurs hybrides avec une des électrodes permettant de doper les ions de façon réversible, p. ex. condensateurs lithium-ion
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
H01G 11/70 - Collecteurs de courant caractérisés par leur structure
H01M 10/0585 - Structure ou fabrication d'accumulateurs ayant uniquement des éléments de structure plats, c.-à-d. des électrodes positives plates, des électrodes négatives plates et des séparateurs plats
H01M 4/13 - Électrodes pour accumulateurs à électrolyte non aqueux, p. ex. pour accumulateurs au lithiumLeurs procédés de fabrication
THREE-DIMENSIONAL POROUS ALUMINUM MESH FOR USE IN COLLECTOR, AND ELECTRODE, NONAQUEOUS-ELECTROLYTE BATTERY, CAPACITOR, AND LITHIUM-ION CAPACITOR USING SAID POROUS ALUMINUM
The purpose of the present invention is to provide: a sheet-shaped three-dimensional porous aluminum mesh for use in a collector, said porous aluminum mesh being suitable for use in an electrode for a nonaqueous-electrolyte battery or a capacitor; and an electrode and capacitor using same. In order to be able to better pack an active-material slurry into this sheet-shaped three-dimensional porous aluminum mesh for use in a collector used in an electrode, the mean cell diameter of said porous aluminum is set to between 500 and 1,000 µm, inclusive.
H01M 4/80 - Plaques poreuses, p. ex. supports frittés
H01G 11/06 - Condensateurs hybrides avec une des électrodes permettant de doper les ions de façon réversible, p. ex. condensateurs lithium-ion
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
H01G 11/70 - Collecteurs de courant caractérisés par leur structure
H01M 10/0585 - Structure ou fabrication d'accumulateurs ayant uniquement des éléments de structure plats, c.-à-d. des électrodes positives plates, des électrodes négatives plates et des séparateurs plats
H01M 4/13 - Électrodes pour accumulateurs à électrolyte non aqueux, p. ex. pour accumulateurs au lithiumLeurs procédés de fabrication
POROUS ALUMINUM MEMBER HAVING THREE-DIMENSIONAL RETICULATED STRUCTURE, COLLECTOR AND ELECTRODE USING POROUS ALUMINUM MEMBER, NON-AQUEOUS ELECTROLYTE BATTERY USING ELECTRODE, AND CAPACITOR AND LITHIUM-ION CAPACITOR USING NON-AQUEOUS ELECTROLYTE SOLUTION
The purpose of the present invention is to provide: a porous aluminum member having a three-dimensional reticulated structure which can be used in a process for the continuous production of electrodes and enables the production of collectors having low electrical resistance in the collection direction; an electrode using said porous aluminum member; and a method of manufacturing said electrode. In the sheet-shaped porous aluminum member having a three-dimensional reticulated structure for use in a collector, if two orthogonal directions are respectively defined as the X direction and the Y direction, then the cell diameters in the X direction of the porous aluminum member having a three-dimensional reticulated structure are different from the cell diameters in the Y direction thereof.
THREE-DIMENSIONAL POROUS ALUMINUM MESH, ELECTRODE USING SAME, NONAQUEOUS-ELECTROLYTE BATTERY USING SAID ELECTRODE, AND CAPACITOR AND LITHIUM-ION CAPACITOR USING NONAQUEOUS LIQUID ELECTROLYTE
The purpose of the present invention is to provide: a three-dimensional porous aluminum mesh, the amount of aluminum forming the skeleton of which is not uniform in a thickness direction; a collector and electrode using said porous aluminum; and manufacturing methods therefor. The amount of aluminum forming the skeleton of this sheet-shaped three-dimensional porous aluminum mesh for use in a collector is not uniform in the thickness direction. In particular, if the thicknesswise cross-section of said three-dimensional porous aluminum mesh is divided into a first region, a second region, and a third region, in that order, the mean of the amounts of aluminum in the first and third regions is preferably different from the amount of aluminum in the second region.
H01M 4/80 - Plaques poreuses, p. ex. supports frittés
H01G 11/06 - Condensateurs hybrides avec une des électrodes permettant de doper les ions de façon réversible, p. ex. condensateurs lithium-ion
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
H01G 11/70 - Collecteurs de courant caractérisés par leur structure
H01M 10/0585 - Structure ou fabrication d'accumulateurs ayant uniquement des éléments de structure plats, c.-à-d. des électrodes positives plates, des électrodes négatives plates et des séparateurs plats
H01M 4/13 - Électrodes pour accumulateurs à électrolyte non aqueux, p. ex. pour accumulateurs au lithiumLeurs procédés de fabrication
THREE-DIMENSIONAL POROUS ALUMINUM MESH FOR USE IN COLLECTOR, ELECTRODE USING SAME, NONAQUEOUS-ELECTROLYTE BATTERY USING SAID ELECTRODE, AND NONAQUEOUS-LIQUID-ELECTROLYTE CAPACITOR AND LITHIUM-ION CAPACITOR
The purpose of the present invention is to provide: a porous aluminum body for use in a collector, said porous aluminum body having decreased electrical resistivity and increased current-collection performance; and an electrode, nonaqueous-electrolyte battery, capacitor, and lithium-ion capacitor using said porous aluminum body. This sheet-shaped three-dimensional porous aluminum mesh for use in a collector has an electrical resistivity of at most 0.5 mΩ∙cm in both in-plane directions and the thickness direction. The thickness of an oxide film on the surface of the aluminum skeleton of said porous aluminum is preferably between 5 and 200 nm, inclusive.
H01M 4/80 - Plaques poreuses, p. ex. supports frittés
H01G 11/06 - Condensateurs hybrides avec une des électrodes permettant de doper les ions de façon réversible, p. ex. condensateurs lithium-ion
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
H01G 11/70 - Collecteurs de courant caractérisés par leur structure
H01M 10/0585 - Structure ou fabrication d'accumulateurs ayant uniquement des éléments de structure plats, c.-à-d. des électrodes positives plates, des électrodes négatives plates et des séparateurs plats
H01M 4/13 - Électrodes pour accumulateurs à électrolyte non aqueux, p. ex. pour accumulateurs au lithiumLeurs procédés de fabrication
A porous metal which has a three-dimensional network structure constituted of an alloy comprising Ni and Cr, the porous metal being characterized in that the porous metal has a framework which is constituted of a shell having a hollow at the center and that when the cross-section of the shell is equally divided in the thickness directions into three portions, i.e., outer, central, and inner portions, and the concentrations, in terms of percent by weight, of Cr in the outer portion, the central portion, and the inner portion are expressed by a, b, and c, respectively, then the a, b, and c satisfy the relationship (1). |(a+c)/2-b|÷(a+b+c)/3 < 0.20 (1)
C25D 1/08 - Articles perforés ou foraminés, p. ex. tamis
C22C 1/08 - Alliages poreux avec pores ouverts ou fermés
C22F 1/00 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid
C22F 1/02 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid en atmosphère neutre ou contrôlée ou dans le vide
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
C25D 5/54 - Dépôt électrochimique sur des surfaces non métalliques
C25D 7/00 - Dépôt électrochimique caractérisé par l'objet à revêtir
Provided is a metallic porous body having excellent corrosion resistance, which is suitable for batteries, such as lithium-ion batteries, capacitors and current collectors of fuel cells. A method for manufacturing the metallic porous body is also provided. The manufacturing method includes: a step of coating a nickel porous body with an alloy, which contains at least nickel and tungsten, or with a metal, which contains at least tin; and a step of performing heat treatment after such step. Alternatively, the manufacturing method includes: a step of forming, continuously after forming a nickel plating layer on a porous base material, an alloy plating layer, which contains at least nickel and tungsten or tin; a step of removing the porous base material; and a step of reducing the metal. The metallic porous body is obtained using the methods, said metallic porous body having tungsten or tin diffused in the nickel porous body or the nickel plating layer.
Three-dimensional net-like aluminum porous body, electrode using the aluminum porous body, nonaqueous electrolyte battery using the electrode, and nonaqueous electrolyte capacitor using the electrode
Provided are a three-dimensional net-like aluminum porous body in which the diameter of cells in the porous body is uneven in the thickness direction of the porous body; a current collector and an electrode each using the aluminum porous body; and methods for producing these members. The porous body is a three-dimensional net-like aluminum porous body in a sheet form, for a current collector, in which the diameter of cells in the porous body is uneven in the thickness direction of the porous body. When a cross section in the thickness direction of the three-dimensional net-like aluminum porous body is divided into three regions of a region 1, a region 2 and a region 3 in this order, the average cell diameter of the regions 1 and 3 is preferably different from the cell diameter of the region 2.
H01M 4/131 - Électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p. ex. LiCoOx
97.
THREE-DIMENSIONAL NET-LIKE ALUMINUM POROUS MATERIAL, ELECTRODE COMPRISING THE ALUMINUM POROUS MATERIAL, NON-AQUEOUS ELECTROLYTE BATTERY EQUIPPED WITH THE ELECTRODE, AND NON-AQUEOUS ELECTROLYTIC SOLUTION CAPACITOR EQUIPPED WITH THE ELECTRODE
Disclosed are: a three-dimensional net-like aluminum porous material in which the cell diameters are not uniform when observed in the thicknesswise direction; a current collector and an electrode each of which comprises the aluminum porous material; and a process for producing the aluminum porous material. Specifically disclosed is a sheet-shaped three-dimensional net-like aluminum porous material for a current collector, which is characterized in that the cell diameters are not uniform when observed in the thicknesswise direction. When the cross-section of the three-dimensional net-like aluminum porous material in the thicknesswise direction is divided into three regions, i.e., a region (1), a region (2) and a region (3) in this order, it is preferred that each of the average cell diameters of the region (1) and the region (3) is different from the average cell diameter of the region (2).
A porous metal member composed of an alloy at least containing nickel and tungsten is provided. The alloy may contain 50 to 80 wt % of nickel and 20 to 50 wt % of tungsten and may further contain 10 wt % or less of phosphorus and/or 10 wt % or less of boron. Such a porous metal member can be produced by, for example, making a porous base such as a urethane foam be electrically conductive, forming an alloy film containing nickel and tungsten, then removing the porous base from the alloy film, and subsequently reducing the alloy.
B32B 5/18 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par le fait qu'une des couches contient un matériau sous forme de mousse ou essentiellement poreux
B32B 15/04 - Produits stratifiés composés essentiellement de métal comprenant un métal comme seul composant ou comme composant principal d'une couche adjacente à une autre couche d'une substance spécifique
An aluminum alloy, an aluminum alloy wire, an aluminum alloy stranded wire, a covered electric wire, and a wire harness that are of high toughness and high electrical conductivity, and a method of manufacturing an aluminum alloy wire are provided. The aluminum alloy wire contains not less than 0.005% and not more than 2.2% by mass of Fe, and a remainder including Al and an impurity. It may further contain not less than 0.005% and not more than 1.0% by mass in total of at least one additive element selected from Mg, Si, Cu, Zn, Ni, Mn, Ag, Cr, and Zr. The Al alloy wire has an electrical conductivity of not less than 58% IACS and an elongation of not less than 10%. The Al alloy wire is manufactured through the successive steps of casting, rolling, wiredrawing, and softening treatment. The softening treatment can be performed to provide an excellent toughness such as elongation and impact resistance and thereby reduce fracture of the electric wire in the vicinity of a terminal portion when the wire harness is installed.
H01B 1/02 - Conducteurs ou corps conducteurs caractérisés par les matériaux conducteurs utilisésEmploi de matériaux spécifiés comme conducteurs composés principalement de métaux ou d'alliages
100.
Aluminum electric wire for an automobile and a method for producing the same
An aluminum electric wire includes an annealing conductor that is made up of elemental wires made of an aluminum alloy containing 0.90-1.20 mass % Fe, 0.10-0.25 mass % Mg, 0.01-0.05 mass % Ti, 0.0005-0.0025 mass % B, and the balance being Al and has a tensile strength of 110 MPa or more, a breaking elongation of 15% or more, and an electric conductivity of 58% IACS or more, and an insulating material covering the conductor. The wire is produced by casting an aluminum alloy prepared by rapidly solidifying a molten aluminum alloy having the above composition, producing the wires by subjecting the alloy to plasticity processing, producing the conductor by bunching the wires, subjecting the wires or the conductor to annealing at 250° C. or higher, and then covering the conductor with the insulator.