An object of the present invention is to provide a novel technique for reducing stacking faults SF in silicon carbide. Another object of the present invention is to provide a novel technique capable of reducing the stacking faults SF under a small number of growth conditions.
An object of the present invention is to provide a novel technique for reducing stacking faults SF in silicon carbide. Another object of the present invention is to provide a novel technique capable of reducing the stacking faults SF under a small number of growth conditions.
The present invention is a method for reducing stacking faults in silicon carbide including a growth step S10 of growing an epitaxial layer 20 on a bulk layer 10 of silicon carbide having stacking faults SF under a SiC—C equilibrium vapor pressure environment.
C30B 25/20 - Croissance d'une couche épitaxiale caractérisée par le substrat le substrat étant dans le même matériau que la couche épitaxiale
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 29/16 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, mis à part les matériaux de dopage ou autres impuretés, seulement des éléments du groupe IV de la classification périodique, sous forme non combinée
A sensor-equipped bolt (200A, 200B) which is used for fastening an object comprises: a bolt shaft (211A, 211B) that includes a threaded portion (211Aa, 211Ba, 211Bb) where threading is formed and a non-threaded portion (211Ab, 211Bc) where threading is not formed; and a sensor (220A, 220B) that is attached to the bolt shaft and detects deformation of the bolt shaft. The bolt shaft includes, in the outer circumferential surface of the non-threaded portion, a recess (213Aa, 213Ba) that is recessed from the outer circumferential surface of the non-threaded portion and accommodates the sensor. The cross-sectional area of the bolt shaft at the position of the recess is equal to or greater than the effective cross-sectional area of the bolt shaft at the threaded portion.
G01L 5/00 - Appareils ou procédés pour la mesure des forces, du travail, de la puissance mécanique ou du couple, spécialement adaptés à des fins spécifiques
F16B 31/02 - Assemblages à vis spécialement modifiés en vue de résister à une charge de tractionBoulons de rupture signalant ou limitant la charge de traction
3.
NONWOVEN FABRIC USED FOR FOAMED ARTICLE REINFORCING MATERIAL, FOAMED ARTICLE REINFORCING MATERIAL, AND METHOD FOR PRODUCING NONWOVEN FABRIC USED FOR FOAMED ARTICLE REINFORCING MATERIAL
A nonwoven fabric used for a foamed article reinforcing material to be bonded to a foamed material to reinforce the foamed article is a single-layer material in which stacked layers of a web are bonded together, has a thickness of 1 to 8 mm under a load of 7 g/cm2, and has a delamination strength of 0.05 to 2.45 N/cm. The delamination strength is a value of the pulling force required to peel the bonded layers of the web apart.
B32B 5/24 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par la présence de plusieurs couches qui comportent des fibres, filaments, grains ou poudre, ou qui sont sous forme de mousse ou essentiellement poreuses une des couches étant fibreuse ou filamenteuse
B32B 5/02 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par les caractéristiques de structure d'une couche comprenant des fibres ou des filaments
B32B 38/00 - Opérations auxiliaires liées aux procédés de stratification
B32B 41/00 - Dispositions pour le contrôle ou la commande des procédés de stratificationDispositions de sécurité
4.
METHOD FOR IMPROVING DOPANT ACTIVATION RATE AND STRUCTURE CREATED BY MEANS OF SAID METHOD
An object of the present invention is to provide a novel technique for improving an activation rate of dopant of an epitaxial layer. Another object of the present invention is to provide a novel technique for suppressing variation in activation rate of dopant in the epitaxial layer.
An object of the present invention is to provide a novel technique for improving an activation rate of dopant of an epitaxial layer. Another object of the present invention is to provide a novel technique for suppressing variation in activation rate of dopant in the epitaxial layer.
The present invention is a method for improving the activation rate of dopant of an epitaxial layer 20, including a growth step S10 of growing the epitaxial layer 20 having the dopant on a bulk layer 10 under an equilibrium vapor pressure environment.
An object of the present invention is to provide a novel technique for uniformizing a carrier concentration of an epitaxial layer.
An object of the present invention is to provide a novel technique for uniformizing a carrier concentration of an epitaxial layer.
The present invention is a method for uniformizing the carrier concentration of an epitaxial layer, the method including a growth step S10 of growing the epitaxial layer 20 under an equilibrium vapor pressure environment on the bulk layer 10. As described above, including the growth step S10 of growing the epitaxial layer 20 under an equilibrium vapor pressure environment can suppress the variation in the carrier concentration in the epitaxial layer 20.
H01L 29/16 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, mis à part les matériaux de dopage ou autres impuretés, seulement des éléments du groupe IV de la classification périodique, sous forme non combinée
C30B 23/00 - Croissance des monocristaux par condensation d'un matériau évaporé ou sublimé
KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION (Japon)
PRIME PLANET ENERGY & SOLUTIONS, INC. (Japon)
TOYOTA TSUSHO CORPORATION (Japon)
TOYOTA JIDOSHA KABUSHIKI KAISHA (Japon)
Inventeur(s)
Goto, Masahiro
Hanada, Takafumi
Abrégé
A metal recovery apparatus including a leaching unit that directly leaches a metal element contained in a composition into a hydrophobic deep eutectic solvent and a recovery unit that separates and recovers the metal element from the deep eutectic solvent, wherein the metal element-containing composition is solid at 25° C. and does not contain an inorganic acid, the metal element is a metal, a metal compound, or metal ions, and the deep eutectic solvent does not contain an inorganic acid.
NONWOVEN FABRIC USED IN REINFORCING MATERIAL FOR FOAM-MOLDED ARTICLE, MULTILAYER STRUCTURAL MEMBER CONTAINING NONWOVEN FABRIC, REINFORCING MATERIAL FOR FOAM-MOLDED ARTICLE, AND METHOD FOR PRODUCING NONWOVEN FABRIC USED IN REINFORCING MATERIAL FOR FOAM-MOLDED ARTICLE
In the present invention, a nonwoven fabric used in a reinforcing material 10 for a foam-molded article joined to a foam-molded member in order to reinforce the foam-molded article is a single-layer member in which staple fibers of a web in which webs formed from the stable fibers are folded over and laminated are joined together using a needle punch. The nonwoven fabric has a thickness of 2 to 7.5 mm at a 7 g/cm2load, an apparent density of 0.02 to 0.05 g/m2, and an interlayer peeling strength of 0.05 to 2.45 N/cm. The interlayer peeling strength is a value indicating the tensile force required to cause the joined webs to peel apart from each other.
D04H 1/498 - Non-tissés formés uniquement ou principalement de fibres coupées ou autres fibres similaires relativement courtes à partir de voiles ou couches composés de fibres ne possédant pas des propriétés cohésives réelles ou potentielles les voiles ou couches étant renforcées par des moyens mécaniques, p. ex. par roulage par aiguilletage ou opérations similaires pour provoquer l'enchevêtrement des fibres enchevêtrement des couches de non-tissés
B29C 39/10 - Moulage par coulée, c.-à-d. en introduisant la matière à mouler dans un moule ou entre des surfaces enveloppantes sans pression significative de moulageAppareils à cet effet pour la fabrication d'objets de longueur définie, c.-à-d. d'objets séparés en incorporant des parties ou des couches préformées, p. ex. coulée autour d'inserts ou sur des objets à recouvrir
B32B 5/06 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par les caractéristiques de structure d'une couche comprenant des fibres ou des filaments caractérisés par une couche fibreuse imbriquée ou cousue avec une autre couche, p. ex. de fibres, de papier
D04H 1/541 - Fibres composites, p. ex. âme-gaine, mer-île ou côte à côteFibres mixtes
8.
METHOD FOR MEASURING ETCHING AMOUNT, AND MEASUREMENT SYSTEM THEREFOR
The present invention addresses the problem of providing a novel technology for measuring an etching amount in heat treatment in which growth and etching proceed simultaneously. The present invention includes: a first substrate thickness measuring step S10 for measuring the thickness 10D of a to-be-heat-treated semiconductor substrate 10; a second substrate thickness measuring step S20 for measuring the thickness 20D of a heat-treated semiconductor substrate 20; a growth layer thickness measuring step S30 for measuring the thickness 21D of a growth layer 21 which has gone through crystal growth by heat treatment; and an etching amount calculating step S40 for calculating the etching amount ED on the basis of the thickness 10D of the to-be-heat-treated semiconductor substrate 10, the thickness 20D of the heat-treated semiconductor substrate 20, and the thickness 21D of the growth layer 21.
G01B 11/06 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer la longueur, la largeur ou l'épaisseur pour mesurer l'épaisseur
G01N 21/35 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique en utilisant la lumière infrarouge
G01N 21/3563 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique en utilisant la lumière infrarouge pour l'analyse de solidesPréparation des échantillons à cet effet
Provided is a method which makes it possible to efficiently recover Cu from a recyclable material such as a scrap. The present invention is a Cu recovery method including a treatment step for putting a recyclable material in which an Al-based material and a Cu-based bacterial are mixed together into a molten salt formed on an Al-based molten metal. By adjusting the concentration of Mg contained in the Al-based molten metal to 0.2 mass% or less, Cu can be efficiently dissolved in the Al-based molten metal and thereby can be recovered. The recyclable material comprises, for example, a piece material obtained by cutting a heat exchanger or the like. As the molten salt, for example, a mixed salt comprising sodium chloride and potassium chloride can be used. Cu may be precipitated and recovered from the Al-based molten metal after the treatment step, or the Al-based molten metal may be used without any modification as a recycled Al alloy or a raw material for the recycled Al alloy.
C22B 1/00 - Traitement préliminaire de minerais ou de débris ou déchets métalliques
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p. ex. des rognures, pour produire des métaux non ferreux ou leurs composés
C22B 9/10 - Procédés généraux d'affinage ou de refusion des métauxAppareils pour la refusion des métaux sous laitier électroconducteur ou à l'arc avec des agents d'affinage ou fondantsEmploi de substances pour ces procédés
The present invention provides a method that makes it possible to efficiently recover Cu from a recycling raw material such as scrap. The present invention is a Cu recovery method comprising a processing step for introducing a recycling raw material, in which an Al base material and a Cu base material are mixed, into a molten salt formed on an Al-based molten metal. When Ca included in the Al-based molten metal is not more than 0.3 mass%, Cu efficiently melts into the Al-based molten metal and can be recovered. The recycling raw material comprises, for example, pieces of material obtained by cutting a heat exchanger or the like. For example, a mixed salt of sodium chloride and potassium chloride can be used as the molten salt. Cu may be extracted and recovered from the Al-based molten metal after the processing step, or the Al-based molten metal may be used as is, as a recycled Al alloy or as raw material thereof.
C22B 1/00 - Traitement préliminaire de minerais ou de débris ou déchets métalliques
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p. ex. des rognures, pour produire des métaux non ferreux ou leurs composés
C22B 9/10 - Procédés généraux d'affinage ou de refusion des métauxAppareils pour la refusion des métaux sous laitier électroconducteur ou à l'arc avec des agents d'affinage ou fondantsEmploi de substances pour ces procédés
An object of the present invention is to provide a novel technique capable of evaluating a subsurface damaged layer without destroying a semiconductor single crystal. As means for solving this object, the present invention causing a laser light to be incident from a surface of a semiconductor single crystal substrate to evaluate the subsurface damaged layer of the semiconductor single crystal substrate based on an intensity of a scattered light which is scattered inside the semiconductor single crystal substrate.
Provided is a manufacturing method by which Al-based particles can be efficiently or easily obtained. According to the present invention, a particle-dispersed molten salt (an example of an Al substrate), in which Al-based particles (liquid phase) are dispersed in a molten salt, can be obtained by bringing an Al-based foil into contact with a molten salt. Through the particle-dispersed molten salt, for example, Al-based powder (an example of the Al substrate) comprising Al-based particles (solid phase) can be efficiently or easily obtained. By sorting the Al-based particle group, an Al-based powder with a desired particle size distribution may be obtained. The Al-based foil has a thickness of, for example, at most 0.5 mm, and even 0.1 mm. Preferably, the Al-based foil is supplied to a molten salt in the form of chopped foil pieces. Accordingly, it is possible to easily obtain Al-based powder having a particle size distribution including fine particles. For example, it is preferable that a mixed salt containing NaCl and KCl be used as the molten salt.
B22F 9/00 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet
B22F 9/04 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau solide, p. ex. par broyage, meulage ou écrasement à la meule
KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION (Japon)
TOYOTA TSUSHO CORPORATION (Japon)
TOYOTA JIDOSHA KABUSHIKI KAISHA (Japon)
Inventeur(s)
Yamamoto, Yuji
Goto, Masahiro
Hanada, Takafumi
Moriyama, Takeru
Procter, Momoko
Abrégé
Provided is a method for enabling recovery of metal element leaching capacity of a deep eutectic solvent used for leaching a metal element from an ore containing the metal element. A method for recycling a hydrophobic deep eutectic solvent disclosed here includes: preparing a hydrophobic deep eutectic solvent used for leaching a metal element from an ore containing the metal element; and bringing the hydrophobic deep eutectic solvent and hydrochloric acid into contact with each other. In the hydrophobic deep eutectic solvent, a hydrogen bond donor is a carboxy group-containing compound, and a hydrogen bond acceptor is chloride salt. The amount of use of the hydrochloric acid is such that hydrogen chloride is 1 mole or more with respect to 1 mole of the hydrogen bond acceptor.
C22B 3/14 - Extraction de composés métalliques par voie humide à partir de minerais ou de concentrés par lixiviation dans des solutions inorganiques alcalines contenant de l'ammoniaque ou des sels d'ammonium
C22B 3/16 - Extraction de composés métalliques par voie humide à partir de minerais ou de concentrés par lixiviation dans des solutions organiques
16.
METHOD AND SYSTEM FOR EVALUATING WORK-AFFECTED LAYER
An object of the present invention is to provide a novel technology capable of evaluating a subsurface damaged layer without destroying a semiconductor substrate. As means for solving this object, the present invention includes a measurement step of causing laser light having penetration characteristics to be incident from a surface of a semiconductor substrate having a subsurface damaged layer under the surface and measuring an intensity of scattered light scattered under the surface, and an evaluation step of evaluating the subsurface damaged layer on the basis of the intensity of the scattered light obtained in the measurement step.
G01N 21/95 - Recherche de la présence de criques, de défauts ou de souillures caractérisée par le matériau ou la forme de l'objet à analyser
H01L 21/66 - Test ou mesure durant la fabrication ou le traitement
17.
METHOD FOR SUPPRESSING VARIATION IN LIGHT EMISSION INTENSITY OF BACKGROUND IN PHOTOLUMINESCENCE MEASUREMENT, AND EVALUATION METHOD FOR SEMICONDUCTOR SUBSTRATE
The present invention addresses the problem of providing a novel technique capable of suppressing variation in light emission intensity of a background in photoluminescence measurement. The present invention is a method for suppressing variation in light emission intensity of a background in photoluminescence measurement, the method including: a process-modified layer removal step S10 for removing at least a portion of a process-modified layer 11 present on a semiconductor substrate 10; and a photoluminescence measurement step S30 for acquiring distribution information about crystal defects of the semiconductor substrate 10 by photoluminescence measurement.
Disclosed is a method for using a SiC container (3) in which Si vapor and C vapor are generated in the internal space during the heat treatment. The SiC container may be heated in Si atmosphere to grow an epitaxial layer of single crystalline SiC on the underlying substrate housed in the internal space. The SiC container may be heated in a TaC container of a material including TaC supplemented with a source of Si to grow an epitaxial layer of single crystalline SiC on the underlying substrate housed in the internal space.
An object of the present invention is to provide a novel technique for evaluating a heat treatment environment. The present invention is a method for evaluating a heat treatment environment, the method comprising an image acquisition step of acquiring an image by making an electron beam incident at an incident angle inclined with respect to a normal line of a {0001} plane of a heat-treated silicon carbide substrate and an environment evaluation step of evaluating a heat treatment environment of the silicon carbide substrate on a basis of on contrast information of the image.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/04 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges
An object of the present invention is to provide a novel evaluation method suitable for evaluating a SiC substrate having a large diameter.
An object of the present invention is to provide a novel evaluation method suitable for evaluating a SiC substrate having a large diameter.
The present invention is a method for evaluating a silicon carbide substrate, the method comprising an image acquisition step of acquiring an image by making an electron beam incident at an incident angle inclined with respect to a normal line of a {0001} plane of a silicon carbide substrate, wherein the incident angle is 10° or less.
H01L 21/66 - Test ou mesure durant la fabrication ou le traitement
H01L 29/16 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, mis à part les matériaux de dopage ou autres impuretés, seulement des éléments du groupe IV de la classification périodique, sous forme non combinée
21.
METHOD FOR PRODUCING ALUMINUM NITRIDE SUBSTRATE, ALUMINUM NITRIDE SUBSTRATE, AND METHOD FOR SUPPRESSING INTRODUCTION OF DISLOCATION INTO ALUMINUM NITRIDE GROWTH LAYER
A problem addressed by the present invention is to provide a novel technique with which is possible to suppress the introduction of dislocation into a growth layer. The present invention, which solves the above problem, is a method for producing an aluminum nitride substrate, the method including a processing step for removing part of silicon carbide substrate and forming a pattern that includes a minor angle, and a crystal growth step for forming an aluminum nitride growth layer on the silicon carbide substrate on which the patter has been formed. The present invention is also a method for suppressing the introduction of dislocation into the aluminum nitride growth layer, the method including a processing step for removing part of the silicon carbide substrate and forming a pattern that includes a minor angle before forming a growth layer on a base substrate.
A position estimation device (10) comprises an image acquisition unit (110) and a position estimation unit (120). The image acquisition unit (110) acquires a plurality of images generated by an image capture device that captures images of a space of interest in which a flying object is flying. The position estimation unit (120) estimates the position of the flying object by processing the plurality of images. The position estimation unit (120) tentatively sets the type of the flying object and estimates the distance to and the speed of the flying object. The position estimation unit (120) then updates the type of the flying object using this speed and the rate of change in the area of the flying object in the images. The position estimation unit (120) repeats the processes described above.
A location estimation device (10) functions as a control device for controlling a speaker. The location estimation device (10) is provided with a location estimation unit (120) and a control unit (130). The location estimation unit (120) estimates a future location of an animal at a first timing. The control unit (130) causes a sound for communicating prescribed information to the animal to be output from the speaker so as to reach the future location at the first timing. One example of said sound is a sound for communicating the prescribed information to the animal from an animal of the same species as the animal or to the animal from an animal of a related species to the animal.
An object of the present invention is to provide a novel technique capable of manufacturing a large-diameter AlN substrate.
An object of the present invention is to provide a novel technique capable of manufacturing a large-diameter AlN substrate.
The present invention is a method for manufacturing an AlN substrate, including a crystal growth step S30 of forming an AlN layer 20 on a SiC underlying substrate 10 having through holes 11. In addition, the present invention is a method for forming an AlN layer including the through hole formation step S20 of forming the through holes 11 in the SiC underlying substrate 10 before forming the AlN layer 20 on the SiC underlying substrate 10.
A problem addressed by the present invention is to provide a novel technology with which it is possible to suppress the formation of stacking fault. The present invention also addresses the problem of providing novel technology with which it is possible to suppress stacking fault that is formed during epitaxial growth on a semiconductor substrate. The present invention provides a method for suppressing the formation of stacking fault, the method comprising: an affected layer removal step S10 in which an affected layer 11 of a semiconductor substrate 10 is removed; and a crystal growth step S20 in which crystal growth is performed on the surface from which the affected layer 11 has been removed.
KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION (Japon)
TOYOTA TSUSHO CORPORATION (Japon)
TOYOTA JIDOSHA KABUSHIKI KAISHA (Japon)
Inventeur(s)
Yamamoto, Yuji
Goto, Masahiro
Hanada, Takafumi
Moriyama, Takeru
Ohsawa, Ryosuke
Abrégé
Provided is a method for leaching nickel from a nickel oxide ore that enables a nickel sulfate production method which is easily carried out with a small amount of waste generation. The method for leaching nickel into an organic phase disclosed here includes the step of bringing a nickel ore into contact with an organic phase. The organic phase contains a hydrophobic deep eutectic solvent including a hydrogen bond donor and a hydrogen bond acceptor, and an organic acid. The hydrogen bond donor is an acidic hydrogen bond donor. The organic acid is a strong acid.
This pet management system (1, 100, 200, 300) is provided with a wearable device (3) to be worn by a pet (2) and a management device (4) configured to be communicable with the wearable device (3). The wearable device (3) is provided with sensors (11, 12) for detecting an acceleration and/or an angular velocity, and the wearable device (3) or the management device (4) is provided with an itching behavior analysis unit (14, 214) for generating itching behavior data (13b) representing an itch-related behavior of the pet (2) by analyzing data (13a, 232f) detected by the sensors (11, 12). The management device (4) is provided with a management data storage unit (32, 232) for storing itching behavior data (32a) and a display unit (23) for displaying the itching behavior data (32a) stored in the management data storage unit (32).
The problem to be solved by the present invention is to provide a novel technique that can remove a strained layer introduced into an aluminum nitride substrate. In order to solve this problem, the present aluminum nitride substrate manufacturing method involves a strained layer removal step for removing a strained layer in an aluminum nitride substrate by heat treatment of the aluminum nitride substrate in a nitrogen atmosphere. In this way, the present invention can remove a strained layer that has been introduced into an aluminum nitride substrate.
C30B 33/04 - Post-traitement des monocristaux ou des matériaux polycristallins homogènes de structure déterminée en utilisant des champs électriques ou magnétiques ou des rayonnements corpusculaires
B23K 26/382 - Enlèvement de matière par perçage ou découpage par perçage
B23K 26/402 - Enlèvement de matière en tenant compte des propriétés du matériau à enlever en faisant intervenir des matériaux non métalliques, p. ex. des isolants
29.
METHOD FOR PRODUCING SEMICONDUCTOR SUBSTRATE, SEMICONDUCTOR SUBSTRATE, AND METHOD FOR PREVENTING CRACK OCCURRENCE IN GROWTH LAYER
An object of the present invention is to provide a novel technique capable of suppressing the occurrence of cracks in the growth layer.
An object of the present invention is to provide a novel technique capable of suppressing the occurrence of cracks in the growth layer.
The present invention is a method for manufacturing a semiconductor substrate, which includes: an embrittlement processing step S10 of reducing strength of an underlying substrate 10; and a crystal growth step S20 of forming the growth layer 20 on the underlying substrate 10. In addition, the present invention is a method for suppressing the occurrence of cracks in the growth layer 20, and this method includes an embrittlement processing step S10 of reducing the strength of the underlying substrate 10 before forming the growth layer 20 on the underlying substrate 10.
An object of the present invention is to provide a novel technique capable of manufacturing a large-diameter semiconductor substrate.
An object of the present invention is to provide a novel technique capable of manufacturing a large-diameter semiconductor substrate.
The present invention is a method for manufacturing a semiconductor substrate including a crystal growth step S30 of forming a growth layer 20 on an underlying substrate 10 having through holes 11. In addition, the present invention is a method for forming a growth layer 20 including the through hole formation step S10 of forming through holes 11 in the underlying substrate 10 before forming the growth layer 20 on a surface of the underlying substrate 10.
The problem to addressed by the present invention is that of providing a novel technique that can remove a strained layer introduced into a silicon carbide substrate by laser processing. The present silicon carbide substrate manufacturing method involves a processing step for performing laser processing to remove part of a silicon carbide substrate by irradiating the silicon carbide substrate with a laser, and a strained layer removal step for removing a strained layer that was introduced in the silicon carbide substrate by the aforementioned processing step involving heat treatment of the silicon carbide substrate. In this way, the present invention, which is a method of removing a strained layer introduced into a silicon carbide substrate by laser processing, involves a strained layer removal step for heat treating the silicon carbide substrate.
H01L 21/3065 - Gravure par plasmaGravure au moyen d'ions réactifs
H01L 21/268 - Bombardement par des radiations ondulatoires ou corpusculaires par des radiations d'énergie élevée les radiations étant électromagnétiques, p. ex. des rayons laser
32.
METHOD FOR PRODUCING ALUMINUM NITRIDE SUBSTRATE, ALUMINUM NITRIDE SUBSTRATE, AND METHOD FOR SUPPRESSING OCCURRENCE OF CRACKS IN ALUMINUM NITRIDE LAYER
An object of the present invention is to provide a novel technique capable of suppressing the occurrence of cracks in an AlN layer.
An object of the present invention is to provide a novel technique capable of suppressing the occurrence of cracks in an AlN layer.
The present invention is a method for manufacturing an AlN substrate, the method including: an embrittlement processing step S10 of reducing strength of a SiC underlying substrate 10; and a crystal growth step S20 of forming an AlN layer 20 on the SiC underlying substrate 10. In addition, the present invention is a method for suppressing the occurrence of cracks in the AlN layer 20, the method including the embrittlement processing step S10 of reducing the strength of the SiC underlying substrate 10 before forming the AlN layer 20 on the SiC underlying substrate 10.
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
H01L 23/00 - Détails de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide
H01L 29/16 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, mis à part les matériaux de dopage ou autres impuretés, seulement des éléments du groupe IV de la classification périodique, sous forme non combinée
H01L 29/20 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, à part les matériaux de dopage ou autres impuretés, uniquement des composés AIIIBV
33.
WORK-AFFECTED LAYER EVALUATION METHOD AND EVALUATION SYSTEM
The problem to be addressed by the present invention is to provide a novel technology capable of evaluating a work-affected layer without destroying a semiconductor substrate, and as a means for addressing this problem, the present invention comprises: a measuring step for making incident laser light having penetrating characteristics from a surface of a semiconductor substrate having a work-affected layer beneath the surface and measuring the intensity of scattered light scattered beneath the surface; and an evaluation step for performing evaluation of the work-affected layer on the basis of the intensity of the scattered light obtained in the measuring step.
H01L 21/304 - Traitement mécanique, p. ex. meulage, polissage, coupe
H01L 21/66 - Test ou mesure durant la fabrication ou le traitement
34.
MANUFACTURING METHOD OF MODIFIED ALUMINUM NITRIDE RAW MATERIAL, MODIFIED ALUMINUM NITRIDE RAW MATERIAL, MANUFACTURING METHOD OF ALUMINUM NITRIDE CRYSTALS, AND DOWNFALL DEFECT PREVENTION METHOD
The purpose of the present is to provide a modified AlN source for suppressing downfall defects. This manufacturing method of a modified aluminum nitride source involves a heat treatment step for heat treating an aluminum nitride source and generating an aluminum nitride sintered body.
C01B 21/072 - Composés binaires de l'azote avec les métaux, le silicium ou le bore avec l'aluminium
C30B 23/06 - Chauffage de l'enceinte de dépôt, du substrat ou du matériau à évaporer
C30B 35/00 - Appareillages non prévus ailleurs, spécialement adaptés à la croissance, à la production ou au post-traitement de monocristaux ou de matériaux polycristallins homogènes de structure déterminée
The problem to be solved by the present invention is to provide novel technology capable of suppressing the introduction of displacement to a growth layer. The present invention, which solves the abovementioned problem, pertains to a method for manufacturing a semiconductor substrate, the method including: a processing step for removing a portion of a base substrate and forming a pattern that includes a minor angle; and a crystal growth step for forming a growth layer on the base substrate where the patter has been formed. In addition, the present invention pertains to a method for suppressing the introduction of displacement to a growth layer, the method including a processing step for removing a portion of the base substrate and forming a pattern that includes a minor angle prior to forming the growth layer on the base substrate.
NONWOVEN FABRIC USED FOR FOAMED ARTICLE REINFORCING MATERIAL, FOAMED ARTICLE REINFORCING MATERIAL, AND METHOD FOR PRODUCING NONWOVEN FABRIC USED FOR FOAMED ARTICLE REINFORCING MATERIAL
This nonwoven fabric is used for a foamed article reinforcing material bonded to a foam forming material in order to reinforce the foamed article. The nonwoven fabric is a single layer material in which laminated webs are mutually coupled and has a thickness of 1-8 mm at a load of 7 g/cm2 and delamination strength of 0.05-2.45 N/cm. The delamination strength is a value indicating the tensile force required to cause the coupled webs to delaminate from each other.
D04H 1/498 - Non-tissés formés uniquement ou principalement de fibres coupées ou autres fibres similaires relativement courtes à partir de voiles ou couches composés de fibres ne possédant pas des propriétés cohésives réelles ou potentielles les voiles ou couches étant renforcées par des moyens mécaniques, p. ex. par roulage par aiguilletage ou opérations similaires pour provoquer l'enchevêtrement des fibres enchevêtrement des couches de non-tissés
B29C 39/10 - Moulage par coulée, c.-à-d. en introduisant la matière à mouler dans un moule ou entre des surfaces enveloppantes sans pression significative de moulageAppareils à cet effet pour la fabrication d'objets de longueur définie, c.-à-d. d'objets séparés en incorporant des parties ou des couches préformées, p. ex. coulée autour d'inserts ou sur des objets à recouvrir
B32B 5/06 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par les caractéristiques de structure d'une couche comprenant des fibres ou des filaments caractérisés par une couche fibreuse imbriquée ou cousue avec une autre couche, p. ex. de fibres, de papier
D04H 1/4382 - Fibres obtenues par étirage de film réticuléFibres compositesFibres mixtesFibres ultrafinesFibres pour cuir artificiel
D04H 1/541 - Fibres composites, p. ex. âme-gaine, mer-île ou côte à côteFibres mixtes
D04H 3/105 - Non-tissés formés uniquement ou principalement de fils ou de matériaux filamenteux similaires de bonne longueur caractérisés par la méthode de renforcement ou de consolidation avec liages faits mécaniquement entre fils et filaments par aiguilletage
The present invention addresses the problem of providing novel technology for improving the dopant activation rate in an epitaxial layer. The present invention further addresses the problem of providing novel technology for suppressing variations in the dopant activation rate in an epitaxial layer. The present invention is a method for improving the dopant activation rate in an epitaxial layer 20, the method comprising a growth step S10 in which an epitaxial layer 20 having a dopant is grown upon a bulk layer 10 in an equilibrium vapor pressure environment.
H01L 21/205 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale en utilisant la réduction ou la décomposition d'un composé gazeux donnant un condensat solide, c.-à-d. un dépôt chimique
The present invention addresses the problem of providing novel technology for achieving uniform carrier concentration in an epitaxial layer. The present invention is a method for achieving uniform carrier concentration in an epitaxial layer, the method comprising a growth step S10 in which an epitaxial layer 20 is grown upon a bulk layer 10 in an equilibrium vapor pressure environment. By including the growth step S10 in which an epitaxial layer 20 is grown in an equilibrium vapor pressure environment, it is possible to suppress variations in carrier concentration in the epitaxial layer 20.
H01L 21/205 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale en utilisant la réduction ou la décomposition d'un composé gazeux donnant un condensat solide, c.-à-d. un dépôt chimique
C30B 23/06 - Chauffage de l'enceinte de dépôt, du substrat ou du matériau à évaporer
The present invention addresses the problem of providing novel technology for reducing stacking faults SF in silicon carbide. The present invention further addresses the problem of providing novel technology capable of reducing stacking faults SF using a small number of growth conditions. The present invention is a method for reducing stacking faults in silicon carbide, the method comprising a growth step S10 in which an epitaxial layer 20 is grown upon a bulk layer 10 of silicon carbide having stacking faults SF in a SiC-C equilibrium vapor pressure environment.
H01L 21/20 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale
H01L 21/205 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale en utilisant la réduction ou la décomposition d'un composé gazeux donnant un condensat solide, c.-à-d. un dépôt chimique
H01L 29/78 - Transistors à effet de champ l'effet de champ étant produit par une porte isolée
H01L 29/12 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués
H01L 21/336 - Transistors à effet de champ à grille isolée
A metal removal agent used when removing Mg from an aluminum alloy melt whose raw material is scrap or the like and used for formation of a molten salt layer that takes in Mg from an aluminum alloy melt. The metal removal agent contains: a specific metal element one or more of Cu, Zn, or Mn; a specific halogen element one or more of Cl or Br; and Mg. The metal removal agent may also contain: a base halide that serves as a base material of the molten salt layer; and a specific metal halide that is a compound of a specific metal element and a specific halogen element. When the molten salt layer formed using the agent and the aluminum alloy melt containing Mg are brought into contact with each other, Mg is taken into the molten salt layer side from the aluminum alloy melt side and efficiently removed.
A method with which Mg can be removed from aluminum alloy melt whose raw material is scrap or the like. Metal removal method includes processing step of forming molten salt layer in contact with aluminum alloy melt containing Mg which covers at least part of the surface of the aluminum alloy melt. This method allows Mg to be taken in from aluminum alloy melt to molten salt layer and removed. Molten salt layer contains specific halogen element that is one or more of Cl or Br and specific metal element that is one or more of Cu, Zn, or Mn. The specific metal element is supplied as an oxide of the specific metal element to the molten salt layer. At that time, the molten salt layer contains Mg. The step of removing Mg is performed by disposing a conductor that bridges the aluminum alloy melt and the molten salt layer.
KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION (Japon)
PRIME PLANET ENERGY & SOLUTIONS, INC. (Japon)
TOYOTA TSUSHO CORPORATION (Japon)
TOYOTA JIDOSHA KABUSHIKI KAISHA (Japon)
Inventeur(s)
Goto Masahiro
Hanada Takafumi
Abrégé
A metal recovery device including a leaching unit for causing a metal element contained in a composition to directly leach into a hydrophobic deep eutectic solvent and a recovery unit for recovering the metal element by separating the metal element from the deep eutectic solvent, wherein the metal element-containing composition is solid at 25 ˚C and does not contain any inorganic acid, the metal element is formed from a metal, a metal compound, or metal ions, and the deep eutectic solvent does not contain any inorganic acid.
A Mg removal agent is composed of a chloride and copper oxide. The chloride contains at least Mg and one or more base metal elements selected from K, Na, and Ca. The chloride contains, for example, 0.2 to 60 mass % of MgCl2 and/or 40 to 99.8 mass % of KCl with respect to the chloride as a whole. The compounding ratio that is a mass ratio of the chloride to the copper oxide is, for example, 0.15 or more. The chloride may be a re-solidified salt or a mixed salt. At least a part of the chloride may be a mineral containing the base metal elements and Mg or a mineral-derived chloride. A preferred example of the Mg removal agent is granular flux introduced into the aluminum alloy molten metal.
An object of the present invention is to provide a novel SiC single crystal with reduced internal stress while suppressing SiC sublimation. In order to solve the above problems, the present invention provides a method for producing SiC single crystals, including a stress reduction step of heating a SiC single crystal at 1800° C. or higher in an atmosphere containing Si and C elements to reduce internal stress in the SiC single crystal. With this configuration, the present invention can provide a novel SiC single crystal with reduced internal stress while suppressing SiC sublimation.
An object of the present invention is to provide a high-quality SiC semiconductor device. In order to solve the above problem, the present invention comprises a method for producing a SiC semiconductor device, comprising a growth step of forming a growth layer on a workpiece comprising SiC single crystals, a device formation step of forming at least a portion of a SiC semiconductor device in the growth layer, and a separation step of separating at least a portion of the SiC semiconductor device from the workpiece.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 29/16 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, mis à part les matériaux de dopage ou autres impuretés, seulement des éléments du groupe IV de la classification périodique, sous forme non combinée
46.
SIC SUBSTRATE, SIC SUBSTRATE PRODUCTION METHOD, SIC SEMICONDUCTOR DEVICE, AND SIC SEMICONDUCTOR DEVICE PRODUCTION METHOD
The present invention addresses the issue of providing: an SiC substrate having a dislocation conversion layer that can reduce resistance; and a novel technology pertaining to SiC semiconductors. This SiC substrate and SiC semiconductor device comprise a dislocation conversion layer 12 having a doping concentration of at least 1×1015 cm−3. As a result of comprising a dislocation conversion layer 12 having this kind of doping concentration: expansion of basal plane dislocations and the occurrence of high-resistance stacking faults can be suppressed; and resistance when SiC semiconductor devices are produced can be reduced.
H01L 29/16 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, mis à part les matériaux de dopage ou autres impuretés, seulement des éléments du groupe IV de la classification périodique, sous forme non combinée
C30B 23/06 - Chauffage de l'enceinte de dépôt, du substrat ou du matériau à évaporer
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
A metal purifying method having: a local heating step of heating an aluminum-based molten metal in a first region on a molten metal surface of the aluminum-based molten metal; and a local low pressure step of lowering the pressure in a second region on the molten metal surface to a pressure lower than the pressure in the first region. The second region is different from the first region. This allows a specific element to be vaporized from the second region to purify the aluminum-based molten metal. The specific element is one or more of Zn, Mg, or Pb having a saturated vapor pressure higher than that of Al. This is effective not only in a purifying method for removing a specific element from an aluminum-based molten metal but also in a method of recovering a specific element, which can be a resource, from an aluminum-based molten metal.
The present invention addresses the problem of providing novel techniques for manufacturing a SiC substrate that enables reduced material loss when a strained layer is removed. The present invention is a method for manufacturing a SiC substrate 30 which includes a strained layer thinning step S1 for thinning a strained layer 12 of a SiC substrate body 10 by moving the strained layer 12 to a surface side. Including such a strained layer thinning step S1 in which the strain layer is moved to (concentrated toward) the surface side makes it possible to reduce material loss L when removing the strained layer 12.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/306 - Traitement chimique ou électrique, p. ex. gravure électrolytique
H01L 29/16 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, mis à part les matériaux de dopage ou autres impuretés, seulement des éléments du groupe IV de la classification périodique, sous forme non combinée
49.
SiC SEED CRYSTAL AND METHOD FOR PRODUCING SAME, SiC INGOT PRODUCED BY GROWING SAID SiC SEED CRYSTAL AND METHOD FOR PRODUCING SAME, AND SiC WAFER PRODUCED FROM SAID SiC INGOT AND SiC WAFER WITH EPITAXIAL FILM AND METHODS RESPECTIVELY FOR PRODUCING SAID SiC WAFER AND SAID SiC WAFER WITH EPITAXIAL FILM
An object of the present invention is to provide a novel technology capable of achieving high-quality SiC seed crystal, SiC ingot, SiC wafer and SiC wafer with an epitaxial film. The present invention, which solves the above object, is a method for producing a SiC seed crystal for growth of a SiC ingot, the method including a heat treatment step of heat-treating a SiC single crystal in an atmosphere containing Si element and C element. As described above, by heat-treating the SiC single crystal in an atmosphere containing the Si element and the C element, it is possible to produce a high-quality SiC seed crystal in which strain and crystal defects are suppressed.
The present invention attempts to solve the problem of providing novel technology that makes it possible to grow high-quality semiconductor substrates. In order to solve the abovementioned problem, the present invention provides: a method for producing semiconductor substrates that includes an installation step in which starting substrates and starting materials are installed in an alternating manner and a heating step in which the starting substrates and the starting materials are heated and a growth layer is formed on the starting substrates; and a device for producing the semiconductor substrates. Owing to this configuration, the present invention makes it possible to simultaneously achieve desired growth conditions in each of a plurality of starting substrates and thereby provide novel technology that makes it possible to grow high-quality semiconductor substrates.
A power adjustment system adjusts charging and discharging power of a plurality of electrified vehicles in a virtual power plant that uses the electrified vehicles as energy resources. The power adjustment system includes: a first processor configured to manage charging and discharging of the electrified vehicles based on vehicle information of each individual electrified vehicle included in the electrified vehicles; and a second processor configured to control charging and discharging between the electrified vehicles and a plurality of chargers and dischargers connected to a power distribution grid based on charge and discharge information supplied from the first processor. The charge and discharge information is generated based on the vehicle information of the each individual electrified vehicle, and includes a charge and discharge constraint of an electrified vehicle group composed of the electrified vehicles and a charge and discharge constraint of the each individual electrified vehicle.
The present invention addresses the problem of providing a novel SiC substrate production method. The SiC substrate production method according to the present invention comprises an etching step S10 of etching a SiC base substrate 10, a crystal growth step S20 of growing a SiC substrate layer 13 on the SiC base substrate 10 to produce a SiC substrate body 20, and a peeling step S30 of peeling at least a portion of the SiC substrate body 20 to produce a SiC substrate 30, the method being characterized in that each of the etching step S10 and the crystal growth step S20 is a step of arranging the SiC base substrate 10 and a SiC material 40 so as to face each other and heating the SiC base substrate 10 and the SiC material 40 so as to form a temperature gradient between the SiC base substrate 10 and the SiC material 40.
C30B 33/04 - Post-traitement des monocristaux ou des matériaux polycristallins homogènes de structure déterminée en utilisant des champs électriques ou magnétiques ou des rayonnements corpusculaires
53.
SiC SUBSTRATE, SiC EPITAXIAL SUBSTRATE, SiC INGOT AND PRODUCTION METHODS THEREOF
The present invention addresses the problem of providing a novel technology which enables the achievement of a high-quality SiC substrate, a high-quality SiC epitaxial substrate, and a high-quality SiC ingot. The present invention is a method for producing an SiC substrate 11, said method comprising a heat treatment step S1 for heat treating an SiC base substrate 10, said heat treatment step S1 comprising two or more steps among the steps (a), (b) and (c) described below. (a) a strained layer removal step S11 for removing a strained layer 101 of the SiC base substrate 10. (b) a bunching removal step S12 for removing macro-step bunching (MSB) on the SiC base substrate 10. (c) a basal plane dislocation reduction step S13 for forming a growth layer 105, in which basal plane dislocations (BPD) are reduced, on the SiC base substrate 10.
An object to be solved by the present invention is to provide a new technology for producing a SiC substrate in which strain is removed and capable of achieving a flat surface as flat as a surface that has been subjected to CMP. The present invention, which solves the above object, is a method for producing a SiC substrate, the method including an etching step of etching a SiC substrate having arithmetic average roughness (Ra) of a surface of equal to or less than 100 nm in an atmosphere containing Si element and C element.
H01L 29/16 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, mis à part les matériaux de dopage ou autres impuretés, seulement des éléments du groupe IV de la classification périodique, sous forme non combinée
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/304 - Traitement mécanique, p. ex. meulage, polissage, coupe
H01L 21/306 - Traitement chimique ou électrique, p. ex. gravure électrolytique
55.
MANUFACTURING DEVICE FOR SIC SEMICONDUCTOR SUBSTRATE
A manufacturing device of SiC semiconductor substrates includes a SiC container (3) in which Si vapor and C vapor are generated in the internal space during the heat treatment, and a high-temperature vacuum furnace (11) capable of heating the SiC container in Si atmosphere. The device can further be configured such that the SiC container is housed in Si atmosphere and an underlying substrate (40) is housed in the SiC container, and the high-temperature vacuum furnace is capable of heating with a temperature gradient.
The present invention addresses the problem of providing a novel technology with which it is possible to evaluate a work-modified layer without destroying a semiconductor single crystal substrate. The present invention is a method for evaluating a work-modified layer in which laser light L1 is caused to impinge from the surface of a semiconductor single crystal substate 100, and a work-modified layer 101 is evaluated on the basis of the intensity of scattered light L4 scattered inside the semiconductor single crystal substrate. The present invention includes a measurement step S20 for causing the laser light L1 to impinge inside the semiconductor single crystal substrate 100 and measuring the scattered light L4 that scattered, and an evaluation step S30 for evaluating the work-modified layer 101 on the basis of the intensity of the scattered light L4.
The present invention addresses the problem of providing a novel technology for measuring an etching amount in heat treatment in which growth and etching proceed simultaneously. The present invention includes: a first substrate thickness measuring step S10 for measuring the thickness 10D of a to-be-heat-treated semiconductor substrate 10; a second substrate thickness measuring step S20 for measuring the thickness 20D of a heat-treated semiconductor substrate 20; a growth layer thickness measuring step S30 for measuring the thickness 21D of a growth layer 21 which has gone through crystal growth by heat treatment; and an etching amount calculating step S40 for calculating the etching amount ED on the basis of the thickness 10D of the to-be-heat-treated semiconductor substrate 10, the thickness 20D of the heat-treated semiconductor substrate 20, and the thickness 21D of the growth layer 21.
The purpose of the present invention is to provide a novel method and apparatus of manufacturing a semiconductor substrate. Achieved are a method of manufacturing a semiconductor substrate and a manufacturing apparatus therefor, the method comprising: an installation step for installing a plurality of objects to be processed having semiconductor substrates in a stack; and a heating step for heating each of the plurality of objects to be processed such that a temperature gradient is formed in the thickness direction of the semiconductor substrate.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
59.
Method for manufacturing etched SiC substrate and grown SiC substrate by material tranportation and method for epitaxial growth by material transportation
The present invention addresses the problem of providing a novel method for manufacturing a SiC substrate, and a manufacturing device for said method. The present invention realizes: a method for manufacturing a SiC substrate, comprising heating two mutually opposing SiC single-crystal substrates and transporting a raw material from one SiC single-crystal substrate to the other SiC single-crystal substrate; and a manufacturing device for said method. Through the present invention, each of the mutually opposing SiC single-crystal substrate surfaces can be used as a raw material for crystal growth of the other SiC single-crystal substrate surface, and it is therefore possible to realize a highly economical method for manufacturing a SiC substrate.
To provide a new temperature distribution evaluation method, a temperature distribution evaluation device, and a soaking range evaluation method, as the temperature distribution evaluation method which evaluates a temperature distribution of a heating area 40A provided in a heating device 40, the present invention is a temperature distribution evaluation method which, in the heating area 40A, heats a semiconductor substrate 10 and a transmitting and receiving body 20 for transporting a raw material to and from the semiconductor substrate 10, and evaluates a temperature distribution of the heating area 40A on the basis of a substrate thickness variation amount A of the semiconductor substrate 10. Accordingly, temperature distribution evaluation can be implemented for a high temperature area at 1600-2200° C. or the like at which it is hard to evaluate the temperature distribution due to the limit of a thermocouple material.
G01B 21/08 - Dispositions pour la mesure ou leurs détails, où la technique de mesure n'est pas couverte par les autres groupes de la présente sous-classe, est non spécifiée ou est non significative pour mesurer la longueur, la largeur ou l'épaisseur pour mesurer l'épaisseur
G01K 1/02 - Moyens d’indication ou d’enregistrement spécialement adaptés aux thermomètres
H01L 21/66 - Test ou mesure durant la fabrication ou le traitement
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
61.
Semiconductor substrate manufacturing device applicable to large-diameter semiconductor substrate
Provided is a semiconductor substrate manufacturing device which is capable of uniformly heating the surface of a semiconductor substrate that has a relatively large diameter or major axis. The semiconductor substrate manufacturing device includes a container body for accommodating a semiconductor substrate and a heating furnace that has a heating chamber which accommodates the container body, and the heating furnace has a heating source in a direction intersecting the semiconductor substrate to be disposed inside the heating chamber.
F27B 17/00 - Fours d'un genre non couvert par l'un des groupes
F27D 5/00 - Supports, grilles ou appareillage analogue pour la charge à l'intérieur du four
F27D 11/00 - Aménagement des éléments pour le chauffage électrique dans ou sur les fours
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
H01L 21/324 - Traitement thermique pour modifier les propriétés des corps semi-conducteurs, p. ex. recuit, frittage
62.
Device for manufacturing semiconductor substrate comprising temperature gradient inversion means and method for manufacturing semiconductor substrate
Provided are a method for etching and growing a semiconductor substrate in the same device system, and a device therefor. The method for manufacturing a semiconductor substrate includes a first heating step of heating a heat treatment space which contains a semiconductor substrate and a transmission/reception body that transports atoms between the semiconductor substrate and the transmission/reception body such that a temperature gradient is formed between the semiconductor substrate and the transmission/reception body, and a second heating step of heating the same with the temperature gradient being vertically inverted.
H01L 21/302 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour changer leurs caractéristiques physiques de surface ou leur forme, p. ex. gravure, polissage, découpage
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
63.
METHOD AND DEVICE FOR MANUFACTURING SiC SUBSTRATE, AND METHOD FOR REDUCING MACRO-STEP BUNCHING OF SiC SUBSTRATE
A device for manufacturing a SiC substrate, in which formation of macro-step bunching is suppressed, comprises: a main body container that is capable of accommodating a SiC substrate and generates, by heating, a vapor pressure of gaseous species containing Si elements and gaseous species containing C elements, in an internal space; and a heating furnace that accommodates the main body container and performs heating so that a vapor pressure of the gaseous species containing Si elements is generated and a temperature gradient is formed, wherein the main body container has an etching space S1 and a Si vapor supply source capable of supplying Si vapor into the main body container, the etching space S1 being formed by making the SiC substrate face a portion of the main body container arranged on a lower-temperature side of the temperature gradient while the SiC substrate is disposed on a higher-temperature side of the temperature gradient.
The present invention addresses the problem of providing a novel SiC epitaxial substrate manufacturing method and manufacturing device therefor. An SiC substrate and an SiC material, which has a lower doping concentration than said SiC substrate, are heated facing one another, and material is transported from the SiC material to the SiC substrate to form an SiC epitaxial layer. As a result, in comparison with the existing method (chemical vapour deposition), it is possible to provide an SiC epitaxial substrate manufacturing method with a reduced number of parameters to be controlled.
H01L 21/205 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale en utilisant la réduction ou la décomposition d'un composé gazeux donnant un condensat solide, c.-à-d. un dépôt chimique
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/04 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges
65.
Method for manufacturing a SiC substrate by simultaneously forming a growth layer on one surface and etching another surface of a SiC base substrate
An apparatus for producing an SiC substrate, by which an SiC substrate having a thin base substrate layer is able to be produced, while suppressing deformation or breakage, includes a main container which is capable of containing an SiC base substrate, and which produces a vapor pressure of a vapor-phase species containing elemental Si and a vapor-phase species containing elemental C within the internal space by means of heating; and a heating furnace which contains the main container and heats the main container so as to form a temperature gradient, while producing a vapor pressure of a vapor-phase species containing elemental Si within the internal space. The main container has a growth space in which a growth layer is formed on one surface of the SiC base substrate, and an etching space in which the other surface of the SiC base substrate is etched.
C30B 23/06 - Chauffage de l'enceinte de dépôt, du substrat ou du matériau à évaporer
C23C 14/06 - Revêtement par évaporation sous vide, pulvérisation cathodique ou implantation d'ions du matériau composant le revêtement caractérisé par le matériau de revêtement
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/04 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges
66.
SiC substrate manufacturing method and manufacturing device, and method for reducing work-affected layer in sic substrate
A device for manufacturing a SiC substrate, in which the occurrence of a work-affected layer is reduced, or from which a work-affected layer is removed, comprises: a main container which can accommodate a SiC substrate and which generates, by heating, a vapor pressure of a vapor-phase species including elemental Si and a vapor-phase species including elemental C in an internal space; and a heating furnace for accommodating the main container, generating a vapor pressure of the vapor-phase species including elemental Si in the internal space, and heating so that a temperature gradient is formed; the main container having an etching space formed by causing a portion of the main container disposed on the low-temperature side of the temperature gradient and the SiC substrate to face each other in a state in which the SiC substrate is disposed on the high-temperature side of the temperature gradient.
H01L 21/04 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges
H01L 21/3065 - Gravure par plasmaGravure au moyen d'ions réactifs
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
The present invention addresses the problem of providing a novel evaluation method suitable for large-diameter SiC substrates. The present invention is an evaluation method for SiC substrates, the method being characterized by: including an image acquisition step for acquiring an image I by projecting onto a SiC substrate 10 an electron beam PE inclined at an incident angle θ with respect to a normal N that is normal to (0001) plane of the SiC substrate 10; and the incident angle θ being at most 10 degrees.
The problem addressed by the present invention is to provide a novel feature of evaluating a heat treatment environment. The present invention is a heat treatment environment evaluation method that includes: an image acquisition step S20 for acquiring an image I by introducing electron beam PE at an incident angle θ inclined with respect to a normal vector N of a (0001) plane of a heat-treated SiC substrate 10; and an environment evaluation step S30 for evaluating a heat treatment environment HE of the SiC substrate 10 on the basis of contrast information C of the image I.
This method for collecting a polyamide fiber comprises a step for treating a cloth-like polyamide fiber product, which is coated with silicone, with a dissolution solution, wherein the dissolution solution contains an anionic surfactant and chain-like saturated hydrocarbon.
A method comprises a step for opening a polyamide fiber product and a step for treating the opened polyamide fiber product with a solution that dissolves silicone.
D06M 11/38 - Oxydes ou hydroxydes d'éléments des groupes 1 ou 11 du tableau périodique
B29B 17/02 - Séparation de matières plastiques des autres matières
B60R 21/235 - Éléments gonflables caractérisés par leur matériau
C08J 11/16 - Récupération ou traitement des résidus des polymères par coupure des chaînes moléculaires des polymères ou rupture des liaisons de réticulation par voie chimique, p. ex. dévulcanisation par traitement avec une substance inorganique
C09D 9/00 - Produits chimiques pour enlever la peinture ou l'encre
D06H 7/00 - Appareils ou procédés pour couper, ou séparer d'une autre manière, spécialement adaptés à la coupe ou à la séparation des matériaux textiles
D06M 11/00 - Traitement des fibres, fils, filés, tissus ou des articles fibreux faits de ces matières, avec des substances inorganiques ou leurs complexesUn tel traitement combiné avec un traitement mécanique, p. ex. mercerisage
A recycling method for aluminum alloy is capable of offering a recycled Al alloy (melt), in which the Fe concentration is efficiently reduced, while using Al alloy scrap and the like as raw materials. The method includes: a preparation step of preparing a first melt by melting an Fe.Mn-containing material that contains Fe and Mn and an Al alloy raw material; a crystallization step of holding the first melt at a separation temperature at which an Fe compound crystallizes; and an extraction step of extracting a second melt obtained by removing at least part of the Fe compound crystallized from the first melt. The Fe.Mn-containing material preferably has a mass ratio of Mn to Fe (Mn/Fe) of, for example, 2 or more.
An electric power system includes a plurality of power adjustment resources electrically connectable to a power grid, and a management device configured to manage the power adjustment resources. The management device is configured to acquire a first request signal for requesting demand-and-supply adjustment in the power grid, and a second request signal for requesting the power adjustment resources to adjust electric energy in a predetermined period, transmit a power command signal indicating a command power value for each predetermined interval in the predetermined period to a predetermined power adjustment resource included in the power adjustment resources, and generate the power command signal to respond to both requests of the first request signal and the second request signal.
An object of the present invention is to provide a SiC semiconductor substrate capable of reducing a density of basal plane dislocations (BPD) in a growth layer, a manufacturing method thereof, and a manufacturing device thereof. The method includes: a strained layer removal process S10 that removes a strained layer introduced on a surface of a SiC substrate; and an epitaxial growth process S20 that conducts growth under a condition that a terrace width W of the SiC substrate is increased. When a SiC semiconductor substrate is manufactured in such processes, the basal plane dislocations BPD in the growth layer can be reduced, and a yield of a SiC semiconductor device can be improved.
An object of the present invention is to provide a SiC semiconductor substrate having a growth layer with a controlled step height, a manufacturing method thereof, and a manufacturing device thereof. The method includes: a growth process that grows a SiC substrate 10 in a SiC—Si equilibrium vapor pressure environment. In this way, when the SiC substrate 10 is grown in the SiC—Si equilibrium vapor pressure environment, it is possible to provide a SiC semiconductor substrate in which the step height of the growth layer is controlled.
H01L 29/16 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, mis à part les matériaux de dopage ou autres impuretés, seulement des éléments du groupe IV de la classification périodique, sous forme non combinée
According to the present invention, a resonator (30) engages with the outer circumferential surface of a rim (21) of a wheel (20), and is thus affixed to said outer circumferential surface. The resonator (30) has a main body portion (31) in which a long resonance space (S) that extends along the outer circumferential surface of the rim (21) is incorporated, and an opening portion (34), formed in the main body portion (31), that connects at least one among both ends of the resonance space (S) in the extension direction to outside of said resonance space (S). The resonance space (S) and the opening portion (34) constitute a resonance tube.
The problem to be solved by the present invention is to provide a novel technique for manufacturing a semiconductor substrate having a large diameter. The present invention is a method for manufacturing a semiconductor substrate, including a crystal growing step S30 for forming a grown layer 20 on a base substrate 10 having a through-hole 11. The present invention is also a method for forming a grown layer 20, including a through-hole formation step S10 for forming a through-hole 11 in a base substrate 10 prior to the formation of the grown layer 20 on a surface of the base substrate 10.
The problem to be solved by the present invention is to provide a novel technique with which it is possible to suppress the occurrence of cracks in an AlN layer. The present invention is a method for producing an AlN substrate, the method including an embrittlement step S10 for lowering the strength of an SiC base substrate 10, and a crystal growth step S20 for forming an AlN layer 20 on the SiC base substrate 10. The present invention is also a method for suppressing the occurrence of cracks in an AlN layer 20, the method including an embrittlement step S10 for lowering the strength of an SiC base substrate 10 prior to forming an AlN layer 20 on the SiC base substrate 10.
The problem to be solved by the present invention is to provide a novel technology capable of manufacturing a large-diameter AIN substrate. The present invention pertains to a method for manufacturing an AIN substrate, the method including a crystal growth step S30 for forming an AIN layer 20 on a SiC base substrate 10 having a through-hole 11. Furthermore, the present invention pertains to a method for manufacturing the AIN layer 20, the method including a through-hole formation step S10 for forming the through-hole 11 in the SiC base substrate 10 before forming the AIN layer 20 on the surface of the SiC base substrate 10.
The problem to be solved by the present invention is to provide a novel technique that can remove a strain layer introduced into an aluminum nitride substrate. In order to solve this problem, the present aluminum nitride substrate manufacturing method involves a strain layer removal step for removing a strain layer in an aluminum nitride substrate by heat treatment of the aluminum nitride substrate in a nitrogen atmosphere. In this way, the present invention can remove a strain layer that has been introduced into an aluminum nitride substrate.
C30B 33/04 - Post-traitement des monocristaux ou des matériaux polycristallins homogènes de structure déterminée en utilisant des champs électriques ou magnétiques ou des rayonnements corpusculaires
B23K 26/382 - Enlèvement de matière par perçage ou découpage par perçage
H01L 21/268 - Bombardement par des radiations ondulatoires ou corpusculaires par des radiations d'énergie élevée les radiations étant électromagnétiques, p. ex. des rayons laser
H01L 21/324 - Traitement thermique pour modifier les propriétés des corps semi-conducteurs, p. ex. recuit, frittage
MANUFACTURING METHOD OF MODIFIED ALUMINUM NITRIDE RAW MATERIAL, MODIFIED ALUMINUM NITRIDE RAW MATERIAL, MANUFACTURING METHOD OF ALUMINUM NITRIDE CRYSTALS, AND DOWNFALL DEFECT PREVENTION METHOD
The purpose of the present is to provide a modified AlN raw material for suppressing downfall defects. This manufacturing method of a modified aluminum nitride raw material involves a heat treatment step for heat treating an aluminum nitride raw material and generating an aluminum nitride sintered body.
C04B 35/581 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de borures, nitrures ou siliciures à base de nitrure d'aluminium
METHOD FOR PRODUCING ALUMINUM NITRIDE SUBSTRATE, ALUMINUM NITRIDE SUBSTRATE, AND METHOD FOR SUPPRESSING INTRODUCTION OF DISLOCATION INTO ALUMINUM NITRIDE GROWTH LAYER
A problem addressed by the present invention is to provide a novel technique with which it is possible to suppress the introduction of dislocation into a growth layer. The present invention, which solves the above problem, is a method for producing an aluminum nitride substrate, the method including a processing step for removing part of a silicon carbide substrate and forming a pattern that includes a minor angle, and a crystal growth step for forming an aluminum nitride growth layer on the silicon carbide substrate on which the pattern has been formed. The present invention is also a method for suppressing the introduction of dislocation into the aluminum nitride growth layer, the method including a processing step for removing part of the silicon carbide substrate and forming a pattern that includes a minor angle before forming a growth layer on a base substrate.
The present invention addresses the problem of providing novel techniques capable of preventing crack occurrence in a growth layer. The present invention provides a method for producing a semiconductor substrate comprising a brittleness process step S10 for decreasing the strength of a base substrate 10 and a crystal growth step S20 for forming a growth layer 20 on the base substrate 10. The present invention also provides a method for preventing crack occurrence in a growth layer 20 comprising a brittleness process step S10 for decreasing the strength of a base substrate 10 before forming a growth layer 20 on the base substrate 10.
The problem addressed by the present invention is that of providing a novel technique that can remove a strain layer introduced into a silicon carbide substrate by laser processing. The present silicon carbide substrate manufacturing method involves a processing step for performing laser processing to remove part of a silicon carbide substrate by irradiating the silicon carbide substrate with a laser, and a strain layer removal step for removing a strain layer that was introduced in the silicon carbide substrate by the aforementioned processing step involving heat treatment of the silicon carbide substrate. In this way, the present invention, which is a method of removing a strain layer introduced into a silicon carbide substrate by laser processing, involves a strain layer removal step for heat treating the silicon carbide substrate.
C30B 33/04 - Post-traitement des monocristaux ou des matériaux polycristallins homogènes de structure déterminée en utilisant des champs électriques ou magnétiques ou des rayonnements corpusculaires
C30B 33/12 - Gravure dans une atmosphère gazeuse ou un plasma
H01L 21/268 - Bombardement par des radiations ondulatoires ou corpusculaires par des radiations d'énergie élevée les radiations étant électromagnétiques, p. ex. des rayons laser
84.
METHOD FOR MANUFACTURING SEMICONDUCTOR SUBSTRATE, SEMICONDUCTOR SUBSTRATE, AND METHOD FOR SUPPRESSING INTRODUCTION OF DISPLACEMENT TO GROWTH LAYER
The problem to be solved by the present invention is to provide novel technology capable of suppressing the introduction of displacement to a growth layer. The present invention, which solves the abovementioned problem, pertains to a method for manufacturing a semiconductor substrate, the method including: a processing step for removing a portion of a base substrate and forming a pattern that includes a minor angle; and a crystal growth step for forming a growth layer on the base substrate where the pattern has been formed. In addition, the present invention pertains to a method for suppressing the introduction of displacement to a growth layer, the method including a processing step for removing a portion of the base substrate and forming a pattern that includes a minor angle prior to forming the growth layer on the base substrate.
An object is to provide a SiC wafer in which a detection rate of an optical sensor can improved and a SiC wafer manufacturing method.
The method includes: a satin finishing process S141 of satin-finishing at least a back surface 22 of a SiC wafer 20; an etching process 21 of etching at least the back surface 22 of the SiC wafer 20 by heating under Si vapor pressure after the satin finishing process S141; and a mirror surface processing process S31 of mirror-processing a main surface 21 of the SiC wafer 20 after the etching process S21. Accordingly, it is possible to obtain a SiC wafer having the mirror-finished main surface 21 and the satin-finished back surface 22.
B28D 5/04 - Travail mécanique des pierres fines, pierres précieuses, cristaux, p. ex. des matériaux pour semi-conducteursAppareillages ou dispositifs à cet effet par outils autres que ceux du type rotatif, p. ex. par des outils animés d'un mouvement alternatif
C30B 11/02 - Croissance des monocristaux par simple solidification ou dans un gradient de température, p. ex. méthode de Bridgman-Stockbarger sans solvants
C30B 33/10 - Gravure dans des solutions ou des bains fondus
C30B 33/12 - Gravure dans une atmosphère gazeuse ou un plasma
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 29/16 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, mis à part les matériaux de dopage ou autres impuretés, seulement des éléments du groupe IV de la classification périodique, sous forme non combinée
An object is to provide a metal removal agent used when removing Mg from an aluminum alloy melt whose raw material is scrap or the like. The present invention provides a metal removal agent used for formation of a molten salt layer that takes in Mg from an aluminum alloy melt. The metal removal agent contains: a specific metal element that is one or more of Cu, Zn, or Mn; a specific halogen element that is one or more of Cl or Br; and Mg. The metal removal agent may also contain: a base halide that serves as a base material of the molten salt layer; and a specific metal halide that is a compound of a specific metal element and a specific halogen element. The specific metal element is one or more of Cu, Zn, or Mn, and the specific halogen element is one or more of Cl or Br. When the molten salt layer formed using the metal removal agent and the aluminum alloy melt containing Mg are brought into contact with each other, Mg is taken into the molten salt layer side from the aluminum alloy melt side and efficiently removed.
C22B 9/10 - Procédés généraux d'affinage ou de refusion des métauxAppareils pour la refusion des métaux sous laitier électroconducteur ou à l'arc avec des agents d'affinage ou fondantsEmploi de substances pour ces procédés
An object is to provide a method with which Mg can be efficiently removed from an aluminum alloy melt whose raw material is scrap or the like. The metal removal method of the present invention includes a processing step of forming a molten salt layer in contact with an aluminum alloy melt containing Mg which covers at least a part of the surface of the aluminum alloy melt. This method allows Mg to be taken in from the aluminum alloy melt to the molten salt layer and removed. The molten salt layer contains a specific halogen element that is one or more of Cl or Br and a specific metal element that is one or more of Cu, Zn, or Mn. The specific metal element is preferably supplied as an oxide of the specific metal element to the molten salt layer. At that time, the molten salt layer preferably contains Mg. The step of removing Mg is preferably performed by disposing a conductor that bridges the aluminum alloy melt and the molten salt layer. This can enhance the Mg removal efficiency and the recovery efficiency of the specific metal element.
An object is to provide a method capable of efficiently removing Zn from an Al alloy melt obtained from scrap or the like. The present invention provides a metal purifying method for purifying an aluminum alloy melt by removing a specific element contained in the aluminum alloy melt using a vacuum distillation method. The present invention includes a local heating step for heating the vicinity of the surface of the aluminum alloy melt. The local heating step is performed, for example, by arc discharge, laser irradiation, or electron beam irradiation. At that time, the local heating step may be performed while applying a gas flow onto the surface of the aluminum alloy melt. The specific element may be one or more of Zn, Mg, or Pb having a saturated vapor pressure higher than that of Al. According to the present invention, the specific element can be efficiently removed from the Al alloy melt in a short time even without increasing the molten metal temperature or the degree of vacuum.
The present invention attempts to solve the problem of providing novel technology that makes it possible to grow high-quality semiconductor substrates. In order to solve the abovementioned problem, the present invention provides: a method for producing semiconductor substrates that includes an installation step in which starting substrates and starting materials are installed in an alternating manner and a heating step in which the starting substrates and the starting materials are heated and a growth layer is formed on the starting substrates; and a device for producing the semiconductor substrates. Owing to this configuration, the present invention makes it possible to simultaneously achieve desired growth conditions in each of a plurality of starting substrates and thereby provide novel technology that makes it possible to grow high-quality semiconductor substrates.
The present invention addresses the problem of providing a high-quality SiC semiconductor device. To solve the above problem, the present invention provides a method of manufacturing a SiC semiconductor device, the method comprising: a growth step for forming a growth layer on an object to be treated containing a SiC single crystal; a device forming step for forming at least a part of the SiC semiconductor device in the growth layer; and a separation step for separating the at least part of the SiC semiconductor device from the object to be treated. With such a configuration, in the present invention, the at least part of the SiC semiconductor device is formed on a SiC wafer with suppressed wafer warpage, and thereafter the SiC wafer containing the corresponding part can be separated. Thus, a SiC semiconductor device having excellent economic efficiency can be manufactured while suppressing the influence of water warpage in a SiC process.
C30B 23/06 - Chauffage de l'enceinte de dépôt, du substrat ou du matériau à évaporer
H01L 21/20 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale
H01L 21/268 - Bombardement par des radiations ondulatoires ou corpusculaires par des radiations d'énergie élevée les radiations étant électromagnétiques, p. ex. des rayons laser
The present invention addresses the problem of providing novel techniques for manufacturing a SiC substrate that enables reduced material loss when a strain layer is removed. The present invention is a method for manufacturing a SiC substrate 30 which includes a strain layer thinning step S1 for thinning a strain layer 12 of a SiC substrate body 10 by moving the strain layer 12 to a surface side. Including such a strain layer thinning step S1 in which the strain layer is moved to (concentrated toward) the surface side makes it possible to reduce material loss L when removing the strain layer 12.
B24B 37/10 - Machines ou dispositifs de rodageAccessoires conçus pour travailler les surfaces planes caractérisés par le déplacement de la pièce ou de l'outil de rodage pour un rodage simple face
C30B 33/00 - Post-traitement des monocristaux ou des matériaux polycristallins homogènes de structure déterminée
The present invention addresses the problem of providing a new SiC single crystal body in which SiC sublimation is suppressed and internal stress is reduced. In order to solve the problem, a SiC single crystal manufacturing method according to the present invention has a stress reduction step for reducing the internal stress of a SiC single crystal body by heating the SiC single crystal body at not less than 1800°C under an atmosphere including elements Si and C. In addition, a SiC single crystal manufacturing device according to the present invention is provided with: a body container that is formed from a SiC material and is capable of housing the SiC single crystal body; and a heating furnace that is capable of heating the body container at not less than 1800°C.
The present invention addresses the issue of providing: an SiC substrate having a dislocation conversion layer that can reduce resistance; and a novel technology pertaining to SiC semiconductors. This SiC substrate and SiC semiconductor device comprise a dislocation conversion layer 12 having a doping concentration of at least 1 × 1015cm–3. As a result of comprising a dislocation conversion layer 12 having this kind of doping concentration: expansion of basal plane dislocations and the occurrence of high-resistance stacking faults can be suppressed; and resistance when SiC semiconductor devices are produced can be reduced.
C23C 14/06 - Revêtement par évaporation sous vide, pulvérisation cathodique ou implantation d'ions du matériau composant le revêtement caractérisé par le matériau de revêtement
C30B 23/06 - Chauffage de l'enceinte de dépôt, du substrat ou du matériau à évaporer
H01L 21/205 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale en utilisant la réduction ou la décomposition d'un composé gazeux donnant un condensat solide, c.-à-d. un dépôt chimique
SiC SEED CRYSTAL AND METHOD FOR PRODUCING SAME, SiC INGOT PRODUCED BY GROWING SAID SiC SEED CRYSTAL AND METHOD FOR PRODUCING SAME, AND SiC WAFER PRODUCED FROM SAID SiC INGOT AND SiC WAFER WITH EPITAXIAL FILM AND METHODS RESPECTIVELY FOR PRODUCING SAID SiC WAFER AND SAID SiC WAFER WITH EPITAXIAL FILM
The present invention addresses the problem of providing a novel technique whereby it becomes possible to provide a high-quality SiC seed crystal, a SiC ingot, a SiC wafer and a SiC wafer with an epitaxial film. The present invention is a method for producing a SiC seed crystal for growing a SiC ingot, the method including a heat treatment step S1 of heat-treating a SiC single crystal body 10 under an atmosphere containing a Si element and a C element. It becomes possible to produce a high-quality SiC seed crystal 11 by heat-treating the SiC single crystal body 10 under an atmosphere containing a Si element and a C element.
C30B 23/06 - Chauffage de l'enceinte de dépôt, du substrat ou du matériau à évaporer
C30B 33/12 - Gravure dans une atmosphère gazeuse ou un plasma
H01L 21/203 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale en utilisant un dépôt physique, p. ex. dépôt sous vide, pulvérisation
98.
SiC SUBSTRATE, SiC EPITAXIAL SUBSTRATE, SiC INGOT AND PRODUCTION METHODS THEREOF
The present invention addresses the problem of providing a novel technology which enables the achievement of a high-quality SiC substrate, a high-quality SiC epitaxial substrate, and a high-quality SiC ingot. The present invention is a method for producing an SiC substrate 11, said method comprising a heat treatment step S1 for heat treating an SiC starting substrate 10, said heat treatment step S1 comprising two or more steps among the steps (a), (b) and (c) described below. (a) a strain layer removal step S11 for removing a strain layer 101 of the SiC starting substrate 10 (b) a bunching removal step S12 for removing macro-step bunching MSB on the SiC starting substrate 10 (c) a basal plane dislocation reduction step S13 for forming a growth layer 105, in which basal plane dislocations (BPD) are reduced, on the SiC starting substrate 10
H01L 21/205 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale en utilisant la réduction ou la décomposition d'un composé gazeux donnant un condensat solide, c.-à-d. un dépôt chimique
The present invention addresses the problem of providing a novel SiC substrate production method. The SiC substrate production method according to the present invention comprises an etching step S10 of etching a SiC raw substrate 10, a crystal growth step S20 of growing a SiC substrate layer 13 on the SiC raw substrate 10 to produce a SiC substrate body 20, and a peeling step S30 of peeling at least a portion of the SiC substrate body 20 to produce a SiC substrate 30, the method being characterized in that each of the etching step S10 and the crystal growth step S20 is a step of arranging the SiC raw substrate 10 and a SiC material 40 so as to face each other and heating the SiC raw substrate 10 and the SiC material 40 so as to form a temperature gradient between the SiC raw substrate 10 and the SiC material 40.
C30B 25/20 - Croissance d'une couche épitaxiale caractérisée par le substrat le substrat étant dans le même matériau que la couche épitaxiale
C30B 33/12 - Gravure dans une atmosphère gazeuse ou un plasma
H01L 21/203 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale en utilisant un dépôt physique, p. ex. dépôt sous vide, pulvérisation
H01L 21/205 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale en utilisant la réduction ou la décomposition d'un composé gazeux donnant un condensat solide, c.-à-d. un dépôt chimique
H01L 21/304 - Traitement mécanique, p. ex. meulage, polissage, coupe
In order to provide a novel technique for manufacturing a SiC substrate in which it is possible to eliminate strain and realize a surface having the same degree of flatness as when CMP is performed, the present invention comprises etching an SiC substrate, the surface of which has an arithmetic mean roughness (Ra) of 100 nm or less, in an atmosphere including elemental Si and elemental C.
C30B 33/12 - Gravure dans une atmosphère gazeuse ou un plasma
H01L 21/203 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale en utilisant un dépôt physique, p. ex. dépôt sous vide, pulvérisation
H01L 21/205 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale en utilisant la réduction ou la décomposition d'un composé gazeux donnant un condensat solide, c.-à-d. un dépôt chimique
H01L 21/302 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour changer leurs caractéristiques physiques de surface ou leur forme, p. ex. gravure, polissage, découpage