The present invention relates to variants of herpes simplex virus (HSV) that selectively infect and replicate in cancer cells, including HSV strains that selectively infect and replicate in bladder cancer cells. Preferred HSV of the invention have intact endogenous Us11 and Us12 genes and have genes encoding ICP34.5 replaced with a gene encoding Us11 fused to an HSV immediate early (IE) promoter. The variant HSV of the invention also comprise one or more additional heterologous genes encoding immunomodulatory polypeptides. Methods and compositions using these variant HSV, for example, for treating cancer in a subject, are also provided.
The present invention relates to variants of herpes simplex virus (HSV) that selectively infect and replicate in cancer cells, including HSV strains that selectively infect and replicate in bladder cancer cells. Preferred HSV of the invention have intact endogenous Us11 and Us12 genes and have genes encoding ICP34.5 replaced with a gene encoding Us11 fused to an HSV immediate early (IE) promoter. The variant HSV of the invention also comprise one or more additional heterologous genes encoding immunomodulatory polypeptides. Methods and compositions using these variant HSV, for example, for treating cancer in a subject, are also provided.
The present invention relates to variants of herpes simplex virus (HSV) that selectively infect and replicate in cancer cells, including HSV strains that selectively infect and replicate in bladder cancer cells. Preferred HSV of the invention have intact endogenous Us11 and Us12 genes and have genes encoding ICP34.5 replaced with a gene encoding Us11 fused to an HSV immediate early (IE) promoter. The variant HSV of the invention also comprise one or more additional heterologous genes encoding immunomodulatory polypeptides. Methods and compositions using these variant HSV, for example, for treating cancer in a subject, are also provided.
The present invention relates to exogenous TAP inhibitor armed oncolytic viruses that replicate selectively in cancer cells, evade CD8+ cytolytic T-cells, and induce the immune system to recognize tumor cells. Preferred viruses of the invention have a heterologous gene that encodes a function that affects antigen presentation by inhibiting TAP. The viruses of the invention also comprise one or more heterologous genes encoding immunomodulatory polypeptides, prodrug converting enzymes, or matrix degrading enzymes. Compositions and therapeutic methods using the oncolytic viruses are also provided, including compositions and therapeutic methods for treating cancers, such as melanoma, head and neck cancer, ovarian cancer, breast cancer, glioblastoma, bladder cancer, prostate cancer, lung cancer, liver cancer, colorectal cancer, pancreatic cancer, and renal cancer.
The present invention relates to exogenous TAP inhibitor armed oncolytic viruses that replicate selectively in cancer cells, evade CD8+ cytolytic T-cells, and induce the immune system to recognize tumor cells. Compositions and therapeutic methods using the oncolytic viruses are also provided, including compositions and therapeutic methods for treating cancers, such as melanoma, head and neck cancer, ovarian cancer, breast cancer, glioblastoma, bladder cancer, prostate cancer, lung cancer, liver cancer, colorectal cancer, pancreatic cancer, and renal cancer.
The present invention relates to exogenous TAP inhibitor armed oncolytic viruses that replicate selectively in cancer cells, evade CD8+ cytolytic T-cells, and induce the immune system to recognize tumor cells. Compositions and therapeutic methods using the oncolytic viruses are also provided, including compositions and therapeutic methods for treating cancers, such as melanoma, head and neck cancer, ovarian cancer, breast cancer, glioblastoma, bladder cancer, prostate cancer, lung cancer, liver cancer, colorectal cancer, pancreatic cancer, and renal cancer.
The present invention relates to variants of herpes simplex virus (HSV) that selectively infect and replicate in cancer cells, including HSV strains that selectively infect and replicate in bladder cancer cells. Preferred HSV of the invention have intact endogenous Us11 and Us12 genes and have genes encoding ICP34.5 replaced with a gene encoding Us11 fused to an HSV immediate early (IE) promoter. The variant HSV of the invention also comprise one or more additional heterologous genes encoding immunomodulatory polypeptides. Methods and compositions using these variant HSV, for example, for treating cancer in a subject, are also provided.
The disclosure relates to variants of herpes simplex virus (HSV) that selectively infect and replicate in cancer cells, including HSV strains that selectively infect and replicate in bladder cancer cells. Preferred HSV strains disclosed have intact endogenous Us11 and Us12 genes and have genes encoding ICP34.5 replaced with a gene encoding Us11 fused to an HSV immediate early (IE) promoter. Further disclosed are HSV variants comprising one or more additional heterologous genes encoding immunomodulatory polypeptides. Methods and compositions using these HSV variants, such as, for treating cancer in a subject, are also provided.
The present invention relates to variants of herpes simplex virus (HSV) that selectively infect and replicate in cancer cells, including HSV strains that selectively infect and replicate in bladder cancer cells. Preferred HSV of the invention have intact endogenous Us11 and Us12 genes and have genes encoding ICP34.5 replaced with a gene encoding Us11 fused to an HSV immediate early (IE) promoter. The variant HSV of the invention also comprise one or more additional heterologous genes encoding immunomodulatory polypeptides. Methods and compositions using these variant HSV, e.g., for treating cancer in a subject, are also provided.