A device for loading a leadless pacemaker onto a catheter-based delivery system includes a distal portion and a proximal portion. The distal portion includes a retention feature configured to receive the leadless pacemaker. The proximal portion is proximal the distal portion and includes a funneling structure opening toward the retention feature. The distal and proximal portions of the device are configured such that, when a distal end of the catheter-based delivery system is brought towards the proximal portion of the loading device and the leadless pacemaker is retained by the retention feature, the funneling structure guides features of the distal end of the catheter-based delivery system through an opening in an attachment feature located at a proximal end of the leadless pacemaker.
A biostimulator includes a housing having an electronics compartment containing pacing circuitry. A fixation guide is mounted on the housing and includes a guide passage. A fixation element is movable through the guide passage from an undeployed state to a deployed state. In the undeployed state, a fixation tip of the fixation element is within the guide passage. In the deployed state, the fixation tip extends out of the guide passage. A biostimulator system includes the biostimulator mounted on a biostimulator transport system to deliver the biostimulator to, and extend the fixation tip into, a target anatomy. Other embodiments are also described and claimed.
System and method for declaring pause in cardiac activity comprises memory to store specific executable instructions and a convolutional neural network (CNN) model comprising a global average pooling (GAP) layer. One or more processors are configured to execute the specific executable instructions to obtain device classified arrhythmia (DCA) data sets generated by an implantable medical device (IMD) for corresponding candidate pause episodes declared by the IMD. The DCA data sets include cardiac activity (CA) signals for one or more beats sensed by the IMD. The processor(s) apply the CNN model to the DCA data sets to identify a valid subset of the DCA data sets that correctly characterizes the corresponding CA signals. A display is configured to present information concerning the valid subset of the DCA data sets.
G16H 20/40 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients concernant des thérapies mécaniques, la radiothérapie ou des thérapies invasives, p. ex. la chirurgie, la thérapie laser, la dialyse ou l’acuponcture
G16H 40/63 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement local
4.
SYSTEM AND METHOD FOR MANAGING BLUETOOTH ENERGY ADVERTISING
Computer implemented methods and systems are provided that comprise, under control of one or more processors of a medical device, where the one or more processors are configured with specific executable instructions. The methods and systems include sensing circuitry configured to define a sensing channel to collect biological signals, memory configured to store program instructions, a processor configured to implement the program instructions to at least one of analyze the biological signals, manage storage of the biological signals or deliver a therapy, and communication circuitry configured to wirelessly communicate with at least one other implantable or external device, the communication circuitry configured to transition between a sleep state, a partial awake state and a fully awake state. When in the fully awake state, the communication circuitry is configured to execute tasks and actions associated with a communications protocol startup (CPS) instruction set that includes an advertisement scanning related (ASR) instruction subset and a non-ASR instruction subset. When in the partially awake state, the communication circuitry is configured to execute, as the ASR instruction subset, transmit advertising notices over one or more channels according to a wireless communications protocol, scan the one or more channels for a connection request from an external device. When a connection request is not received, return to the sleep state, without performing actions or tasks associated with the non-ASR instruction subset of the CPA instruction set.
H04W 4/80 - Services utilisant la communication de courte portée, p. ex. la communication en champ proche, l'identification par radiofréquence ou la communication à faible consommation d’énergie
H04W 48/16 - ExplorationTraitement d'informations sur les restrictions d'accès ou les accès
Described herein are methods, devices, and systems for identifying false R-R intervals, and false arrhythmia detections, resulting from R-wave undersensing or intermittent AV conduction block. Each of one or more of the R-R intervals is classified as being a false R-R interval in response to a duration the R-R interval being greater than a first specific threshold, and the duration the R-R interval being within a second specified threshold of being an integer multiple of at least X other R-R intervals for which information is obtained, wherein the integer multiple is at least 2, and wherein X is a specified integer that is 1 or greater. When performed for R-R intervals in a window leading up to a detection of a potential arrhythmic episode, results of the classifying can be used to determine whether the potential arrhythmic episode was a false positive detection.
G16H 10/65 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients stockées sur des supports d’enregistrement portables, p. ex. des cartes à puce, des étiquettes d’identification radio-fréquence [RFID] ou des CD
G16H 40/20 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour la gestion ou l’administration de ressources ou d’établissements de soins de santé, p. ex. pour la gestion du personnel hospitalier ou de salles d’opération
G16H 40/67 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement à distance
G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
G16H 50/70 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour extraire des données médicales, p. ex. pour analyser les cas antérieurs d’autres patients
G16H 70/60 - TIC spécialement adaptées au maniement ou au traitement de références médicales concernant des pathologies
6.
METHOD AND SYSTEM FOR BIVENTRICULAR OR LEFT VENTRICULAR PACING
A system and method have at least one implantable lead comprising a right ventricular (RV) electrode and one or more left ventricular (LV) electrodes, at least one processor, and a memory coupled to the at least one processor. The memory stores program instructions. The program instructions are executable by the at least one processor to determine a right ventricular to left ventricular (RV-LV) conduction time representative of a conduction time between a right ventricular (RV) paced event and one or more responsive left ventricular (LV) sensed events, determine a left ventricular to right ventricular (LV-RV) conduction time representative of a conduction time between one or more LV paced event and an RV sensed events, calculate a relation between the RV-LV conduction time and the LV-RV conduction time, and set a pacing mode of an implantable medical device to one of i) a biventricular (BiV) pacing mode and ii) an LV only pacing mode based on the relation between the RV-LV conduction time and the LV-RV conduction time.
A61N 1/368 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque comprenant plus d'une électrode coopérant avec différentes régions du cœur
A61N 1/05 - Électrodes à implanter ou à introduire dans le corps, p. ex. électrode cardiaque
A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques
7.
METHODS, SYSTEMS AND DEVICES FOR REDUCING COMMUNICATION BURDEN BETWEEN LEADLESS PACEMAKERS
An atrial leadless pacemaker (aLP), of a dual chamber leadless pacemaker system that also includes a ventricular leadless pacemaker (vLP), senses intrinsic atrial events and for each intrinsic atrial event that is sensed determines a respective atrial-to-atrial interval (AA interval) that corresponds to a duration between the intrinsic atrial event and an immediately preceding intrinsic atrial event. Additionally, the aLP, based on the determined AA intervals, selectively transmits and selectively abstains from transmitting atrial event messages to the vLP. When the aLP abstains from transmitting atrial event messages to the vLP, the aLP conserves power thereby increasing its longevity. The aLP can also be configured to operate in a similar manner for paced atrial events, to further conserve power. The vLP utilizes its VV interval timer to determine when to deliver ventricular stimulation, during those times that the aLP abstains from transmitting atrial event messages to the vLP.
A61N 1/368 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque comprenant plus d'une électrode coopérant avec différentes régions du cœur
An implantable medical device (IMD) that can include a HS sensor configured to sense heart sound (HS) signals along an axis over a first period of time and a filtering assembly configured to filter the HS signals utilizing first and second bandwidths to output first and second bandwidth HS components. The IMD can also include one or more processors that can be configured to identify a first characteristic of interest (COI) of a heartbeat from the first bandwidth HS component and identify a second COI of the heartbeat from the second bandwidth HS component. The one or more processors can also be configured to select one of the first and second bandwidths based on a comparison of the first and second COI, obtain additional HS signals during a second period of time and utilize the one of the first and second bandwidths selected to filter the additional HS signals.
A device includes an electrode stack including a plurality of conductive anodes, a plurality of conductive cathodes, a plurality of separators arranged between the conductive anodes and the conductive cathodes, and a dielectric material disposed on a surface of each of the conductive anodes. The stack has a top surface, a bottom surface, and an edge extending between the top surface and the bottom surface. A continuous electrically insulating film overlies the edge, peripheral portions of the top surface and peripheral portions of the bottom surface so that a central portion of the top surface and a central portion of the bottom surface are exposed. An electrolyte is disposed between the conductive anodes and the conductive cathodes.
H01G 9/10 - Scellement, p. ex. de fils de traversée
H01G 9/00 - Condensateurs électrolytiques, redresseurs électrolytiques, détecteurs électrolytiques, dispositifs de commutation électrolytiques, dispositifs électrolytiques photosensibles ou sensibles à la températureProcédés pour leur fabrication
Disclosed herein is an IMD configured to communicate with another IMD and/or an external device using conducted communication. The fully-differential receiver has a pair of inputs, a pair of outputs, and a plurality of active stages therebetween. The pair of inputs of the fully-differential receiver are coupled to electrodes of the IMD. The fully-differential receiver is configured to operate in first and second modes. When operating in the first mode, the fully-differential receiver draws a first amount of current and is configured to monitor for a wakeup signal within a first frequency range. When operating in the second mode, the fully-differential receiver draws a second amount of current that is higher than the first amount of current, and is configured to receive one or more message content pulses within a second frequency range that is higher than the first frequency range.
A valve bypass tool for an implantable medical device (IMD) delivery system includes a back panel and a tube connected to the back panel and extending from the back panel to a distal end of the tube. The back panel defines an inlet opening. The tube is cylindrical and the distal end of the tube is configured to dilate a seal of an access introducer. The tube defines a channel therethrough that aligns with and is open to the inlet opening in the back panel. The inlet opening and the channel of the tube are sized to receive an IMD therethrough.
Diurnal and nocturnal pacing for an implantable medical device (IMD) that includes a temperature sensor, one or more electrodes, one or more pulse generators and a control circuit is managed. A temperature signal indicative of a core body temperature is sensed at the temperature sensor. The control circuit produces first and second moving composite temperature (MCT) signals based on the temperature signal sensed over first and second periods of time, respectively, wherein the second period of time is longer than the first period of time. A current temperature signal is compared to the first and second MCT signals, and a pacing rate for pacing pulses, generated by the one or more pulse generators and delivered to the one or more electrodes, is controlled based on one or more relations between the current temperature signal, the first MCT signal and the second MCT signal.
A biostimulator includes a housing having a longitudinal axis and containing an electronics compartment. The biostimulator includes a fixation element coupled to the housing. The fixation element extends about the longitudinal axis. The biostimulator includes a pacing element coupled to the housing. The pacing element includes a strain relief surrounding a flexible conductor distal to the fixation element. A stiffness of the strain relief decreases in a distal direction. Other embodiments are also described and claimed.
A leadless biostimulator includes a housing, and distal and proximal electrodes disposed on or integrated into the housing. The distal electrode includes an electrode body and an electrode tip mounted on a distal end of the electrode body, wherein the electrode tip is electrically conductive and configured to be placed in contact with a stimulation site. The electrode tip includes a distal tip end facing a surrounding environment and opposite a proximal tip end. The electrode tip defines a tip hole extending through the electrode tip along a longitudinal axis of the housing from the distal tip end to the proximal tip end. The tip hole comprises a through hole having a first diameter at the distal tip end and a second diameter at the proximal tip end of the tip electrode, wherein the first diameter of the tip hole is less than the second diameter of the tip hole.
Devices and methods for improving conductive communication are described herein. One of the devices involved in the conductive communication can be an external device while the other device is an IMD, or both of the devices can be IMDs. In certain embodiments, a preferred conductive communication vector for use is identified based on obtained information indicative of the at least one of a physical or physiologic state of the patient within which an IMD is implanted.
Devices and methods for improving conductive communication are described herein. One of the devices involved in the conductive communication can be an external device while the other device is an IMD, or both of the devices can be IMDs. In certain embodiments, each of at least three different conductive communication vectors are used to produce a respective bitstream, and a valid bit stream is selected or produced based on the at least three bitstreams. Message data included in and/or decoded from the valid bitstream is then stored and/or used.
G16H 40/67 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement à distance
Systems and methods for slitting a delivery device are described. A slitter assembly for slitting the delivery device in accordance with the present disclosure includes a housing, a lock mechanism coupled to the housing, and a clamshell mechanism coupled to the lock mechanism. The clamshell mechanism defines a channel having an adjustable diameter and sized to receive a device. The slitter assembly also includes a blade configured to slit a tubular shaft of the delivery device.
A leadless biostimulator including an attachment feature to facilitate precise manipulation during delivery or retrieval is described. The attachment feature can be monolithically formed from a rigid material, and includes a base, a button, and a stem interconnecting the base to the button. The stem is a single post having a transverse profile extending around a central axis. The transverse profile can be annular and can surround the central axis. The leadless biostimulator includes a battery assembly having a cell can that includes an end boss. A tether recess in the end boss is axially aligned with a face port in the button to receive tethers of a delivery or retrieval system through an inner lumen of the stem. The attachment feature can be mounted on and welded to the cell can at a thickened transition region around the end boss. Other embodiments are also described and claimed.
A loading tool for loading a biostimulator onto a biostimulator delivery system is described. The loading tool includes a first body portion and a second body portion connected by a hinge. A latch is mounted on the first body portion, and the latch can be locked to fasten the first body portion to the second body portion. A biostimulator can be mounted in the loading tool, and a tether of a biostimulator delivery system can be inserted through a funnel in the loading tool to engage the biostimulator. An operator can use only one hand to unlock the latch, open the loading tool, and remove the loading tool from the biostimulator prior to delivering the biostimulator into a patient. Other embodiments are also described and claimed.
An implantable cardioverter-defibrillator (ICD) includes one or more capacitors, a secondary battery and a primary battery. The implantable cardioverter-defibrillator also includes a capacitor charging circuit. A controller operates the capacitor charging circuit such that the one or more capacitors are charged with electrical energy from the secondary battery or the primary battery. In some instances, the controller selects whether the capacitors are charged with electrical energy from the secondary battery or the primary battery. In some instances, the one or more capacitors are charged with electrical energy from the secondary battery and the ICD includes a charging circuit that the controller operates such that electrical energy from the primary battery recharges the secondary battery.
The battery includes an electrode assembly in an interior of an electrically insulating container. The electrode assembly includes one or more first electrodes alternated with one or more second electrodes. The container is positioned is in an interior of an electrically conducting battery case. The container being is constructed such that the battery case is not in electrical communication with the one or more first electrodes and the one or more second electrodes, and such that an electrolyte positioned in an interior of the container does not contact the battery case.
H01M 50/176 - Dispositions pour introduire des connecteurs électriques dans ou à travers des boîtiers adaptées à la forme des cellules pour des cellules prismatiques ou rectangulaires
A healthcare system comprises memory configured to store program instructions, a first device data translator (DDT), a second DDT, and one or more processors. The first DDT is configured to process data from a first type of medical device. The second DDT is configured to process data from a second type of medical device that is different from the first type of medical device. The one or more processors that, when executing the program instructions, are configured to receive patient data, the patient data comprising physiological data and at least one corresponding unique device identifier (ID) associated with a first medical device, wherein the first medical device is configured to acquire the physiological data from a patient, determine whether the unique ID is associated with the first DDT or the second DDT, and route patient data associated with the first medical device to the first DDT or the second DDT that is associated with the unique ID.
G16H 40/40 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour la gestion d’équipement ou de dispositifs médicaux, p. ex. pour planifier la maintenance ou les mises à jour
G16H 10/60 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients
23.
BIOSTIMULATOR HAVING LOW-POLARIZATION ELECTRODE(S)
A biostimulator, such as a leadless pacemaker, having electrode(s) coated with low-polarization coating(s), is described. A low-polarization coating including titanium nitride can be disposed on an anode, and a low-polarization coating including a first layer of titanium nitride and a second layer of platinum black can be disposed on a cathode. The anode can be an attachment feature used to transmit torque to the biostimulator. The cathode can be a fixation element used to affix the biostimulator to a target tissue. The low-polarization coating(s) impart low-polarization to the electrode(s) to enable an atrial evoked response to be detected and used to effect automatic output regulation of the biostimulator. Other embodiments are also described and claimed.
Catheter-based delivery systems for delivery and retrieval of a leadless pacemaker include features to facilitate improved manipulation of the catheter and improved capture and docking functionality of leadless pacemakers. Such functionality includes mechanisms directed to deflecting and locking a deflectable catheter, maintaining tension on a retrieval feature, protection from anti-rotation, and improved docking cap and drive gear assemblies.
Implementations described and claimed herein provide systems and methods for delivering and retrieving a leadless pacemaker. In one implementation, a leadless pacemaker has a docking end, and the docking end has a docking projection extending from a surface. A docking cap has a body defining a chamber. A retriever has sheaths extending with lumens distally from the chamber. A snare extends between the lumens forming a first snare loop pointing in a first direction and a second snare loop pointing in a second direction with a docking space formed therebetween. The snare is movable between an engaged position and a disengaged position by translating the first snare wire and the second snare wire within the first snare lumen and the second snare lumen. The engaged position includes the first snare wire and the second snare wire tightened around the docking projection within the docking space.
Systems, devices, and methods are disclosed herein, wherein a first implantable medical device (IMD) uses normal conductive communication to transmit message(s) intended for a second IMD, during a first period of time that a first trigger event is not detected. The first IMD, in response to detecting the first trigger event, starts a timer or counter and transitions to using boosted conductive communication to transmit one or more messages intended for the second IMD during a second period of time. In response to the first IMD either detecting a second trigger event, or detecting based on the timer or counter that a specified amount of time or cardiac cycles elapsed since the timer or counter was started, the first IMD transitions back to using normal conductive communication to transmit one or more messages intended for the second IMD during a third period of time. Other embodiments are also disclosed herein.
Systems and methods for improving conducted i2i communication between first and second implantable medical device (IMDs) are described, wherein at least one of the IMDs comprises a leadless pacemaker (LP). Respective information is stored within each of the first and second IMDs that specifies a primary communication window (PCW) for performing the conducted communication with one another when using a primary conducted communication protocol (PCCP), and also specifies an alternate communication window (ACW) for performing the conducted communication with one another when using an alternate conducted communication protocol (ACCP). At least one of the first and second IMDs monitors quality metric of the conducted communication therebetween while the PCCP is being used, and in response to the quality metric falling below a corresponding threshold, the first and second IMDs perform conducted i2i communication with one another in accordance with the ACCP during the ACW of one or more cardiac cycles.
Described herein are methods, devices, and systems that monitor heart rate and/or for arrhythmic episodes based on sensed intervals that can include true R-R intervals as well as over-sensed R-R intervals. True R-R intervals are initially identified from an ordered list of the sensed intervals by comparing individual sensed intervals to a sum of an immediately preceding two intervals, and/or an immediately following two intervals. True R-R intervals are also identified by comparing sensed intervals to a mean or median of durations of sensed intervals already identified as true R-R intervals. Individual intervals in a remaining ordered list of sensed intervals (from which true R-R intervals have been removed) are classified as either a short interval or a long interval, and over-sensed R-R intervals are identified based on the results thereof. Such embodiments can be used, e.g., to reduce the reporting of and/or inappropriate responses to false positive tachycardia detections.
Disclosed herein is a screw-in lead implantable in the pericardium of a patient heart and a system for delivering such leads to an implantation location. The leads include a helical tip electrode and a curvate body including a defibrillator coil with improved contact between the defibrillator coil and the patient heart. The delivery system includes a delivery catheter and lead receiving sheath disposed within the catheter. A fixation tine is disposed on one of the delivery catheter and the lead receiving sheath such that the delivery system may be anchored into the pericardium during fixation of the screw-in lead. In certain implementations, an implantable sleeve receives the leads to bias the defibrillator coil against the patient heart.
A61N 1/05 - Électrodes à implanter ou à introduire dans le corps, p. ex. électrode cardiaque
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
A61B 5/29 - Électrodes bioélectriques à cet effet spécialement adaptées à des utilisations particulières pour l’électrocardiographie [ECG] invasives pour implantation permanente ou à long terme
Preparing a battery electrode includes preparing a slurry having a solid content less than 80 wt %. The slurry includes ingredients in one or more solvents. The ingredients are components of an active medium of the battery electrode. The slurry is mixed so as to apply a shear rate higher than 94200/minute to the slurry and form a mixed slurry. The ingredients are separated from the one or more solvents in the mixed slurry. The ingredients are applied to a current collector after the ingredients are separated from the one or more solvents in the mixed slurry.
Shocking electrodes for implantable medical devices may include a coiled conductor that has an oblong cross-sectional shape and is configured to deliver high-voltage shocks for defibrillation therapy. The coiled conductor includes an electrically conductive element that is helically wrapped and defines the oblong cross-sectional shape. The electrically conductive element is one of (i) a multi-filar ribbon wire that includes multiple strands disposed side-by-side along a length of the multi-filar ribbon wire, (ii) a micro-coil that includes a coiled strand, or (iii) a micro-cable that includes multiple interwoven strands along a length of the micro-cable.
Methods, devices and program products are provided for managing a pacing therapy using an implantable medical device (IMD). The methods, devices and program products sense cardiac activity (CA) signals at electrodes located proximate to multiple left ventricular (LV) sites and a right ventricular (RV) site of the heart and utilizing one or more processors to measure activation times between the multiple LV sites and the RV site based on the CA signals. The processors program an order of activation for the multiple LV sites based on the activation times and identify an RV activation time and a septum activation time based on the CA signals. The processors calculate a septum to RV activation time (SRAT) based on the RV and septum activation times and program an AVSRAT delay based on the SRAT.
A61N 1/368 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque comprenant plus d'une électrode coopérant avec différentes régions du cœur
A61N 1/375 - Aménagements structurels, p. ex. boîtiers
33.
LASER DRILLING OF METAL FOILS FOR ASSEMBLY IN AN ELECTROLYTIC CAPACITOR
A capacitor and methods of processing an anode metal foil are presented. The capacitor includes a housing, one or more anodes disposed within the housing, one or more cathodes disposed within the housing, one or more separators disposed between an adjacent anode and cathode, and an electrolyte disposed around the one or more anodes, one or more cathodes, and one or more separators within the housing. The one or more anodes each include a metal foil that includes a first plurality of tunnels through a thickness of the metal foil in a first ordered arrangement having a first diameter, and a second plurality of tunnels through the thickness of the metal foil having a second ordered arrangement and a second diameter greater than the first diameter.
H01G 9/00 - Condensateurs électrolytiques, redresseurs électrolytiques, détecteurs électrolytiques, dispositifs de commutation électrolytiques, dispositifs électrolytiques photosensibles ou sensibles à la températureProcédés pour leur fabrication
B23K 26/0622 - Mise en forme du faisceau laser, p. ex. à l’aide de masques ou de foyers multiples par commande directe du faisceau laser par impulsions de mise en forme
B23K 26/064 - Mise en forme du faisceau laser, p. ex. à l’aide de masques ou de foyers multiples au moyen d'éléments optiques, p. ex. lentilles, miroirs ou prismes
B23K 26/067 - Division du faisceau en faisceaux multiples, p. ex. foyers multiples
B23K 26/08 - Dispositifs comportant un mouvement relatif entre le faisceau laser et la pièce
A biostimulator and a biostimulator transport system for deep septal pacing. The biostimulator includes a housing having a longitudinal axis and containing pacing circuitry in an electronics compartment. A fixation element and a pacing element are connected to the housing. The pacing element is longitudinally movable relative to the fixation element. Other embodiments are also described and claimed.
Disclosed herein is a catheter for delivering an implantable medical lead to an implantation site near an ostium leading to a proximal region of a coronary sinus. The catheter includes a distal end, a proximal end opposite the distal end, a tubular body extending between the distal and proximal ends, an atraumatic fixation structure defining a distal termination of the distal end, and a lead receiving lumen. The atraumatic fixation structure is configured to enter the ostium and passively pivotally anchor with the proximal region of the coronary sinus. The lead receiving lumen extends along the tubular body from the proximal end to an opening defined in a side of the tubular body near the distal end and proximal the atraumatic fixation structure.
Implementations described and claimed herein provide systems and methods for delivering and retrieving a leadless pacemaker. In one implementation, a leadless pacemaker has a docking end, and the docking end having a docking projection extending from a surface. A docking cap has a body defining a chamber. The docking cap has a proximal opening into the chamber. The proximal opening is coaxial with a longitudinal axis of a lumen of a catheter. A retriever has a flexible grasper with a first arm disposed opposite a second arm. Each of the first arm and the second arm form a hinge biased radially outwards from the longitudinal axis. The docking cap locks the first arm and the second arm on the docking projection when the body is sheathed over the retriever until the flexible grasper is disposed within the chamber.
A lead of an implantable medical device (IMD) includes a shocking electrode configured to deliver high-voltage shocks for defibrillation therapy. The shocking electrode includes a base structure that has an oblong cross-sectional shape with a first side and a second side that is opposite the first side. The base structure has a set of grooves defined along the first side. The grooves in the set are configured to receive a cable assembly that is placed into the grooves in a side-loading direction.
Methods and systems are provided that comprise: sensing cardiac events of a heart; utilizing one or more processors to perform: declaring a ventricular fibrillation (VF) episode based on the cardiac events charging a single charge storage capacitor; delivering a multi-phase VF therapy that includes phase I and phase II therapies, wherein: a) during the phase I therapy, a combination of two or more medium voltage (MV) shocks are delivered entirely from the single charge storage capacitor; and b) during the phase II therapy, a low voltage pulse train is delivered at least partially from the single charge storage capacitor. Methods and systems are provided that comprise delivering first and second pulses of at least a first biphasic shock, wherein a parallel-series reconfiguration circuit connects and configures the capacitors of the capacitor bank in a parallel configuration to deliver a parallel biphasic shock; connecting the capacitors of the capacitor bank in a series configuration; and delivering first and second pulses of a second biphasic shock while the capacitors are connected in series to deliver a series biphasic shock.
The capacitor has an electrode stack with faces between one or more edges. A bent portion of the one or more edges has a bend in the one or more edges. An adhesive film is positioned on the electrode stack such that an edge region of the adhesive film is over the bent portion of the one or more edges. The adhesive film includes multiple flaps. The multiple flaps include a first flap connected to a first portion of the edge region and a second flap connected to a second portion of the edge region. The first flap and the second flap are positioned over a first one of the faces of the electrode stack. A lateral edge of the first flap intersects a lateral edge of the second flap at a common location.
H01G 9/00 - Condensateurs électrolytiques, redresseurs électrolytiques, détecteurs électrolytiques, dispositifs de commutation électrolytiques, dispositifs électrolytiques photosensibles ou sensibles à la températureProcédés pour leur fabrication
An implantable medical device (IMD) includes one or more sensing circuits configured to sense one or more physiological characteristics and to generate physiological data indicative of the one or more physiological characteristics. An input is configured to receive a trigger. Responsive to receiving the trigger, a continuous data collection mode (CDCM) comprising a predetermined sampling rate is enabled. Physiological data is continuously generated. The physiological data is continuously stored in a buffer memory at the predetermined sampling rate for a duration of a collection session associated with the CDCM. The amount of data stored in the buffer memory during the collection session, including the physiological data, exceeds a capacity of the buffer memory. Connect and transmit operations are performed at a periodic communication interval during the collection session to connect with the external device and transmit at least a portion of the physiological data stored in the buffer memory.
The present disclosure provides systems and methods for confirming cardiac events based on heart sounds. An implantable medical device includes a sensing component configured to acquire a signal, and a processing component communicatively coupled to the sensing component, the processing component configured to receive the signal from the sensing component, analyze the received signal to detect the presence or absence of at least one heart sound, and confirm whether an initial detection of a cardiac event is accurate based on the detected presence or absence of the at least one heart sound.
An implantable medical device, external device and method for managing a wireless communication are provided. The IMD includes a transceiver configured to communicate wirelessly, with an external device (ED), utilizing a protocol that utilizes multiple physical layers. The transceiver is configured to transmit information indicating that the transceiver is configured with first, second, and third physical layers (PHYs) for wireless communication. The IMD includes memory configured to store program instructions. The IMD includes one or more processors configured to execute instructions to obtain an instruction designating one of the first, second and third PHY to be utilized for at least one of transmission or reception, during a communication session, with the external device and manage the transceiver to utilize, during the communication session, the one of the first, second and third PHY as designated.
H04B 7/26 - Systèmes de transmission radio, c.-à-d. utilisant un champ de rayonnement pour communication entre plusieurs postes dont au moins un est mobile
H04L 1/00 - Dispositions pour détecter ou empêcher les erreurs dans l'information reçue
43.
PACING DEVICE HAVING PARTIALLY INSULATED TIP ELECTRODE
A pacing device, such as a pacing lead or a biostimulator, includes a tip electrode electrically connected to an electrical conductor. The electrical conductor conveys pacing impulses from pacing circuitry to the tip electrode. The tip electrode extends along a spiral axis and has a surface that, at a position along the spiral axis, includes an insulative portion and a conductive portion. Other embodiments are also described and claimed.
A biostimulator, such as a leadless cardiac pacemaker, having a flexible circuit assembly, is described. The flexible circuit assembly is contained within an electronics compartment between a battery, a housing, and a header assembly of the biostimulator. The flexible circuit assembly includes a flexible substrate that folds into a stacked configuration in which an electrical connector and an electronic component of the flexible circuit assembly are enfolded by the flexible substrate. An aperture is located in a fold region of the flexible substrate to allow a feedthrough pin of the header assembly to pass through the folded structure into electrical contact with the electrical connector. The electronic component can be a processor to control delivery of a pacing impulse through the feedthrough pin to a pacing tip. Other embodiments are also described and claimed.
System and methods are provided for determining a stimulation threshold for closed loop spinal cord stimulation (SCS). The system and methods provide a lead coupled to an implantable pulse generator (IPG). The system and methods deliver SCS pulses from the IPG to the lead electrodes in accordance with an SCS therapy and determine an evoked compound action potential (ECAP) amplitude based on an ECAP waveform resulting from the SCS therapy. The system and methods increase the SCS therapy by increasing at least one of an amplitude, a duration, and number of the SCS pulses associated with the SCS therapy. The system and methods also include iteratively repeat the delivering, determining and increasing operations until the ECAP amplitude exhibits a downward trend divergence. The system and methods define a stimulation threshold based on the ECAP amplitude at the trend divergence.
A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques
A61N 1/05 - Électrodes à implanter ou à introduire dans le corps, p. ex. électrode cardiaque
A61N 1/372 - Aménagements en relation avec l'implantation des stimulateurs
46.
METHODS AND SYSTEMS FOR CAPACITOR MAINTENANCE OF AN IMPLANTABLE CARDIOVERTER DEFIBRILLATOR
An implantable medical device (IMD) is provided that includes one or more processors and a memory coupled to the one or more processors, wherein the memory stores program instructions. The program instructions are executable by the one or more processors to obtain an initial capacitor maintenance time interval for performing maintenance on a capacitor of the IMD, obtain characteristics of interest related to at least one of the capacitor or the patient, and adjust the initial capacitor maintenance time interval to a first adjusted capacitor maintenance time interval based on the characteristics of interest.
An implantable medical device (IMD) and process are provided comprising one or more electrodes configured to be implanted to define a pacing vector through at least a portion of a ventricle. Sensing circuitry is configured to sense intrinsic atrial activity (As) and intrinsic ventricular activity (Vs). A pulse generator (PG) if provided, and memory configured to store program instructions and an atrioventricular delay search parameter (AVDSEARCH). The AVDSEARCH is an interval of time. One or more processors, that when executing the program instructions, is configured to direct the PG to deliver ventricular pacing pulses based on an atrioventricular delay (AVD) and periodically initiate an AVD search operation utilizing the AVDSEARCH. A heart rate is determined and compared to a threshold. Responsive to determining that the heart rate exceeds the threshold, the AVDSEARCH is reduced, and cardiac activity is detected during the AVD search operation utilizing the reduced AVDSEARCH.
A61N 1/368 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque comprenant plus d'une électrode coopérant avec différentes régions du cœur
A61N 1/365 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque
A capacitor has an anode with one or more active layers that each includes fused particles positioned on a current collector. The current collector includes tunnels that extend from a first face of the current collector to a second face of the current collector.
A system is provided that includes a lead configured to be located within a septal wall, a monitor configured to obtain cardiac activity signals, and a memory configured to store program instructions. The system also includes one or more processors that, when executing the program instructions, are configured to obtain morphology data related to the cardiac activity signals indicative of the lead located at different depths within the septal wall, the morphology data including a set of data values associated with different depths of the lead within the septal wall, and determine when the lead is located at a target depth within the septal wall based on the morphology data.
A system is provided that includes a lead configured to be located within a septal wall, a monitor configured to obtain cardiac activity signals, and a memory configured to store program instructions. The system also includes one or more processors that, when executing the program instructions, are configured to obtain morphology data related to the cardiac activity signals indicative of the lead located at different depths within the septal wall, the morphology data including a set of data values associated with different depths of the lead within the septal wall, and determine when the lead is located at a target depth within the septal wall based on the morphology data.
The present disclosure provides systems and methods for applying anti-tachycardia pacing (ATP) using subcutaneous implantable cardioverter-defibrillators (SICDs). An SICD implantable in a subject includes a case including a controller, and at least one conductive lead extending from the case. The at least one conductive lead includes a plurality of coil electrodes, wherein the SICD is configured, via the controller, to apply anti-tachycardia pacing (ATP) to the subject using the at least one conductive lead.
A healthcare system comprises an MR platform comprising non-transitory memory storing program instructions and patient specific records that include information associated with an implantable medical device (IMD) and a patient. The MR platform has processors that, when executing the program instructions, are configured to i) receive an MRI exam referral requesting an MRI exam associated with a first patient specific record from within the patient specific records that has a first IMD and a first patient; ii) responsive to the MRI exam referral, automatically transmit an MRI exam request alert; iii) responsive to receiving a response to the MRI exam request alert, provide access to the first patient specific record; iv) receive MRI settings associated with the first patient specific record that are configured to be programmed into the first IMD in advance of the MRI exam; and v) store the MRI settings in the patient specific record.
G16H 10/65 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients stockées sur des supports d’enregistrement portables, p. ex. des cartes à puce, des étiquettes d’identification radio-fréquence [RFID] ou des CD
G16H 40/40 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour la gestion d’équipement ou de dispositifs médicaux, p. ex. pour planifier la maintenance ou les mises à jour
A leadless cardiac pacemaker is provided which can include any number of features. In one embodiment, the pacemaker can include a tip electrode, pacing electronics disposed on a p-type substrate in an electronics housing, the pacing electronics being electrically connected to the tip electrode, an energy source disposed in a cell housing, the energy source comprising a negative terminal electrically connected to the cell housing and a positive terminal electrically connected to the pacing electronics, wherein the pacing electronics are configured to drive the tip electrode negative with respect to the cell housing during a stimulation pulse. The pacemaker advantageously allows p-type pacing electronics to drive a tip electrode negative with respect to the can electrode when the can electrode is directly connected to a negative terminal of the cell. Methods of use are also provided.
An implantable lead includes an inner lead subassembly contained within and movable relative to an outer lead subassembly. The inner lead subassembly has a helical electrode to pace a target anatomy. The outer lead subassembly includes a ring electrode to sense or pace the target anatomy. A threaded interface interconnects the inner lead subassembly and the outer lead subassembly such that relative rotation of the lead subassemblies causes relative axial movement between the helical electrode and the ring electrode. Other embodiments are also described and claimed.
A system is provided that includes a first electrode configured to be located within a septal wall, and a second electrode configured to be located outside of the septal wall. The system also includes an impedance circuit configured to measure impedance along an impedance monitoring (IM) vector between the first and second electrodes. One or more processors are also provided that are configured to obtain impedance data indicative of an impedance along the IM vector with the first electrode located at different depths within the septal wall, the impedance data including a set of data values associated with different depths of the first electrode within the septal wall. The one or more processors are also configured to determine when the first electrode is located at a target depth within the septal wall based on the impedance data.
A leadless biostimulator, such as a leadless cardiac pacemaker, having a header assembly that includes overmolded components, is described. The header assembly includes a helix mount overmolded on a flange of an electrical feedthrough assembly. A fixation element is mounted on the helix mount. The overmolded helix mount fills a recess in an outer surface of the flange to robustly join the header assembly components. The electrical feedthrough assembly includes an electrode contained within the flange to deliver electrical impulses to a target anatomy, and an insulator that separates the electrode from the flange. The overmolded helix mount can conform or adhere to the outer surfaces of the flange and the insulator to electrically isolate the electrode from the flange. Other embodiments are also described and claimed.
Methods, devices, and program products are provided under control of one or more processors within an implantable medical device (IMD) that senses far field (FF) signals between a combination of electrodes coupled to the IMD. Correlation scores are determined by comparing the FF signals associated with a number of beats to a template. The correlation scores of the number of beats are compared to a correlation threshold, and correlation variability scores are determined for the number of beats. Shock delivery, by a pulse generator within the IMD, is postponed in response to i) a first number of beats within the number of beats having the correlation scores that are less than the correlation threshold, and ii) a second number of beats within the number of beats having correlation variability scores that are less than a correlation variability threshold.
A biostimulator, such as a leadless cardiac pacemaker, including a fixation element and an electrode mounted on a resilient scaffold, is described. The fixation element and the resilient scaffold are coupled to a housing of the biostimulator. The resilient scaffold can support the electrode against a target tissue at a location that is radially offset from a location where the fixation element anchors the housing to the target tissue. A flexibility of the resilient scaffold allows the electrode to conform to a shape and movement of the target tissue when the housing is rigidly fixed to the target tissue by the fixation element. The resiliently supported electrode that is radially offset from the anchor point can reliably pace the target tissue without piercing the target tissue. Other embodiments are also described and claimed.
A subcutaneous implantable medical device and method (SIMD) provided. A pulse generator (PG) is configured to be positioned subcutaneously within a lateral region of a chest of a patient. The PG has a housing that includes a PG electrode. The PG has an electronics module. An elongated lead is electrically coupled to the pulse generator. The elongated lead includes a first electrode that is configured to be positioned along a first parasternal region proximate a sternum of the patient and a second electrode that is configured to be positioned at an anterior region of the patient. The first and second electrodes are coupled to be electrically common with one another. The electronics module is configured to provide electrical shocks for antiarrhythmic therapy along at least one shocking vector between the PG electrode and the first and second electrodes.
Described herein are methods for use with an implantable system including at least an atrial leadless pacemaker (aLP). Also described herein are specific implementations of an aLP, as well as implantable systems including an aLP. In certain embodiments, the aLP senses a signal from which cardiac activity associated with a ventricular chamber can be detected by the aLP itself based on feature(s) of the sensed signal. The aLP monitors the sensed signal for an intrinsic or paced ventricular activation within a ventricular event monitor window. In response to the aLP detecting an intrinsic or paced ventricular activation itself from the sensed signal within the ventricular event monitor window, the aLP resets an atrial escape interval timer that is used by the aLP to time delivery of an atrial pacing pulse if an intrinsic atrial activation is not detected within an atrial escape interval.
A61N 1/372 - Aménagements en relation avec l'implantation des stimulateurs
A61N 1/02 - ÉlectrothérapieCircuits à cet effet Parties constitutives
A61N 1/05 - Électrodes à implanter ou à introduire dans le corps, p. ex. électrode cardiaque
A61N 1/365 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque
A61N 1/368 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque comprenant plus d'une électrode coopérant avec différentes régions du cœur
Implantable systems, and methods for use therewith, monitor a patient's arterial blood pressure without requiring an intravascular pressure transducer. A plurality of calibrations factors are stored, each of which is associated with a respective one of a plurality of different postures, activity levels, or HR ranges, or different combinations thereof. A signal indicative of activity of the patient's heart, and a signal indicative of changes in arterial blood volume of the patient are obtained, and a pulse arrival time (PAT) value is determined. A current posture, activity level, and/or HR of the patient is/are determined and used to identify stored calibration factor(s) that correspond thereto. Values indicative of the patient's arterial blood pressure is/are determined based on the PAT value and the stored calibration factor(s) identified based on the patient's current posture, activity level, and/or HR. Such value(s) and/or changes thereto can be used to trigger and/or adjust therapy.
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
A61B 5/0205 - Évaluation simultanée de l'état cardio-vasculaire et de l'état d'autres parties du corps, p. ex. de l'état cardiaque et respiratoire
A61B 5/021 - Mesure de la pression dans le cœur ou dans les vaisseaux sanguins
G16H 40/67 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement à distance
G16H 50/30 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le calcul des indices de santéTIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour l’évaluation des risques pour la santé d’une personne
A method of manufacturing an electrolytic capacitor includes impregnating an electrolytic capacitor with a first electrolyte to form a first impregnated capacitor, aging the first impregnated capacitor using a first aging process to form a first aged capacitor, impregnating the first aged capacitor with a second electrolyte to form a second impregnated capacitor, the second electrolyte being different from the first electrolyte, aging the second impregnated capacitor using a final aging process to form a final aged capacitor, and impregnating the final aged capacitor with a third electrolyte.
H01G 9/00 - Condensateurs électrolytiques, redresseurs électrolytiques, détecteurs électrolytiques, dispositifs de commutation électrolytiques, dispositifs électrolytiques photosensibles ou sensibles à la températureProcédés pour leur fabrication
H01G 9/035 - Électrolytes liquides, p. ex. matériaux d'imprégnation
External devices, methods for use therewith, and systems including an external device and an implantable medical device (IMD) are described. A method includes receiving at the external device, using each of first, second, and third subsets of at least three external electrodes, conductive communication pulses transmitted by the IMD, and determining, for each subset of the external electrodes, a respective metric indicative of power and/or quality of the conductive communication pulses received from the IMD using the subset of external electrodes. The method further includes identifying, based on results of the determining, a preferred one of the first, second, and third subsets of the at least three external electrodes, and using the preferred one of the first, second, and third subsets of the at least three external electrodes to receive further conductive communication pulses transmitted by the IMD.
Systems and methods described herein improve visibility of features (e.g., P-waves) of a physiologic signal segment (e.g., an EGM or ECG signal segment) to be displayed within a display band having a specified height between an upper and a lower boundary of the display band. The physiologic signal segment is divided into sub-segments, for each of which a sub-segment minimum peak amplitude and maximum peak amplitude are determined. Based thereon, a new minimum peak amplitude and a new maximum peak amplitude are determined and used to determine a new display range. A portion of the physiologic signal segment that is within the new display range is caused to be display, within the display band having the specified height, such that the upper boundary of the display band corresponds to the new maximum peak amplitude, and the lower boundary of the display band corresponds to the new minimum peak amplitude.
Described herein are implantable medical devices (IMDs), and methods for use therewith. In certain embodiments, a controller of an IMD controls when a pacing capacitor of the IMD is charged using a first voltage, when the pacing capacitor is being charged using a second voltage, and when the pacing capacitor is discharged to deliver a pacing pulse between anode and cathode electrodes of, or electrically coupled to, the IMD. By selectively charging the pacing capacitor for a portion of a charge duration using the second voltage, that is greater in magnitude than the first voltage that is used for delivering the pacing pulse, a magnitude of a polarization artifact superimposed on an evoked response within a cardiac electrical signal, sensed using a sensing circuit of the IMD, is reduced compared to if the pacing capacitor were instead charged using the first voltage for the entire charge duration.
Systems and methods described herein improve visibility of P-waves of an EGM or ECG signal segment to be displayed on a display screen. There is a determination of whether relatively small features, including the P-waves, of the ECG or EGM signal segment would be difficult to visualize if an original signal segment range of the ECG or EGM signal segment were caused to be displayed on the display screen. In response to determining that the relatively small features of the ECG or EGM signal segment would be difficult to visualize, a portion of the EGM or ECG signal segment is displayed on the display screen in a manner that magnifies the P-waves of the EGM or ECG signal segment compared to if an entirety of the EGM or ECG signal segment within the original signal segment range were instead caused to be displayed on the display screen.
A biostimulator, such as a leadless cardiac pacemaker, including a fixation element to engage tissue and one or more backstop elements to resist back-out from the tissue, is described. The fixation element can be mounted on a housing of the biostimulator such that a helix of the fixation element extends distally to a leading point. The leading point can be located on a distal face of the helix at a position that is proximal from a center of the distal face. The backstop elements can include non-metallic filaments, such as sutures, or can include a pinch point of the biostimulator. The backstop features can grip the tissue to prevent unscrewing of the fixation element. Other embodiments are also described and claimed.
Fabricating a capacitor includes forming conduits in a porous layer of material. The porous layer of material has particles that each includes a dielectric on a core. The formation of the conduits causes a portion of the dielectric to convert from a first phase to a second phase. The method also includes removing at least a portion of the second phase of the dielectric from the porous layer of material.
H01G 9/00 - Condensateurs électrolytiques, redresseurs électrolytiques, détecteurs électrolytiques, dispositifs de commutation électrolytiques, dispositifs électrolytiques photosensibles ou sensibles à la températureProcédés pour leur fabrication
H01G 9/045 - Électrodes caractérisées par le matériau à base d'aluminium
H01G 9/048 - Électrodes caractérisées par leur structure
H01G 9/055 - Électrodes à feuille mince gravée chimiquemennt
Described herein are methods, devices, and systems that use electrogram (EGM) or electrocardiogram (ECG) data for sleep apnea detection. An apparatus and method detect potential apnea events (an apnea or hypopnea event) using a signal indicative of cardiac electrical activity of a patient's heart, such as an EGM or ECG. Described herein are also methods, devices, and systems for classifying a patient as being asleep or awake, which can be used to selectively enable and disable sleep apnea detection monitoring, as well as in other manners.
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
A61B 5/0205 - Évaluation simultanée de l'état cardio-vasculaire et de l'état d'autres parties du corps, p. ex. de l'état cardiaque et respiratoire
A61B 5/11 - Mesure du mouvement du corps entier ou de parties de celui-ci, p. ex. tremblement de la tête ou des mains ou mobilité d'un membre
A61B 5/366 - Détection de complexes QRS anormaux, p. ex. élargissement
G16H 40/67 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement à distance
70.
IMPLANTABLE MEDICAL SYSTEMS AND METHODS USED TO DETECT, CHARACTERIZE OR AVOID ATRIAL OVERSENSING WITHIN AN IEGM
Certain embodiments of the present technology described herein relate to detecting atrial oversensing, characterizing atrial oversensing, determining when atrial oversensing is likely to occur, and or reducing the chance of atrial oversensing occurring. Some such embodiments characterize and/or avoid atrial oversensing.
A61B 5/283 - Électrodes bioélectriques à cet effet spécialement adaptées à des utilisations particulières pour l’électrocardiographie [ECG] invasives
A61B 5/33 - Modalités électriques se rapportant au cœur, p. ex. électrocardiographie [ECG] spécialement adaptées à l’utilisation conjointe avec d’autres dispositifs
A61N 1/05 - Électrodes à implanter ou à introduire dans le corps, p. ex. électrode cardiaque
A61N 1/368 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque comprenant plus d'une électrode coopérant avec différentes régions du cœur
71.
Systems and methods for suppressing and treating atrial fibrillation and atrial tachycardia
Disclosed herein are implantable medical devices and systems, and methods for used therewith, that selectively perform atrial overdrive pacing while an intrinsic atrial rate of a patient is within a specified range.
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
A61B 5/29 - Électrodes bioélectriques à cet effet spécialement adaptées à des utilisations particulières pour l’électrocardiographie [ECG] invasives pour implantation permanente ou à long terme
A61B 5/364 - Détection d'intervalle ECG anormal, p. ex. des extrasystoles ou des battements cardiaques ectopiques
A61N 1/05 - Électrodes à implanter ou à introduire dans le corps, p. ex. électrode cardiaque
A61N 1/365 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque
A61N 1/368 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque comprenant plus d'une électrode coopérant avec différentes régions du cœur
A61B 5/363 - Détection de la tachycardie ou de la bradycardie
72.
SYSTEMS AND METHODS FOR INCORPORATING A PATCH ANTENNA IN AN IMPLANTABLE MEDICAL DEVICE
Systems and methods for an implantable medical device which utilizes a patch antenna for communicating with an external device. The implantable medical device includes a housing, a header, and a patch antenna formed using an RF plate and a ground plate, which may be or include a metal surface of the housing. Also, a material of the header forms a dielectric of the patch antenna.
A computer implemented method for detecting arrhythmias in cardiac activity including obtaining far field cardiac activity (CA) signals for a series of beats. For at least a portion of the beats, the one or more processors perform, on a beat by beat basis: a) identifying first and second feature of interests (FOI) from a segment of the CA signal that corresponds to a current beat; and b) classifying the current beat into one of first and second groups. The method also includes designating one of the first and second groups to be a primary group based on a relation between the first and second groups, and for the beats in the primary group, selecting one of the first and second FOIs as the R-wave FOI. The method also includes rejecting an arrhythmia detection based on the P-waves detected.
Systems, methods, and devices are provided for determining an early battery depletion (EBD) condition of an implantable medical device that includes a memory storing program instructions and a processor executing the program instructions. Circuitry is electrically coupled to the processor, and the circuitry and processor perform one or more tasks related to at least one of collecting signals indictive of physiologic activity, analyzing collected signals, delivering therapy, or communicating with an external device. A battery supplies energy to the circuitry and processor. A monitoring circuit coupled to the battery measures actual energy usage from the battery representing at least one of a current draw from the battery during corresponding tasks or a voltage measurement across the battery. Circuitry and processor calculate projected energy usage from the battery in connection with the corresponding tasks, and determine when an EBD condition exists based on projected energy usage and actual energy usage.
G01R 31/392 - Détermination du vieillissement ou de la dégradation de la batterie, p. ex. état de santé
G01R 31/367 - Logiciels à cet effet, p. ex. pour le test des batteries en utilisant une modélisation ou des tables de correspondance
G01R 31/3835 - Dispositions pour la surveillance de variables des batteries ou des accumulateurs, p. ex. état de charge ne faisant intervenir que des mesures de tension
75.
IMPLANTABLE MEDICAL DEVICE AND METHOD FOR MANAGING ADVERTISING AND SCANNING SCHEDULES
A method and device for managing establishment of a communications link between an external instrument (EI) and an implantable medical device (IMD) are provided. The method stores, in a memory in at least one of the IMD or the EI, a base scanning schedule that defines a pattern for scanning windows over a scanning state. The method enters the scanning state during which a receiver scans for advertisement notices during the scanning windows. At least a portion of the scanning windows are grouped in a first segment of the scanning state. The method stores, in the memory, a scan reset pattern for restarting the scanning state. Further, the method automatically restarts the scanning state based on the scan reset pattern to form a pseudo-scanning schedule that differs from the base scanning schedule and establishes a communication session between the IMD and the EI.
Described herein are apparatuses and methods for classifying a patient as being asleep or awake. Such an apparatus can include an accelerometer and a processor. The accelerometer, alone or in combination with the processor, is used to determine an activity level of the patient and a posture of the patient. The processor is configured to classify the patient as being asleep in response to both (i) the posture of the patient being recumbent or reclined for at least a sleep latency duration, and (ii) the activity level of the patient not exceeding an activity threshold for at least the sleep latency duration; and classify the patient as being awake in response to at least one of (iii) the posture of the patient being upright for at least an awake latency duration, or (iv) the activity level of the patient exceeding the activity threshold for at least the awake latency duration.
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
A61B 5/0205 - Évaluation simultanée de l'état cardio-vasculaire et de l'état d'autres parties du corps, p. ex. de l'état cardiaque et respiratoire
A61B 5/11 - Mesure du mouvement du corps entier ou de parties de celui-ci, p. ex. tremblement de la tête ou des mains ou mobilité d'un membre
A61B 5/366 - Détection de complexes QRS anormaux, p. ex. élargissement
G16H 40/67 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement à distance
A biostimulator and a biostimulator system for septal pacing, is described. The biostimulator includes a joint to allow an electrode to pivot relative to a housing. The housing contains electrical circuitry that is electrically connected to the pacing electrode. The joint allows the pacing electrode to affix to target tissue of an interventricular septal wall of a heart when the housing is pivoted toward an apex of the heart. Other embodiments are also described and claimed.
Computer implemented methods and systems for detecting noise in cardiac activity are provided. The method and system obtain a far field cardiac activity (CA) data set that includes far field CA signals for a series of beats, overlay a segment of the CA signals with a noise search window, and identify turns in the segment of the CA signals. The method and system determine whether the turns exhibit a turn characteristic that exceed a turn characteristic threshold, declare the segment of the CA signals as a noise segment based on the determining operation, shift the noise search window to a next segment of the CA signal and repeat the identifying, determining and declaring operations; and modify the CA signals based on the declaring the noise segments.
A medical data and diagnostics management system for processing classified electrogram (EGM) datasets includes a server system that receives transmissions of classified EGM datasets, each corresponding to an arrhythmic episode detected by an implantable medical device (IMD), and applies a machine-learning model to each classified EGM dataset, thereby determining confidence indicator(s) relating to the IMD classification for each arrhythmic episode. Based upon the confidence indicator(s), the server system generates a set of machine-adjudicated EGM datasets, assigns a ranking score to each machine-adjudicated EGM dataset, and selects for display (for clinical analysis) a subset of the machine-adjudicated EGM datasets based upon their ranking scores. The machine-adjudicated EGM datasets are also stored in a database and further processed to generate diagnostic information and/or diagnostic alerts relating to the arrhythmic episodes detected by the IMD over time. The server system may also facilitate reprogramming of the IMD to improve its performance.
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
G16H 10/60 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients
80.
METHOD AND SYSTEM UTILIZING A DEVICE-BASED ATRIO-VENTRICULAR DELAY ADJUSTMENT
A method and device for dynamic device based AV delay adjustment are provided. The method provides electrodes that are configured to be located proximate to an atrial (A) site and a right ventricular (RV) site. The method utilizes one or more processors, in an implantable medical device (IMD), for detecting an atrial paced (Ap) event or atrial sensed (As) event. The method determines a measured AV interval corresponding to an interval between the Ap event or the As event and a ventricular sensed event and calculates a percentage-based (PB) offset based on the measured AV interval. The method automatically dynamically adjusting an AV delay, utilized by the IMD, based on the measured AV interval and the PB offset and manages a pacing therapy, utilized by the IMD, based on the AV delay after the adjusting operation.
A61N 1/368 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque comprenant plus d'une électrode coopérant avec différentes régions du cœur
A61N 1/365 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque
A biostimulator transport system for transporting a biostimulator includes a sleeve having a sleeve lumen. A support member extends through the sleeve lumen, and a belt extends longitudinally through the sleeve lumen between the sleeve and the support member. The belt has a loop distal to a distal member end of the support member. A portion of a biostimulator can extend through the loop such that the belt retains the biostimulator against the support member. A method of using the biostimulator transport system includes delivering the biostimulator to a target tissue, driving the belt to rotate a pacing electrode of the biostimulator into the target tissue, and cutting the belt to release the implanted biostimulator. Other embodiments are also described and claimed.
A method for automatically operating an active implantable medical device (AIMD) is provided. Under control of one or more processors, the method includes placing the AIMD in an MRI trigger mode, detecting a magnetic field of a magnetic resonance imaging (MRI) device in response to placing the AIMD in the MRI trigger mode, and communicating with a magnetic field detecting sensor to obtain characteristics of interest of the magnetic field. The method also includes determining a location of the AIMD in relation to the MRI scanner based on the characteristics of interest of the magnetic field, automatically activating an MRI mode of the AIMD, automatically deactivating the MRI mode, and maintaining the MRI trigger mode after the MRI mode is automatically deactivated.
A61N 1/08 - Aménagements ou circuits de surveillance, de protection, de commande ou d'indication
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
A61B 5/055 - Détection, mesure ou enregistrement pour établir un diagnostic au moyen de courants électriques ou de champs magnétiquesMesure utilisant des micro-ondes ou des ondes radio faisant intervenir la résonance magnétique nucléaire [RMN] ou électronique [RME], p. ex. formation d'images par résonance magnétique
83.
METHOD OF FORMING A BRAZED JOINT HAVING MOLYBDENUM MATERIAL
A method of forming a brazed joint is described. The method includes pressing a non-molybdenum component, such as a cross pin of a battery case assembly, against a molybdenum component, such as a terminal pin of the battery case assembly, and applying one or more electrical pulses to form an interface liquid layer between the components that cools to form the brazed joint. At least one of the electrical pulses has a constant voltage over a pulse time. A contact resistance between the components can decrease during the pulse time, and thus, the constant voltage can cause an uncontrolled electrical current of the electrical pulse to increase. The increasing electrical current heats the components sufficiently to form the interface liquid layer having a predetermined thickness that provides a required bend strength. Removal of surface oxides provide consistent mechanical strength for this joint. Other embodiments are also described and claimed.
H01M 50/179 - Dispositions pour introduire des connecteurs électriques dans ou à travers des boîtiers adaptées à la forme des cellules pour des cellules ayant une section transversale courbée, p. ex. ronde ou elliptique
B23K 26/38 - Enlèvement de matière par perçage ou découpage
Methods, systems, and devices that detect arrhythmic episodes and perform arrhythmia discrimination are described. Such a system includes a leadless pacemaker (LP) that senses a near-field electrogram (NF-EGM), and a non-vascular implantable cardioverter defibrillator (NV-ICD) that senses a far-field electrogram (FF-EGM). The LP determines cardiac activity information based on the NF-EGM and optionally also based on paced cardiac events caused by the LP. The LP monitors for specific pacemaker condition(s), sends i2i message(s) including the cardiac activity information to the NV-ICD when at least one of the specific pacemaker condition(s) is detected by the LP, and does not send i2i message(s) including the cardiac activity information to the NV-ICD when the LP detects none of the specific pacemaker condition(s) After the NV-ICD receives the i2i message(s) transmitted by the LP, the NV-ICD can detect an arrhythmic episode and/or perform arrhythmia discrimination based on the cardiac activity information included therein.
Catheter-based delivery systems for delivery and retrieval of a leadless pacemaker include features to facilitate improved manipulation of the catheter and improved capture and docking functionality of leadless pacemakers. Such functionality includes mechanisms directed to deflecting and locking a deflectable catheter, maintaining tension on a retrieval feature, protection from anti-rotation, and improved docking cap and drive gear assemblies.
A method for controlling an adaptive pacing therapy that includes utilizing one or more processors to perform measuring an atrial-ventricular (AV) interval corresponding to an interval between an atrial paced (Ap) event or an atrial sensed (As) event and a sensed ventricular (Vs) event, setting an AV delay based on the AV interval, and measuring an S1 heart sound characteristic of interest (COI) while utilizing the AV delay in connection with delivering a pacing therapy by the IMD. The one or more processors also perform adjusting the AV delay, repeating the measuring, and adjusting to obtain a collection of S1 heart sound COIs and corresponding AV delays, selecting one of the AV delays, that corresponds to a select one of the S1 heart sound COIs, as a resultant AV delay, and managing the pacing therapy, utilized by the IMD, based on the resultant AV delay.
A61N 1/368 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque comprenant plus d'une électrode coopérant avec différentes régions du cœur
A61N 1/365 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque
87.
SYSTEMS AND METHODS FOR IMPLANTING A MEDICAL DEVICE
In at least one embodiment, a system and method for implanting an implantable medical device (IMD) within a patient may include an IMD including a housing and an attachment member, and a delivery catheter including a tethering snare that is configured to be selectively extended out of the delivery catheter and retracted into the delivery catheter. In at least one embodiment, a system and method for implanting an implantable medical device (IMD) within a patient may include an IMD including a housing and an attachment member, wherein the attachment member includes a central passage connected to a connection chamber, and a delivery catheter including first and second tethers that may be moved outwardly from and retracted into the delivery catheter.
A healthcare system comprises a central service center having processors, memory storing program instructions and global device index including database records associated with medical devices. Each record includes a corresponding unique device identifier, region code associated with a region having corresponding patient data privacy (PDP) requirements and status indicator indicative of whether the corresponding medical device is active in the corresponding region. The central service center is configured to: i) manage transfer of patient data between regional systems based on the PDP requirements for the corresponding regional systems; ii) manage the status indicators, maintained by the first and second regional systems, associated with a common medical device; iii) return a registration response indicating either: a) device is registered in another regional system or b) device is available for registration; or iv) update the status indicator in the global device index for a device in connection with the regional system.
G16H 40/20 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour la gestion ou l’administration de ressources ou d’établissements de soins de santé, p. ex. pour la gestion du personnel hospitalier ou de salles d’opération
G16H 10/60 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients
89.
Mitigating false messages and effects thereof in multi-chamber leadless pacemaker systems and other IMD systems
Implantable medical devices (IMDs) described herein, and methods for use therewith described herein, reduce how often an IMD accepts a false message and/or reduce adverse effects of an IMD accepting a false message. Such IMDs can be leadless pacemakers (LPs), or implantable cardio defibrillators (ICDs), but are not limited thereto. Such embodiments can be used help multiple IMDs (e.g., multiple LPs) implanted within a same patient maintain synchronous operation, such as synchronous multi-chamber pacing.
A61N 1/372 - Aménagements en relation avec l'implantation des stimulateurs
A61N 1/368 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque comprenant plus d'une électrode coopérant avec différentes régions du cœur
G16H 40/67 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement à distance
90.
BIOSTIMULATOR TRANSPORT SYSTEM HAVING FLEXIBLE TETHER
A biostimulator transport system, such as a biostimulator delivery system, is described. The biostimulator transport system includes a flexible tether extending through a tether support to a tether bight. The tether bight loops through an attachment feature of a biostimulator to connect the biostimulator to the biostimulator transport system. Tether legs extend from the tether bight to a handle of the biostimulator transport system. The handle includes a housing and a knob, and the tether legs attach to the housing and the knob. A tether leg can be disconnected from the housing and the knob can be removed to pull the tether out of the attachment feature and release the biostimulator from the biostimulator transport system. Other embodiments are also described and claimed.
A catheter system for retrieving a leadless cardiac pacemaker from a patient is provided. The cardiac pacemaker can include a docking or retrieval feature configured to be grasped by the catheter system. In some embodiments, the retrieval catheter can include a snare configured to engage the retrieval feature of the pacemaker. The retrieval catheter can include a torque shaft selectively connectable to a docking cap and be configured to apply rotational torque to a pacemaker to be retrieved. Methods of delivering the leadless cardiac pacemaker with the delivery system are also provided.
System and methods are provided herein and include a HIS electrode configured to be located proximate to a HIS bundle and to at least partially define a HIS sensing vector. They system includes memory to store program instructions and cardiac activity (CA) signals for a series of beats utilizing a candidate sensing configuration. The candidate sensing configuration is defined by i) the HIS sensing vector and ii) a sensing channel that utilizes sensing circuitry configured to operate based on one or more sensing settings to detect near field and far field activity. The system includes one or more processors that, when executing the program instructions, are configured to analyze the CA signals to obtain an atrial (A) feature of interest (FOI) and a ventricular (V) FOI for the corresponding beats within the series of beats and identify a V-A FOI relation between the A FOIs and the V FOIs across the series of beats. The system adjusts the candidate sensing configuration and repeat the obtain, analyze and identify operations to obtain a collection of V-A FOI relations for a corresponding collection of candidate sensing configurations and selects a resultant sensing configuration from the collection of candidate sensing configurations based on one or more criteria, the resultant sensing configuration to be utilized to manage HIS bundle pacing during an atrial arrhythmia.
A biostimulator transport system, such as a biostimulator delivery system, is described. The biostimulator transport system includes a flexible tether extending through a tether support to a tether bight. The tether bight loops through an attachment feature of a biostimulator to connect the biostimulator to the biostimulator transport system. Tether legs extend from the tether bight to a handle of the biostimulator transport system. The handle includes a housing and a knob, and the tether legs attach to the housing and the knob. A tether leg can be disconnected from the housing and the knob can be removed to pull the tether out of the attachment feature and release the biostimulator from the biostimulator transport system. Other embodiments are also described and claimed.
Disclosed herein is a delivery catheter for implanting a leadless biostimulator. The delivery catheter includes a shaft and a tubular body having a lumen and an atraumatic end. The atraumatic end includes at least one of a braided, woven or mesh construction configured to facilitate the atraumatic end changing diameter. When a distal portion of the shaft is coupled to a proximal region of the leadless biostimulator, at least one of distally displacing the tubular body relative to the shaft or proximally displacing the shaft relative to the tubular body causes the leadless biostimulator to be received in the volume of the atraumatic end and the atraumatic end to encompass the leadless biostimulator. Conversely, at least one of proximally displacing the tubular body relative to the shaft or distally displacing the shaft relative to the tubular body causes the leadless biostimulator to exit the volume of the atraumatic end.
A medical device assembly is provided that includes a clinician programing device configured to communicate with an implanted medical device of a patient. The clinician programming device includes one or more processors configured to communicate program instructions to a remote programming engine. The remote programming engine includes one or more processors configured to simulate operation of the implanted medical device based on the updated program instructions, and communicate updated program instructions to the implanted medical device based on the operation simulated.
Systems for monitoring left atrial pressure using implantable cardiac monitoring devices and, more specifically, to a left atrial pressure sensor implanted through a septal wall are presented herein.
An implantable medical device and computer implemented methods comprise a sensing circuit configured to sense cardiac activity (CA) signals. An accelerometer is configured to be implanted in a patient and obtain accelerometer data along at least one axis. A memory is configured to store program instructions and device parameters associated with each ventricular arrhythmia (VA) therapy in a collection of VA therapies with different levels of intensity. One or more processors execute the program instructions and are configured to analyze the CA signals over one or more cardiac beats, determine a VA episode based on the analysis of the CA signals, determine a posture of the patient based on the accelerometer data in response to the determination of the VA episode, and select a first VA therapy from the collection of VA therapies based on the posture.
A method is provided for manufacturing an electrolytic capacitor for an implantable cardioverter defibrillator. The method includes forming an ester material by adding at least one acid to a glycol, and quenching the ester material for a determined period. The method also includes adding an ammonium based material to the ester material after the ester material is quenched, and adding an additional acid after adding the ammonium based material to form an electrolytic material for the electrolytic capacitor.
H01G 9/00 - Condensateurs électrolytiques, redresseurs électrolytiques, détecteurs électrolytiques, dispositifs de commutation électrolytiques, dispositifs électrolytiques photosensibles ou sensibles à la températureProcédés pour leur fabrication
A system and method for modeling patient-specific spinal cord stimulation (SCS) is disclosed. The system and method acquire impedance and evoked compound action potential (ECAP) signals from a lead positioned proximate to a spinal cord (SC). The lead includes at least one electrode. The system and method determine a patient-specific anatomical model based on the impedance and ECAP signals, and transform a dorsal column (DC) map template based on a DC boundary of the patient-specific anatomical model. Further, the system and method map the transformed DC map template to the patient-specific anatomical model. The system and method may also include the algorithms to solve extracellular and intracellular domain electrical fields and propagation along neurons. The system and method may also include the user interfaces to collect patient responses and compare with the patient-specific anatomical model as well as using the patient-specific anatomical model for guiding SCS programming.
A61N 1/372 - Aménagements en relation avec l'implantation des stimulateurs
G16H 20/40 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients concernant des thérapies mécaniques, la radiothérapie ou des thérapies invasives, p. ex. la chirurgie, la thérapie laser, la dialyse ou l’acuponcture
G16H 40/63 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement local
A61B 5/388 - Études de la conduction nerveuse, p. ex. détection du potentiel d’action d’un nerf périphérique
A biostimulator, such as a leadless cardiac pacemaker, has a header assembly that includes an antenna. A header assembly includes an antenna cap having an antenna loop embedded in a cap body. The cap body includes a dielectric material, and the antenna loop extends about a central channel of the cap body. The central channel extends along a longitudinal axis over a cap length, and the cap body has a cap width transverse to the longitudinal axis. The cap body has an aspect ratio of the cap width to the cap length greater than 1. A header assembly includes an antenna loop of the antenna encased in a header body of the header assembly. The header assembly includes a fixation element. A proximal end of the fixation element is encased in the header body. Other embodiments are also described and claimed.