X Development LLC

États‑Unis d’Amérique

Retour au propriétaire

1-100 de 1 290 pour X Development LLC Trier par
Recheche Texte
Affiner par
Type PI
        Brevet 1 248
        Marque 42
Juridiction
        États-Unis 665
        International 609
        Canada 10
        Europe 6
Date
Nouveautés (dernières 4 semaines) 8
2025 octobre (MACJ) 5
2025 septembre 7
2025 août 4
2025 juillet 18
Voir plus
Classe IPC
B25J 9/16 - Commandes à programme 118
G06N 3/08 - Méthodes d'apprentissage 73
G06N 3/04 - Architecture, p. ex. topologie d'interconnexion 56
G06N 20/00 - Apprentissage automatique 48
G05D 1/02 - Commande de la position ou du cap par référence à un système à deux dimensions 45
Voir plus
Classe NICE
42 - Services scientifiques, technologiques et industriels, recherche et conception 40
09 - Appareils et instruments scientifiques et électriques 28
38 - Services de télécommunications 19
35 - Publicité; Affaires commerciales 13
39 - Services de transport, emballage et entreposage; organisation de voyages 12
Voir plus
Statut
En Instance 224
Enregistré / En vigueur 1 066
  1     2     3     ...     13        Prochaine page

1.

MOLECULAR STRUCTURE TRANSFORMERS FOR PROPERTY PREDICTION

      
Numéro d'application 19257315
Statut En instance
Date de dépôt 2025-07-01
Date de la première publication 2025-10-23
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Gadhiya, Tusharkumar
  • Shah, Falak
  • Vyas, Nisarg
  • Yang, Julia
  • Gharakhanyan, Vahe
  • Holiday, Alexander

Abrégé

Computer-implemented methods may include accessing a multi-dimensional embedding space that supports relating embeddings of molecules to predicted values of a given property of the molecules. The method may also include identifying one or more points of interest within the embedding space based on the predicted values. Each of the one or more points of interest may include a set of coordinate values within the multi-dimensional embedding space and may be associated with a corresponding predicted value of the given property. The method may further include generating, for each of the one or more points of interest, a structural representation of a molecule by transforming the set of coordinate values included in the point of interest using a decoder network. The method may include outputting a result that identifies, for each of the one or more points of interest, the structural representation of the molecule corresponding to the point of interest.

Classes IPC  ?

  • C08J 11/16 - Récupération ou traitement des résidus des polymères par coupure des chaînes moléculaires des polymères ou rupture des liaisons de réticulation par voie chimique, p. ex. dévulcanisation par traitement avec une substance inorganique
  • C08J 11/10 - Récupération ou traitement des résidus des polymères par coupure des chaînes moléculaires des polymères ou rupture des liaisons de réticulation par voie chimique, p. ex. dévulcanisation
  • G16C 10/00 - Chimie théorique computationnelle, c.-à-d. TIC spécialement adaptées aux aspects théoriques de la chimie quantique, de la mécanique moléculaire, de la dynamique moléculaire ou similaires
  • G16C 20/10 - Analyse ou conception des réactions, des synthèses ou des procédés chimiques
  • G16C 20/20 - Identification d’entités moléculaires, de leurs parties ou de compositions chimiques
  • G16C 20/40 - Recherche de structures chimiques ou de données physicochimiques
  • G16C 20/70 - Apprentissage automatique, exploration de données ou chimiométrie
  • G16C 20/80 - Visualisation de données
  • G16C 60/00 - Science informatique des matériaux, c.-à-d. TIC spécialement adaptées à la recherche des propriétés physiques ou chimiques de matériaux ou de phénomènes associés à leur conception, synthèse, traitement, caractérisation ou utilisation

2.

CHARACTERIZATION OF MACHINE-LEARNING MODELS

      
Numéro d'application 19042774
Statut En instance
Date de dépôt 2025-01-31
Date de la première publication 2025-10-16
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Kirchenbauer, John William K.
  • Andre, David
  • Honke, Garrett Raymond

Abrégé

Disclosed herein are systems and methods for objectively characterizing machine-learning models including receiving first training data formatted to be used in the training of a machine-learning model; receiving one or more challenge queries formatted to be run on the machine-learning model; generating, for the first training data, a plurality of associated training vectors that embed at least some of the first training data into a vector space; generating, for each of the one or more challenge queries, a plurality of associated challenge vectors that embed at least some of the challenge queries into the vector space; and determining, for each challenge query, a corresponding quality metric for the machine-learning model by determining a neighborhood density for each of the challenge queries in the vector space.

Classes IPC  ?

  • G06F 16/2453 - Optimisation des requêtes
  • G06F 16/215 - Amélioration de la qualité des donnéesNettoyage des données, p. ex. déduplication, suppression des entrées non valides ou correction des erreurs typographiques

3.

ATTENTION GUIDING LAYER IN CONVOLUTIONAL NEURAL NETWORKS

      
Numéro d'application US2025022973
Numéro de publication 2025/212900
Statut Délivré - en vigueur
Date de dépôt 2025-04-03
Date de publication 2025-10-09
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Cowan, Eliot Julien
  • Gupta, Akshina
  • Cowan, Avery Noam
  • Li, Xin
  • Singaraju, Nishanth

Abrégé

Methods, systems, and apparatus for receiving a request for a prediction relevant to an object of interest (OOI) in the geographic region, providing an attention guiding layer based on a location of the OOI within the geographic layer, the attention guiding layer including a matrix of pixels, each pixel having an attention value assigned thereto, retrieving a set of layers representative of the geographic region, processing the set of layers and the attention guiding layer by a ML model to generate the prediction relevant to the OOI, the ML model including a convolutional neural network (CNN), and providing a representation of the prediction for display.

Classes IPC  ?

  • G06V 10/25 - Détermination d’une région d’intérêt [ROI] ou d’un volume d’intérêt [VOI]
  • G06V 10/44 - Extraction de caractéristiques locales par analyse des parties du motif, p. ex. par détection d’arêtes, de contours, de boucles, d’angles, de barres ou d’intersectionsAnalyse de connectivité, p. ex. de composantes connectées
  • G06V 10/58 - Extraction de caractéristiques d’images ou de vidéos relative aux données hyperspectrales
  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
  • G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
  • G06V 20/13 - Images satellite
  • G06V 20/10 - Scènes terrestres
  • G06V 20/70 - Étiquetage du contenu de scène, p. ex. en tirant des représentations syntaxiques ou sémantiques
  • G06V 20/52 - Activités de surveillance ou de suivi, p. ex. pour la reconnaissance d’objets suspects
  • G06V 10/80 - Fusion, c.-à-d. combinaison des données de diverses sources au niveau du capteur, du prétraitement, de l’extraction des caractéristiques ou de la classification

4.

TECHNIQUES FOR USING INVERSE DESIGN FOR COMBINED OPTIMIZATION OF OPTICAL AND ELECTRICAL COMPONENTS IN AN OPTOELECTRONIC MODULATOR

      
Numéro d'application US2025021647
Numéro de publication 2025/212350
Statut Délivré - en vigueur
Date de dépôt 2025-03-26
Date de publication 2025-10-09
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Adolf, Brian
  • Wu, Yi-Kuei Ryan
  • Williamson, Ian
  • Watson, Philip

Abrégé

In some embodiments, a computer-implemented method for creating a design for an optoelectronic modulator device is provided. A computing system determines an initial design that includes optical structural parameters and electrical structural parameters for a design region. The computing system simulates electrical performance based on the electrical structural parameters to adjust optical characteristics of the optical structural parameters. The computing system simulates optical performance of the optical structural parameters having the adjusted optical characteristics to generate a performance loss value. The computing system determines a loss metric based on the performance loss value. The computing system backpropagates the loss metric to determine a structural gradient. The computing system revises at least one of the optical structural parameters and the electrical structural parameters based at least in part on the structural gradient to create an updated initial design.

Classes IPC  ?

  • G02F 1/01 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur
  • G02F 1/025 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur basés sur des éléments à semi-conducteurs ayant des barrières de potentiel, p. ex. une jonction PN ou PIN dans une structure de guide d'ondes optique
  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • G06F 119/02 - Analyse de fiabilité ou optimisation de fiabilitéAnalyse de défaillance, p. ex. performance dans le pire scénario, analyse du mode de défaillance et de ses effets [FMEA]

5.

TECHNIQUES FOR USING INVERSE DESIGN FOR COMBINED OPTIMIZATION OF OPTICAL AND ELECTRICAL COMPONENTS IN AN OPTOELECTRONIC MODULATOR

      
Numéro d'application 19091369
Statut En instance
Date de dépôt 2025-03-26
Date de la première publication 2025-10-02
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Adolf, Brian
  • Wu, Yi-Kuei Ryan
  • Williamson, Ian
  • Watson, Philip

Abrégé

In some embodiments, a computer-implemented method for creating a design for an optoelectronic modulator device is provided. A computing system determines an initial design that includes optical structural parameters and electrical structural parameters for a design region. The computing system simulates electrical performance based on the electrical structural parameters to adjust optical characteristics of the optical structural parameters. The computing system simulates optical performance of the optical structural parameters having the adjusted optical characteristics to generate a performance loss value. The computing system determines a loss metric based on the performance loss value. The computing system backpropagates the loss metric to determine a structural gradient. The computing system revises at least one of the optical structural parameters and the electrical structural parameters based at least in part on the structural gradient to create an updated initial design.

Classes IPC  ?

  • G06F 30/32 - Conception de circuits au niveau numérique

6.

SENSOR-ENABLED MARKETPLACE FOR MINED OR RECYCLED MATERIALS

      
Numéro d'application US2025018163
Numéro de publication 2025/193459
Statut Délivré - en vigueur
Date de dépôt 2025-03-03
Date de publication 2025-09-18
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Nagatani Jr., Ray, Anthony
  • Papania-Davis, Antonio, Raymond
  • Yan, Weishi
  • Jin, Shijian
  • Rodriguez Martinez, Cristian

Abrégé

An integrated geomaterials preparation method including receiving, through an API of an integrated geomaterials preparation platform, a raw material request and a set of end-product parameters, determining, from the set of end-product parameters, required characteristics for at least one raw material ingredient to an end product to meet the raw material request, obtaining raw material sensor data from a plurality of raw material sensor systems, identifying, from the raw material sensor data, a particular raw material having characteristics similar to the required characteristics, where each sensor system is configured to scan and characterize raw materials, generating, using the characteristics of the particular raw material, operational parameters for geomaterial processing equipment to produce a raw material ingredient to meet the raw material request, and providing, the operational parameters to the geomaterial processing equipment, which when executed by the geomaterial processing equipment cause the geomaterial processing equipment to execute the operational parameters.

Classes IPC  ?

  • G06Q 10/0639 - Analyse des performances des employésAnalyse des performances des opérations d’une entreprise ou d’une organisation

7.

SENSOR-ENABLED MARKETPLACE FOR MINED OR RECYCLED MATERIALS

      
Numéro d'application 19070128
Statut En instance
Date de dépôt 2025-03-04
Date de la première publication 2025-09-18
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Nagatani Jr., Ray Anthony
  • Papania-Davis, Antonio Raymond
  • Yan, Weishi
  • Jin, Shijian
  • Rodriguez Martinez, Cristian

Abrégé

An integrated geomaterials preparation method including receiving, through an API of an integrated geomaterials preparation platform, a raw material request and a set of end-product parameters, determining, from the set of end-product parameters, required characteristics for at least one raw material ingredient to an end product to meet the raw material request, obtaining raw material sensor data from a plurality of raw material sensor systems, identifying, from the raw material sensor data, a particular raw material having characteristics similar to the required characteristics, where each sensor system is configured to scan and characterize raw materials, generating, using the characteristics of the particular raw material, operational parameters for geomaterial processing equipment to produce a raw material ingredient to meet the raw material request, and providing, the operational parameters to the geomaterial processing equipment, which when executed by the geomaterial processing equipment cause the geomaterial processing equipment to execute the operational parameters.

Classes IPC  ?

  • G06Q 10/0875 - Énumération ou classification des pièces, des fournitures ou des services, p. ex. nomenclatures
  • G06Q 50/04 - Fabrication
  • G06T 7/00 - Analyse d'image
  • G06V 10/74 - Appariement de motifs d’image ou de vidéoMesures de proximité dans les espaces de caractéristiques

8.

THERMALLY TUNABLE PHOTONIC CIRCUIT

      
Numéro d'application 19071087
Statut En instance
Date de dépôt 2025-03-05
Date de la première publication 2025-09-18
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Serey, Xavier
  • Wu, Yi-Kuei Ryan

Abrégé

A thermally regulated photonic system includes a photonic component, a sensor adapted to measure a temperature related to the photonic component or a power output of the photonic component and generate a sensor value that is indicative of the temperature or the power output, a heat distribution system thermally coupled to the photonic component and adapted to generate and distribute heat to the photonic component, and a controller coupled to the sensor and the heat distribution system in a feedback loop configuration to thermally regulate the photonic component based upon the sensor value.

Classes IPC  ?

  • G02B 6/293 - Moyens de couplage optique ayant des bus de données, c.-à-d. plusieurs guides d'ondes interconnectés et assurant un système bidirectionnel par nature en mélangeant et divisant les signaux avec des moyens de sélection de la longueur d'onde

9.

THERMALLY TUNABLE PHOTONIC CIRCUIT

      
Numéro d'application US2025019557
Numéro de publication 2025/193820
Statut Délivré - en vigueur
Date de dépôt 2025-03-12
Date de publication 2025-09-18
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Serey, Xavier
  • Wu, Yi-Kuei Ryan

Abrégé

A thermally regulated photonic system includes a photonic component, a sensor adapted to measure a temperature related to the photonic component or a power output of the photonic component and generate a sensor value that is indicative of the temperature or the power output, a heat distribution system thermally coupled to the photonic component and adapted to generate and distribute heat to the photonic component, and a controller coupled to the sensor and the heat distribution system in a feedback loop configuration to thermally regulate the photonic component based upon the sensor value.

Classes IPC  ?

  • G02B 6/12 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques du genre à circuit intégré
  • G02F 1/01 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur
  • G02B 6/42 - Couplage de guides de lumière avec des éléments opto-électroniques

10.

FUNCTIONALIZED MATERIALS FOR CARBON CAPTURE AND SYSTEMS THEREOF

      
Numéro d'application 18880190
Statut En instance
Date de dépôt 2023-06-30
Date de la première publication 2025-09-11
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Gong, Chaokun
  • Willman, Jeremy Aaron
  • Gagne, Jacques
  • Rampertab, Amanda Marie
  • Robertson, Kenneth Gerald
  • Saxena, Anand
  • Nelson, Robert

Abrégé

The present disclosure relates to a functionalized material, which may optionally be employed as a sorbent for carbon dioxide, as well as methods of making such materials and systems of using such materials. The processes, methods, and systems herein can be used for the separation of carbon dioxide from fluid streams.

Classes IPC  ?

  • B01J 20/32 - Imprégnation ou revêtement
  • B01D 53/62 - Oxydes de carbone
  • B01D 53/83 - Procédés en phase solide avec des réactifs en mouvement
  • B01D 53/96 - Régénération, réactivation ou recyclage des réactifs
  • B01J 20/10 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant de la silice ou un silicate
  • B01J 20/22 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance organique
  • B01J 20/26 - Composés macromoléculaires synthétiques
  • B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
  • B01J 20/30 - Procédés de préparation, de régénération ou de réactivation
  • B01J 20/34 - Régénération ou réactivation

11.

INVERSE DESIGNED POLARIZATION ROTATOR AND BEAM SPLITTER

      
Numéro d'application 18591912
Statut En instance
Date de dépôt 2024-02-29
Date de la première publication 2025-09-04
Propriétaire X Development LLC (USA)
Inventeur(s) Wu, Yi-Kuei Ryan

Abrégé

A polarization rotating and beam splitting photonic device includes a planar waveguide having an input port and output ports disposed in or on a multi-layer semiconductor stack and a polarization rotating and beam splitting components integrated into the planar waveguide. The polarization rotating component includes a first irregular pattern of at least two materials having different refractive indexes. The first irregular pattern is shaped to rotate at least a portion of an optical signal received via the input port from a transverse magnetic (TM) polarization to a transverse electric (TE) polarization. The beam splitting component includes a second irregular pattern shaped to split the optical signal between the output ports. The first and second irregularly shaped patterns are optically coupled and collectively shaped to receive input TE and TM signals multiplexed on the optical signal at the input port and generate output TE signals demultiplexed on the output ports.

Classes IPC  ?

  • G02B 27/10 - Systèmes divisant ou combinant des faisceaux
  • G02B 5/30 - Éléments polarisants

12.

INVERSE DESIGNED POLARIZATION ROTATOR AND BEAM SPLITTER

      
Numéro d'application US2025012759
Numéro de publication 2025/183825
Statut Délivré - en vigueur
Date de dépôt 2025-01-23
Date de publication 2025-09-04
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s) Wu, Yi-Kuei Ryan

Abrégé

A polarization rotating and beam splitting photonic device includes a planar waveguide having an input port and output ports disposed in or on a multi-layer semiconductor stack and a polarization rotating and beam splitting components integrated into the planar waveguide. The polarization rotating component includes a first irregular pattern of at least two materials having different refractive indexes. The first irregular pattern is shaped to rotate at least a portion of an optical signal received via the input port from a transverse magnetic (TM) polarization to a transverse electric (TE) polarization. The beam splitting component includes a second irregular pattern shaped to split the optical signal between the output ports. The first and second irregularly shaped patterns are optically coupled and collectively shaped to receive input TE and TM signals multiplexed on the optical signal at the input port and generate output TE signals demultiplexed on the output ports.

Classes IPC  ?

  • G02B 27/00 - Systèmes ou appareils optiques non prévus dans aucun des groupes ,
  • G02B 6/14 - Convertisseurs de mode
  • G02B 6/126 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques du genre à circuit intégré utilisant des effets de polarisation
  • G02B 6/125 - Courbures, branchements ou intersections
  • G02B 6/12 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques du genre à circuit intégré
  • G02B 27/28 - Systèmes ou appareils optiques non prévus dans aucun des groupes , pour polariser

13.

GENERATING BOUNDING BOXES FOR GEOLOCALIZING OBLIQUE AERIAL IMAGERY

      
Numéro d'application US2025012585
Numéro de publication 2025/165621
Statut Délivré - en vigueur
Date de dépôt 2025-01-22
Date de publication 2025-08-07
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Spirakis, Charles Stephen
  • Thebelt, Alexander
  • Gupta, Akshina
  • Shajarisales, Naji

Abrégé

Methods, systems, and apparatus for receiving a first image file recording a first image and a first set of metadata associated with the first image, determining that the first image depicts a horizon, and in response, providing a modified first set of metadata by applying a visibility radius to a projection of the Earth depicted in the first image, determining a tangent line based on the visibility radius, and adjusting a height of the first image based on the tangent line to provide a modified height in the modified first set of metadata, and outputting a first geographic features file that is generated using the modified first set of metadata, the first geographic features file including data representing one or more geographic features represented in the first image file.

Classes IPC  ?

  • G06V 10/25 - Détermination d’une région d’intérêt [ROI] ou d’un volume d’intérêt [VOI]
  • G06V 20/17 - Scènes terrestres transmises par des avions ou des drones

14.

GEOLOCALIZING OBLIQUE AERIAL IMAGERY

      
Numéro d'application US2025013132
Numéro de publication 2025/165680
Statut Délivré - en vigueur
Date de dépôt 2025-01-27
Date de publication 2025-08-07
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Gupta, Akshina
  • Spirakis, Charles Stephen
  • Huang, Qian
  • Thebelt, Alexander
  • Shajarisales, Naji
  • Ahmadalipour Lapvandani, Ali

Abrégé

Methods, systems, and apparatus for receiving an image file recording an image and a set of metadata, determining a search space based on one or more of at least a portion of the set of metadata and auxiliary data, generating a set of candidate images based on the search space, identifying a candidate image in the set of candidate images as a best matching image relative to the image, the candidate image being associated with a set of candidate metadata, providing a set of augmented metadata for the image based on the set of metadata and the set of candidate metadata, the set of augmented metadata including at least a portion of the set of candidate metadata, and outputting a geographic features file that is generated using the set of augmented metadata, the geographic features file including data representing one or more geographic features represented in the image file.

Classes IPC  ?

  • G06F 16/58 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement
  • G06F 16/587 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des informations géographiques ou spatiales, p. ex. la localisation

15.

TOWARDS PREDICTION OF GEOMATERIAL PROPERTIES POST-PROCESSING VIA HIGH-THROUGHPUT CHEMICAL AND SPATIAL CHARACTERIZATION

      
Numéro d'application US2025013829
Numéro de publication 2025/166031
Statut Délivré - en vigueur
Date de dépôt 2025-01-30
Date de publication 2025-08-07
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Nagatani, Ray Anthony, Jr
  • Jin, Shijian
  • Papania-Davis, Antonio Raymond
  • Zhao, Allen Richard
  • Rodriguez Martinez, Cristian
  • Yan, Weishi

Abrégé

Methods, systems, and apparatus, including computer programs encoded on a storage device, for determining characteristics of particles are disclosed. A system includes a conveyor belt, wherein a first section of the conveyor belt comprises one or more mechanisms arranged to create environmental conditions favorable to sensor reading. The system includes a sensor rig located proximate to the first section of the conveyor belt comprising a plurality of different types of sensors. The system includes a controller configured to: obtain measurement data from the plurality of different types of sensors; apply the measurement data to a machine learning model configured to determine surface chemical characteristics of particles given measurement data; and output the surface chemical characteristics of particles from the machine learning model to one or more components along the conveyor belt.

Classes IPC  ?

  • G01N 15/08 - Recherche de la perméabilité, du volume des pores ou de l'aire superficielle des matériaux poreux

16.

CHARACTERIZATION OF MACHINE-LEARNING MODELS

      
Numéro d'application US2025014125
Numéro de publication 2025/166231
Statut Délivré - en vigueur
Date de dépôt 2025-01-31
Date de publication 2025-08-07
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Kirchenbauer, John William K.
  • Andre, David
  • Honke, Garrett Raymond

Abrégé

Disclosed herein are systems and methods for objectively characterizing machine-learning models including receiving first training data formatted to be used in the training of a machine-learning model; receiving one or more challenge queries formatted to be run on the machine-learning model; generating, for the first training data, a plurality of associated training vectors that embed at least some of the first training data into a vector space; generating, for each of the one or more challenge queries, a plurality of associated challenge vectors that embed at least some of the challenge queries into the vector space; and determining, for each challenge query, a corresponding quality metric for the machine-learning model by determining a neighborhood density for each of the challenge queries in the vector space.

Classes IPC  ?

  • G06N 3/0475 - Réseaux génératifs
  • G06N 3/0895 - Apprentissage faiblement supervisé, p. ex. apprentissage semi-supervisé ou auto-supervisé
  • G06N 20/10 - Apprentissage automatique utilisant des méthodes à noyaux, p. ex. séparateurs à vaste marge [SVM]

17.

SELF-SUPERVISED IMAGE EMBEDDINGS

      
Numéro d'application 19035680
Statut En instance
Date de dépôt 2025-01-23
Date de la première publication 2025-07-31
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Banatao, Diosdado
  • Rosenfeld, Daniel
  • Spyra, Aleksandra
  • Holiday, Alexander
  • Parfenuk, Anna

Abrégé

The present disclosure relates to a method and system for acquiring and processing large unlabeled dataset of images to train an embedding model using a self-supervision technique, which may then be used to generate image embeddings with reduced dimensions for any downstream task or model. The downstream model can be a simple model and can be trained efficiently using a small, labeled training dataset as the embedding model may distill important information from the images of the small, labeled training dataset. According to present disclosure, the downstream task or model may include predicting a material category or quantity of a target material of interest in an image that captures (part or all of) one or more objects on a feedstock or a waste stream. In some instances, the image may correspond to a hyperspectral image that is collected using a camera system.

Classes IPC  ?

  • G06T 1/00 - Traitement de données d'image, d'application générale
  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo

18.

GENERATING BOUNDING BOXES FOR GEOLOCALIZING OBLIQUE AERIAL IMAGERY

      
Numéro d'application 19034380
Statut En instance
Date de dépôt 2025-01-22
Date de la première publication 2025-07-31
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Spirakis, Charles Stephen
  • Thebelt, Alexander
  • Gupta, Akshina
  • Shajarisales, Naji

Abrégé

Methods, systems, and apparatus for receiving a first image file recording a first image and a first set of metadata associated with the first image, determining that the first image depicts a horizon, and in response, providing a modified first set of metadata by applying a visibility radius to a projection of the Earth depicted in the first image, determining a tangent line based on the visibility radius, and adjusting a height of the first image based on the tangent line to provide a modified height in the modified first set of metadata, and outputting a first geographic features file that is generated using the modified first set of metadata, the first geographic features file including data representing one or more geographic features represented in the first image file.

Classes IPC  ?

  • G06V 20/17 - Scènes terrestres transmises par des avions ou des drones
  • G06T 7/70 - Détermination de la position ou de l'orientation des objets ou des caméras

19.

SEARCH FOR CANDIDATE MOLECULES USING QUANTUM OR THERMODYNAMICAL SIMULATIONS AND AUTOENCODER

      
Numéro d'application 19175250
Statut En instance
Date de dépôt 2025-04-10
Date de la première publication 2025-07-24
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Gharakhanyan, Vahe
  • Yang, Julia
  • Gadhiya, Tusharkumar
  • Holiday, Alexander

Abrégé

Computer-implemented techniques may include identifying a polymer for decomposition. For an ionic liquid, one or more properties corresponding to the polymer is accessed. One or more properties characterize a reaction between the polymer and the ionic liquid. A value of the property is accessed using a quantum-mechanical or thermodynamical method. A bond string and position (BSP) representation of a molecule of the ionic liquid is determined. An embedded representation of the ionic liquid is determined based on the BSP representation. A relationship between BSP representations of molecules and the one or more properties is generated. An ionic liquid is identified as a prospect for depolymerizing the specific polymer based on the relationship. An identification of the ionic liquid is output.

Classes IPC  ?

  • C08J 11/16 - Récupération ou traitement des résidus des polymères par coupure des chaînes moléculaires des polymères ou rupture des liaisons de réticulation par voie chimique, p. ex. dévulcanisation par traitement avec une substance inorganique
  • C08J 11/10 - Récupération ou traitement des résidus des polymères par coupure des chaînes moléculaires des polymères ou rupture des liaisons de réticulation par voie chimique, p. ex. dévulcanisation
  • G16C 10/00 - Chimie théorique computationnelle, c.-à-d. TIC spécialement adaptées aux aspects théoriques de la chimie quantique, de la mécanique moléculaire, de la dynamique moléculaire ou similaires
  • G16C 20/10 - Analyse ou conception des réactions, des synthèses ou des procédés chimiques
  • G16C 20/20 - Identification d’entités moléculaires, de leurs parties ou de compositions chimiques
  • G16C 20/40 - Recherche de structures chimiques ou de données physicochimiques
  • G16C 20/70 - Apprentissage automatique, exploration de données ou chimiométrie
  • G16C 20/80 - Visualisation de données
  • G16C 60/00 - Science informatique des matériaux, c.-à-d. TIC spécialement adaptées à la recherche des propriétés physiques ou chimiques de matériaux ou de phénomènes associés à leur conception, synthèse, traitement, caractérisation ou utilisation

20.

GEOCHEMICAL ANALYSIS OF DRAINAGE BASINS

      
Numéro d'application 19169213
Statut En instance
Date de dépôt 2025-04-03
Date de la première publication 2025-07-17
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Goncharuk, Artem
  • Smith, Kevin Forsythe
  • Miller, Alex S.

Abrégé

Techniques for determining a mineralogy of a portion of a drainage basin include identifying topography data associated with a drainage basin comprising at least one body of water; identifying weather data associated with the drainage basin; identifying first sensor data associated with a first water sensor installed in the drainage basin; identifying second sensor data associated with a second water sensor that is located downstream of the first water sensor in the drainage basin; providing the first sensor data, second sensor data, topography data, and weather data as input to a machine learning algorithm; and determining, by the machine learning algorithm, a mineralogy of a portion of the drainage basin.

Classes IPC  ?

  • G01C 13/00 - Géodésie spécialement adaptée à l'eau libre, p. ex. à la mer, aux lacs, aux rivières ou aux canaux
  • G01N 21/31 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique
  • G01N 33/18 - Eau
  • G01V 1/30 - Analyse
  • G01V 20/00 - Géomodélisation en général

21.

Robust natural language based control of computer applications

      
Numéro d'application 18400307
Numéro de brevet 12353797
Statut Délivré - en vigueur
Date de dépôt 2023-12-29
Date de la première publication 2025-07-08
Date d'octroi 2025-07-08
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Hunt, Thomas
  • Andre, David
  • Vyas, Nisarg
  • Radkoff, Rebecca
  • Singh, Rishabh

Abrégé

This specification is generally directed to techniques for robust natural language (NL) based control of computer applications. In many implementations, the NL control is at least selectively interactive in that the user feedback input is solicited, and received, in resolving action(s), resolving action set(s), generating domain specific knowledge, and/or in providing feedback on implemented action set(s). The user feedback input can be utilized in further training of machine learning model(s) utilized in the NL based control of the computer applications.

Classes IPC  ?

  • G06F 3/0481 - Techniques d’interaction fondées sur les interfaces utilisateur graphiques [GUI] fondées sur des propriétés spécifiques de l’objet d’interaction affiché ou sur un environnement basé sur les métaphores, p. ex. interaction avec des éléments du bureau telles les fenêtres ou les icônes, ou avec l’aide d’un curseur changeant de comportement ou d’aspect
  • G06F 3/0484 - Techniques d’interaction fondées sur les interfaces utilisateur graphiques [GUI] pour la commande de fonctions ou d’opérations spécifiques, p. ex. sélection ou transformation d’un objet, d’une image ou d’un élément de texte affiché, détermination d’une valeur de paramètre ou sélection d’une plage de valeurs
  • G06F 3/16 - Entrée acoustiqueSortie acoustique
  • G10L 15/22 - Procédures utilisées pendant le processus de reconnaissance de la parole, p. ex. dialogue homme-machine

22.

ELECTRICAL GRID PROTECTION USING GRID COMPONENTS

      
Numéro d'application 19002545
Statut En instance
Date de dépôt 2024-12-26
Date de la première publication 2025-07-03
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Wong, Sze Mei Cat
  • Fedoruk, Laura Elizabeth
  • Casey, Leo Francis
  • Khalilinia, Hamed

Abrégé

Methods, systems, and apparatus, including computer programs encoded on a storage device, for protecting an electrical grid are disclosed. A method includes obtaining electrical grid data corresponding to grid reliability factors and grid safety factors; determining, based on an analysis of the grid reliability factors and the grid safety factors, one or more operating parameters for at least one electrical protection device; and controlling the at least one electrical protection device based on the one or more operating parameters.

Classes IPC  ?

  • H02J 3/00 - Circuits pour réseaux principaux ou de distribution, à courant alternatif
  • H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs

23.

WILDFIRE IDENTIFICATION IN IMAGERY

      
Numéro d'application 19018987
Statut En instance
Date de dépôt 2025-01-13
Date de la première publication 2025-07-03
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Cowan, Eliot Julien
  • Cowan, Avery Noam
  • Gupta, Akshina

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for identifying wildfire in satellite imagery. In some implementations, a server obtains a satellite image of a geographic region and a date corresponding to when the satellite image was generated. The server determines a number of pixels in the satellite image that are indicated as on fire. The server obtains satellite imagery of the geographic region from before the date. The server generates a statistical distribution from the satellite imagery. The server determines a likelihood that the satellite image illustrates fire based on a comparison of the determined number of pixels in the satellite image that are indicated as on fire to the generated statistical distribution. The server can compare the determined likelihood to a threshold. In response to comparing the determined likelihood to the threshold, the server provides an indication that the satellite image illustrates fire.

Classes IPC  ?

  • G08B 17/00 - Alarmes d'incendieAlarmes réagissant à une explosion
  • G06F 16/29 - Bases de données d’informations géographiques
  • G06T 7/77 - Détermination de la position ou de l'orientation des objets ou des caméras utilisant des procédés statistiques
  • G06T 11/20 - Traçage à partir d'éléments de base, p. ex. de lignes ou de cercles

24.

MULTI-MODAL UTILITY ASSET SEARCHING

      
Numéro d'application US2024058922
Numéro de publication 2025/144576
Statut Délivré - en vigueur
Date de dépôt 2024-12-06
Date de publication 2025-07-03
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s) Wang, Xin-Jing

Abrégé

This disclosure describes systems and methods for multi-modal search-based object detection and electric grid object search. Annotations and bounding boxes for images in an image database are determined. A first subset of images is determined from the images that share annotations. A textual token representing the first subset of images is generated and stored in a search index. A second subset of images that share visual features is determined from image pixels enclosed by the bounding boxes. An image token is generated based on the second subset of images and the shared visual features. A user interface configured to receive a search query input is provided for display on a user device. Search tokens are generated based on the search query input. A candidate image is identified and provided for display within the user interface at a position within a respective region of a geographic map of an electric grid.

Classes IPC  ?

  • G06F 16/54 - NavigationVisualisation à cet effet
  • G06F 16/583 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des métadonnées provenant automatiquement du contenu
  • G06F 16/58 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement
  • G06F 16/587 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des informations géographiques ou spatiales, p. ex. la localisation

25.

STATE TRANSITION MATRIX-BASED POWER SYSTEM SIMULATION

      
Numéro d'application US2024060793
Numéro de publication 2025/144658
Statut Délivré - en vigueur
Date de dépôt 2024-12-18
Date de publication 2025-07-03
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Khalilinia, Hamed
  • Casey, Leo Francis

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for electrical power grid simulation. One of the methods includes obtaining a state-transition matrix model of an electrical power grid and executing a simulation of electric power grid behaviors by executing the state-transition matrix model using a parallel processing device that includes multiple cores.

Classes IPC  ?

  • G06F 30/367 - Vérification de la conception, p. ex. par simulation, programme de simulation avec emphase de circuit intégré [SPICE], méthodes directes ou de relaxation
  • G06Q 50/06 - Fourniture d’énergie ou d’eau

26.

FUNCTIONALIZED AND CROSSLINKED MATERIALS

      
Numéro d'application US2024061804
Numéro de publication 2025/144830
Statut Délivré - en vigueur
Date de dépôt 2024-12-23
Date de publication 2025-07-03
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Willman, Jeremy, Aaron
  • Gong, Chaokun
  • Seybert, Kevin, Wayne
  • Pour, Gavin

Abrégé

Functionalized and crosslinked material, which may optionally be employed as a sorbent, as well as methods of making such materials and systems of using such materials are provided. The processes, methods, systems and materials herein can be used for the separation of carbon dioxide from fluid streams. In one aspect, a method of forming functionalized crosslinked particles comprises introducing at least a portion of a surface of each porous particle in at least a subset of a plurality of porous particles to a crosslinking agent and a first reagent comprising at least one adsorbing moiety. Examples of adsorbing moiety include silane-functionalized amines, amino-functionalized silanes (aminosilane), and polyamines. In some aspects the method further comprises introducing the porous particles to a second reagent comprising at least one interaction moiety such as a silane-functionalized amine, amino-functionalized silane (aminosilane), or polyamine. Examples of crosslinking agent include dialdehyde, diisocyanates, dihaloalkane, diepoxide and dianhydrides.

27.

NEGATIVE EMISSIONS USING INORGANIC WASTE RECYCLING

      
Numéro d'application US2024061920
Numéro de publication 2025/144901
Statut Délivré - en vigueur
Date de dépôt 2024-12-26
Date de publication 2025-07-03
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Jin, Shijian
  • Papania-Davis, Antonio Raymond
  • Van Arsdale, Christopher Hunter
  • Mortenson Tyka, Michael Dominik

Abrégé

Provided herein are methods and systems for achieving ocean alkalinity enhancement (OAE), which provides a means of reducing atmospheric carbon dioxide levels, through electrolytic salt splitting. Treatment of ocean waters with the alkaline portion of salt splitting and treatment of inorganic waste with the acid portion of the salt splitting provide a means of achieving OAE without adding mineral content from land while at the same time providing a means of recycling inorganic waste in the form of recycled concrete aggregates.

Classes IPC  ?

  • C02F 1/46 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par des procédés électrochimiques
  • B01D 61/42 - ÉlectrodialyseÉlectro-osmose
  • C02F 1/461 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par des procédés électrochimiques par électrolyse
  • C02F 103/08 - Eau de mer, p. ex. pour le dessalement
  • C02F 103/12 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant des industries des silicates ou des céramiques, p. ex. eaux résiduaires provenant des usines du ciment ou du verre
  • C04B 18/00 - Emploi de matières agglomérées, de résidus ou de déchets comme charges pour mortiers, béton ou pierre artificielleTraitement de matières agglomérées, de résidus ou de déchets, spécialement adapté pour renforcer leurs propriétés de charge, dans les mortiers, le béton ou la pierre artificielle

28.

MULTI-MODAL UTILITY ASSET SEARCHING

      
Numéro d'application 18971727
Statut En instance
Date de dépôt 2024-12-06
Date de la première publication 2025-07-03
Propriétaire X Development LLC (USA)
Inventeur(s) Wang, Xin-Jing

Abrégé

This disclosure describes systems and methods for multi-modal search-based object detection and electric grid object search. Annotations and bounding boxes for images in an image database are determined. A first subset of images is determined from the images that share annotations. A textual token representing the first subset of images is generated and stored in a search index. A second subset of images that share visual features is determined from image pixels enclosed by the bounding boxes. An image token is generated based on the second subset of images and the shared visual features. A user interface configured to receive a search query input is provided for display on a user device. Search tokens are generated based on the search query input. A candidate image is identified and provided for display within the user interface at a position within a respective region of a geographic map of an electric grid.

Classes IPC  ?

  • G06F 16/532 - Formulation de requêtes, p. ex. de requêtes graphiques
  • G06F 16/538 - Présentation des résultats des requêtes

29.

POWER GRID SIMULATION WITH REDUCED COMPONENT MODELS

      
Numéro d'application 18999158
Statut En instance
Date de dépôt 2024-12-23
Date de la première publication 2025-07-03
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Casey, Leo Francis
  • He, Mike Miao
  • Khalilinia, Hamed
  • Daly, Raymond

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products that perform operations that include obtaining one or more physical parameters and one or more predetermined operating conditions for a component to be connected to the electric power grid at a predetermined grid connection point. And, obtaining training data characterizing the component; generating, based on the obtained training data, physical parameters and one or more predetermined operating conditions, a reduced order simulator of the component, where the reduced order model is trained to simulate the behavior of the component at the predetermined connection point under the predetermined operating conditions.

Classes IPC  ?

  • G06F 30/27 - Optimisation, vérification ou simulation de l’objet conçu utilisant l’apprentissage automatique, p. ex. l’intelligence artificielle, les réseaux neuronaux, les machines à support de vecteur [MSV] ou l’apprentissage d’un modèle
  • G06F 113/04 - Réseaux de distribution électrique
  • G06F 119/06 - Analyse de puissance ou optimisation de puissance

30.

LARGE LANGUAGE MODEL DRIVEN DATA AUGMENTATION FOR PROTEIN MACHINE LEARNING

      
Numéro d'application 18397412
Statut En instance
Date de dépôt 2023-12-27
Date de la première publication 2025-07-03
Propriétaire X Development LLC (USA)
Inventeur(s) Vaggi, Federico

Abrégé

A method for training a machine learning model (MLM) to predict the activity of a protein is described herein. In an example, a method involves accessing a set of training data comprising labeled examples with known activity levels. A large language model is used to generate synthetic examples of each labeled example by incorporating each possible amino acid (AA) mutation at each AA position in the labeled example and predicting the probability each AA mutation has of replacing the original AA. Based on a predetermined cutoff, a subset of negative synthetic examples that comprises at least one AA mutation with the lowest probability of being incorporated are selected. An augmented training dataset is generated and a MLM is trained, using the training data and the augmented training data set, by performing iterative operations to find a set of parameters that jointly minimize the sum of at least two loss functions.

Classes IPC  ?

  • G16B 40/00 - TIC spécialement adaptées aux biostatistiquesTIC spécialement adaptées à l’apprentissage automatique ou à l’exploration de données liées à la bio-informatique, p. ex. extraction de connaissances ou détection de motifs
  • G16B 30/00 - TIC spécialement adaptées à l’analyse de séquences impliquant des nucléotides ou des aminoacides

31.

2X2 PHOTONIC SPLITTER USING MODE CONVERTING Y-JUNCTIONS

      
Numéro d'application 18399413
Statut En instance
Date de dépôt 2023-12-28
Date de la première publication 2025-07-03
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Cheung, Alfred Ka Chun
  • Wu, Yi-Kuei Ryan

Abrégé

A 2×2 photonic splitter includes two mode converting Y-junctions. A first stage mode converting Y-junction includes input branch ports adapted to receive an input optical signal propagating in a fundamental spatial mode at either of the input branch ports, a first trunk port, and a first mode converting region. The first mode converting region is adapted to convert at least a first power portion of the fundamental spatial mode of the input optical signal when received via at least one of the input branch ports to a higher order spatial mode at the first trunk port. The second stage mode converting Y-junction includes output branch ports adapted to emit output optical signals having the fundamental spatial mode, a second trunk port, and a second mode converting region optically coupling the output branch ports to the second trunk port. A connected trunk section photonically links the trunk ports.

Classes IPC  ?

  • G02B 6/28 - Moyens de couplage optique ayant des bus de données, c.-à-d. plusieurs guides d'ondes interconnectés et assurant un système bidirectionnel par nature en mélangeant et divisant les signaux

32.

2X2 PHOTONIC SPLITTER USING MODE CONVERTING Y-JUNCTIONS

      
Numéro d'application US2024051773
Numéro de publication 2025/144493
Statut Délivré - en vigueur
Date de dépôt 2024-10-17
Date de publication 2025-07-03
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Cheung, Alfred Ka Chun
  • Wu, Yi-Kuei Ryan

Abrégé

A 2x2 photonic splitter includes two mode converting Y-junctions. A first stage mode converting Y-junction includes input branch ports adapted to receive an input optical signal propagating in a fundamental spatial mode at either of the input branch ports, a first trunk port, and a first mode converting region. The first mode converting region is adapted to convert at least a first power portion of the fundamental spatial mode of the input optical signal when received via at least one of the input branch ports to a higher order spatial mode at the first trunk port. The second stage mode converting Y-junction includes output branch ports adapted to emit output optical signals having the fundamental spatial mode, a second trunk port, and a second mode converting region optically coupling the output branch ports to the second trunk port. A connected trunk section photonically links the trunk ports.

Classes IPC  ?

  • G02B 6/28 - Moyens de couplage optique ayant des bus de données, c.-à-d. plusieurs guides d'ondes interconnectés et assurant un système bidirectionnel par nature en mélangeant et divisant les signaux
  • G02B 6/293 - Moyens de couplage optique ayant des bus de données, c.-à-d. plusieurs guides d'ondes interconnectés et assurant un système bidirectionnel par nature en mélangeant et divisant les signaux avec des moyens de sélection de la longueur d'onde

33.

LARGE LANGUAGE MODEL DRIVEN DATA AUGMENTATION FOR PROTEIN MACHINE LEARNING

      
Numéro d'application US2024061228
Numéro de publication 2025/144699
Statut Délivré - en vigueur
Date de dépôt 2024-12-20
Date de publication 2025-07-03
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s) Vaggi, Federico

Abrégé

A method for training a machine learning model (MLM) to predict the activity of a protein is described herein. In an example, a method involves accessing a set of training data comprising labeled examples with known activity levels. A large language model is used to generate synthetic examples of each labeled example by incorporating each possible amino acid (AA) mutation at each AA position in the labeled example and predicting the probability each AA mutation has of replacing the original AA. Based on a predetermined cutoff, a subset of negative synthetic examples that comprises at least one AA mutation with the lowest probability of being incorporated are selected. An augmented training dataset is generated and a MLM is trained, using the training data and the augmented training data set, by performing iterative operations to find a set of parameters that jointly minimize the sum of at least two loss functions.

Classes IPC  ?

  • G16B 30/00 - TIC spécialement adaptées à l’analyse de séquences impliquant des nucléotides ou des aminoacides
  • G16B 40/20 - Analyse de données supervisée

34.

POLYMER REINFORCEMENT ON DOUBLE AMINE COATED SORBENT

      
Numéro d'application US2024061805
Numéro de publication 2025/144831
Statut Délivré - en vigueur
Date de dépôt 2024-12-23
Date de publication 2025-07-03
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Willman, Jeremy, Aaron
  • Gong, Chaokun
  • Rampertab, Amanda, Marie
  • Gagne, Jacques

Abrégé

Disclosed herein are methods, and compositions produced using the methods, including introducing porous substrate particles and a first reagent comprising a polymer to a solvent to provide a plurality of coated particles; and introducing a second reagent comprising a polymeric amine and a third reagent comprising a silane moiety and an amine moiety to the coated particles, thereby providing a plurality of functionalized, coated particles.

Classes IPC  ?

  • B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
  • B01D 53/04 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse avec adsorbants fixes
  • B01D 53/62 - Oxydes de carbone
  • B01J 20/32 - Imprégnation ou revêtement

35.

LIFETIME IMPROVEMENT OF FUNCTIONALIZED MATERIALS

      
Numéro d'application US2024061806
Numéro de publication 2025/144832
Statut Délivré - en vigueur
Date de dépôt 2024-12-23
Date de publication 2025-07-03
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Gong, Chaokun
  • Willman, Jeremy, Aaron

Abrégé

22 from fluid streams. In one aspect, the disclosed materials are synthesized by forming coated particles through the introduction of porous particles, such as silica, to a first reagent comprising a polymer. Then the functionalized material is formed as functionalized coated particles by the introduction of a second reagent comprising at least one adsorbing moiety to the surfaces of the coated particles. Formation of the functionalized material is in the presence of a chelating agent, antioxidant, and/or crosslinker. In some instances, formation of the functionalized material is further in the presence of a third reagent comprising an interaction moiety that is incorporated into the functionalized coated particles.

Classes IPC  ?

  • B01J 20/22 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance organique
  • B01J 20/26 - Composés macromoléculaires synthétiques
  • B01J 20/10 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant de la silice ou un silicate
  • B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
  • B01J 20/30 - Procédés de préparation, de régénération ou de réactivation
  • B01J 20/32 - Imprégnation ou revêtement
  • B01D 53/02 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse

36.

Multimodal photonic components

      
Numéro d'application 18366427
Numéro de brevet 12345878
Statut Délivré - en vigueur
Date de dépôt 2023-08-07
Date de la première publication 2025-07-01
Date d'octroi 2025-07-01
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Lu, Jesse
  • Adolf, Brian John
  • Schubert, Martin Friedrich

Abrégé

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for designing a multimodal photonic component. In one aspect, a method includes defining a loss function within a simulation space including multiple voxels and encompassing features of the multimodal photonic component. The loss function corresponds to a target output mode profile for an input mode profile, where the target output mode profile includes a relationship between a set of operating conditions and one or more supported modes of the multimodal photonic component at a particular operative wavelength. The initial structure is defined for one or more features, where at least some of the voxels corresponding to features have a dimension smaller than a smallest operative wavelength of the multimodal photonic component, and values for structural parameters for the features are determined so that a loss according to the loss function is within a threshold loss.

Classes IPC  ?

  • G02B 27/00 - Systèmes ou appareils optiques non prévus dans aucun des groupes ,
  • G06F 30/23 - Optimisation, vérification ou simulation de l’objet conçu utilisant les méthodes des éléments finis [MEF] ou les méthodes à différences finies [MDF]
  • G06F 111/10 - Modélisation numérique

37.

FUNCTIONALIZED AND CROSSLINKED MATERIALS

      
Numéro d'application 19000591
Statut En instance
Date de dépôt 2024-12-23
Date de la première publication 2025-06-26
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Willman, Jeremy Aaron
  • Gong, Chaokun
  • Seybert, Kevin Wayne
  • Pour, Gavin

Abrégé

Functionalized and crosslinked material, which may optionally be employed as a sorbent, as well as methods of making such materials and systems of using such materials are provided. The processes, methods, systems and materials herein can be used for the separation of carbon dioxide from fluid streams. In one aspect, a method of forming functionalized crosslinked particles comprises introducing at least a portion of a surface of each porous particle in at least a subset of a plurality of porous particles to a crosslinking agent and a first reagent comprising at least one adsorbing moiety. Examples of adsorbing moiety include silane-functionalized amines, amino-functionalized silanes (aminosilane), and polyamines. In some aspects the method further comprises introducing the porous particles to a second reagent comprising at least one interaction moiety such as a silane-functionalized amine, amino-functionalized silane (aminosilane), or polyamine. Examples of crosslinking agent include dialdehyde, diisocyanates, dihaloalkane, diepoxide and dianhydrides.

Classes IPC  ?

  • B01J 20/26 - Composés macromoléculaires synthétiques
  • B01D 53/62 - Oxydes de carbone
  • B01D 53/81 - Procédés en phase solide
  • B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
  • B01J 20/32 - Imprégnation ou revêtement

38.

POLYMER REINFORCEMENT ON DOUBLE AMINE COATED SORBENT

      
Numéro d'application 19000606
Statut En instance
Date de dépôt 2024-12-23
Date de la première publication 2025-06-26
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Willman, Jeremy Aaron
  • Gong, Chaokun
  • Rampertab, Amanda Marie
  • Gagne, Jacques

Abrégé

Disclosed herein are methods, and compositions produced using the methods, including introducing porous substrate particles and a first reagent comprising a polymer to a solvent to provide a plurality of coated particles; and introducing a second reagent comprising a polymeric amine and a third reagent comprising a silane moiety and an amine moiety to the coated particles, thereby providing a plurality of functionalized, coated particles.

Classes IPC  ?

  • B01J 20/30 - Procédés de préparation, de régénération ou de réactivation
  • B01J 20/10 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant de la silice ou un silicate
  • B01J 20/26 - Composés macromoléculaires synthétiques
  • B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
  • B01J 20/32 - Imprégnation ou revêtement

39.

LIFETIME IMPROVEMENT OF FUNCTIONALIZED MATERIALS

      
Numéro d'application 19000613
Statut En instance
Date de dépôt 2024-12-23
Date de la première publication 2025-06-26
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Gong, Chaokun
  • Willman, Jeremy Aaron

Abrégé

Functionalized materials that act as sorbent, as well as methods of making such materials and systems of using such materials, are provided. The disclosed processes, methods, and materials can be used for the separation of CO2 from fluid streams. In one aspect, the disclosed materials are synthesized by forming coated particles through the introduction of porous particles, such as silica, to a first reagent comprising a polymer. Then the functionalized material is formed as functionalized coated particles by the introduction of a second reagent comprising at least one adsorbing moiety to the surfaces of the coated particles. Formation of the functionalized material is in the presence of a chelating agent, antioxidant, and/or crosslinker. In some instances, formation of the functionalized material is further in the presence of a third reagent comprising an interaction moiety that is incorporated into the functionalized coated particles.

Classes IPC  ?

  • B01J 20/32 - Imprégnation ou revêtement
  • B01D 53/04 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse avec adsorbants fixes
  • B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
  • B01J 20/30 - Procédés de préparation, de régénération ou de réactivation

40.

SPIRAL GRAVITY FED HEAT EXCHANGER

      
Numéro d'application US2024061208
Numéro de publication 2025/137407
Statut Délivré - en vigueur
Date de dépôt 2024-12-20
Date de publication 2025-06-26
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s) Nelson, Robert

Abrégé

A system for transferring heat between fluid and a bulk solid. The system includes a plurality of heat exchanger units, each heat exchanger unit comprising: an annular structure including an inner shell and an outer shell; and a first plate and a second plate defining therebetween a conduit for transporting the fluid, wherein the conduit forms a spiral around the inner shell, the spiral extending from the inner shell towards the outer shell, a space between turns of the spiral defining a channel for passage of the bulk solid. The inner shell defines a cylindrical annulus of the annular structure, an axis of the cylindrical annulus being aligned with the direction of gravity during operation. The bulk solid comprises a sorbent material configured to adsorb carbon dioxide from air. The fluid comprises a cooling fluid or a heating fluid.

Classes IPC  ?

  • F28D 9/04 - Appareils échangeurs de chaleur comportant des ensembles de canalisations fixes en forme de plaques ou de laminés pour les deux sources de potentiel calorifique, ces sources étant en contact chacune avec un côté de la paroi d'une canalisation les canalisations étant formées par des plaques ou des laminés enroulés en spirale
  • F28D 7/04 - Appareils échangeurs de chaleur comportant des ensembles de canalisations tubulaires fixes pour les deux sources de potentiel calorifique, ces sources étant en contact chacune avec un côté de la paroi d'une canalisation les canalisations étant enroulées en spirale
  • F25B 15/16 - Machines, installations ou systèmes à sorption, à marche continue, p. ex. à absorption utilisant le cycle de désorption
  • F25B 37/00 - AbsorbeursAdsorbeurs

41.

SPIRAL GRAVITY FED HEAT EXCHANGER

      
Numéro d'application 18988502
Statut En instance
Date de dépôt 2024-12-19
Date de la première publication 2025-06-26
Propriétaire X Development LLC (USA)
Inventeur(s) Nelson, Robert

Abrégé

A system for transferring heat between fluid and a bulk solid. The system includes a plurality of heat exchanger units, each heat exchanger unit comprising: an annular structure including an inner shell and an outer shell; and a first plate and a second plate defining therebetween a conduit for transporting the fluid, wherein the conduit forms a spiral around the inner shell, the spiral extending from the inner shell towards the outer shell, a space between turns of the spiral defining a channel for passage of the bulk solid. The inner shell defines a cylindrical annulus of the annular structure, an axis of the cylindrical annulus being aligned with the direction of gravity during operation. The bulk solid comprises a sorbent material configured to adsorb carbon dioxide from air. The fluid comprises a cooling fluid or a heating fluid.

Classes IPC  ?

  • F28D 7/04 - Appareils échangeurs de chaleur comportant des ensembles de canalisations tubulaires fixes pour les deux sources de potentiel calorifique, ces sources étant en contact chacune avec un côté de la paroi d'une canalisation les canalisations étant enroulées en spirale

42.

ELECTRICAL GRID SERVICE MONITORING, VALUATION, AND CONTROL

      
Numéro d'application 18394120
Statut En instance
Date de dépôt 2023-12-22
Date de la première publication 2025-06-26
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Casey, Leo Francis
  • Crahan, Page Furey
  • Fedoruk, Laura Elizabeth
  • Raab, Patrick
  • Khalilinia, Hamed
  • Ott, Andrew Lee
  • Daly, Raymond
  • Wong, Sze Mei Cat

Abrégé

A method for electrical grid service monitoring and valuation includes detecting a connection of a grid asset to an electric grid; receiving, from the grid asset, a communication indicating operating parameters for the grid asset; adding, to a database of grid assets, an identifier for the grid asset and the operating parameters; and simulating conditions of the electric grid based on data corresponding to a plurality of grid assets, the data being stored in the database; obtaining data indicating a status of the grid asset; determining that the grid asset is performing a grid service; obtaining an estimated value of the grid service using simulation results; obtaining energy market data indicating a market value of energy provided by the electric grid; and determining a value for the grid service performed based on (a) the estimated value of the grid service and (b) the energy market data.

Classes IPC  ?

  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu

43.

TRANSFORMER CONNECTION MAPPING IN AN OPERATING ELECTRIC POWER GRID

      
Numéro d'application 18396278
Statut En instance
Date de dépôt 2023-12-26
Date de la première publication 2025-06-26
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Pope, Arthur Robert
  • Li, Xinyue

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for transformer connection mapping in an operating electric power grid. The system can determine that a first utility meter is fed by a transformer in an electrical power distribution network based on a geographic distance between the first utility meter and the transformer as determined from non-electrical data. The system can obtain first electrical measurements from the first utility meter at predetermined time intervals and second electrical measurements from a second utility meter at the predetermined time intervals. The system can determine a likelihood that the second utility meter is fed by the transformer by, at least, performing a time-based correlation between the first electrical measurements and the second electrical measurements within a predefined time window. The system can associate a load supplied through the second utility meter with the transformer in a computer model of the electrical power distribution network.

Classes IPC  ?

  • G06Q 50/06 - Fourniture d’énergie ou d’eau
  • G06Q 10/04 - Prévision ou optimisation spécialement adaptées à des fins administratives ou de gestion, p. ex. programmation linéaire ou "problème d’optimisation des stocks"
  • G06Q 10/0631 - Planification, affectation, distribution ou ordonnancement de ressources d’entreprises ou d’organisations

44.

Distributed Acoustic Sensing Based on Two-Dimensional Waveguides

      
Numéro d'application 18977381
Statut En instance
Date de dépôt 2024-12-11
Date de la première publication 2025-06-19
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Miller, Alex S.
  • Karrenbach, Martin Horst
  • Goncharuk, Artem
  • Dolivo, Marina Andrea
  • Piercy, Brenton Edward

Abrégé

The present disclosure generally relates to systems, software, and computer-implemented methods for distributed acoustic sensing (DAS). One example system includes a two-dimensional (2D) waveguide, including a 2D substrate and a waveguide embedded in the 2D substrate, the waveguide configured to backscatter optical signals, and a first optical sensing system. The first optical sensing system can be configured to transmit a first optical signal into the 2D waveguide, receive a backscattered optical signal generated based on backscattering the first optical signal by the 2D waveguide, and generate a sensing result based on the backscattered optical signal.

Classes IPC  ?

  • G01H 9/00 - Mesure des vibrations mécaniques ou des ondes ultrasonores, sonores ou infrasonores en utilisant des moyens sensibles aux radiations, p. ex. des moyens optiques
  • G01D 5/353 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensibleMoyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminéTransducteurs non spécialement adaptés à une variable particulière utilisant des moyens optiques, c.-à-d. utilisant de la lumière infrarouge, visible ou ultraviolette avec atténuation ou obturation complète ou partielle des rayons lumineux les rayons lumineux étant détectés par des cellules photo-électriques en modifiant les caractéristiques de transmission d'une fibre optique
  • G02B 6/125 - Courbures, branchements ou intersections
  • G02B 6/13 - Circuits optiques intégrés caractérisés par le procédé de fabrication

45.

IIMAGE TRANSLATION FOR IMAGE RECOGNITION TO COMPENSATE FOR SOURCE IMAGE REGIONAL DIFFERENCES

      
Numéro d'application 18989417
Statut En instance
Date de dépôt 2024-12-20
Date de la première publication 2025-05-29
Propriétaire X Development LLC (USA)
Inventeur(s) Stahlfeld, Phillip E.

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for predicting locations of utility assets. One of the methods includes receiving an input image of an area in a first geographical region; generating, from the input image and using a generative adversarial network, a corresponding reference image; and generating, by an object detection model and from the reference image, an output that identifies respective locations of one or more utility assets with reference to the input image.

Classes IPC  ?

  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
  • G06F 17/15 - Calcul de fonction de corrélation
  • G06N 3/045 - Combinaisons de réseaux
  • G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
  • G06V 20/13 - Images satellite
  • G06V 20/17 - Scènes terrestres transmises par des avions ou des drones
  • G06V 20/52 - Activités de surveillance ou de suivi, p. ex. pour la reconnaissance d’objets suspects

46.

JOINT ASSET AND DEFECT DETECTION MACHINE LEARNING MODEL

      
Numéro d'application 18935234
Statut En instance
Date de dépôt 2024-11-01
Date de la première publication 2025-05-08
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Wang, Xin-Jing
  • Ha, Anthony

Abrégé

This disclosure describes a system, method, and computer storage medium for joint asset and defect detection. The approach includes receiving input data including an input image of a utility asset, the input image including one or more objects. Deep neural networks are configured to generate embeddings for classification labels of the one or more objects, each embedding corresponding to a classification label and including a mapping between the classification label and a subset of feature vectors. Defect classifiers are configured to determine a likelihood of an object from the one or more objects in the input image containing a type of defect. Each defect classifier is trained to determine a type of defect based on the embeddings for the one or more classification labels. The approach includes generating an output image that includes bounding boxes for the objects and an annotation corresponding a respective object from the objects.

Classes IPC  ?

  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
  • G06T 11/00 - Génération d'images bidimensionnelles [2D]
  • G06V 10/26 - Segmentation de formes dans le champ d’imageDécoupage ou fusion d’éléments d’image visant à établir la région de motif, p. ex. techniques de regroupementDétection d’occlusion
  • G06V 10/77 - Traitement des caractéristiques d’images ou de vidéos dans les espaces de caractéristiquesDispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p. ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]Séparation aveugle de source
  • G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
  • G06V 20/10 - Scènes terrestres
  • G06V 20/70 - Étiquetage du contenu de scène, p. ex. en tirant des représentations syntaxiques ou sémantiques

47.

PARTICLE CHARACTERIZATION SYSTEM AND METHOD

      
Numéro d'application US2024050771
Numéro de publication 2025/096166
Statut Délivré - en vigueur
Date de dépôt 2024-10-10
Date de publication 2025-05-08
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Papania-Davis, Antonio Raymond
  • Yan, Weishi

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for characterizing a particulate ingredient of a mixture including a hopper configured to dispense particles along an axis and in freefall through an imaging region, an illumination sub-system including at least one light source arranged at a first location with respect to the axis and configured to illuminate the imaging region, an image capture sub-system including at least one image capture device including a telecentric lens and arranged at a second location with respect to the axis and configured to align a focal plane of the at least one image capture device with the axis within the imaging region, such that when a particle freefalls through the imaging region, the particle is illuminated by the illumination sub-system and the image capture sub-system captures images of at least three silhouettes of the particle within the imaging region.

Classes IPC  ?

  • G01N 15/1434 - Dispositions optiques
  • G01N 15/14 - Techniques de recherche optique, p. ex. cytométrie en flux
  • G01N 33/00 - Recherche ou analyse des matériaux par des méthodes spécifiques non couvertes par les groupes
  • G01N 33/38 - BétonChauxMortierPlâtreBriquesProduits céramiquesVerre
  • G06T 7/593 - Récupération de la profondeur ou de la forme à partir de plusieurs images à partir d’images stéréo
  • G01N 15/00 - Recherche de caractéristiques de particulesRecherche de la perméabilité, du volume des pores ou de l'aire superficielle effective de matériaux poreux

48.

GENERATING ACTIONS FOR A SUPPLY CHAIN NETWORK

      
Numéro d'application US2024052856
Numéro de publication 2025/090795
Statut Délivré - en vigueur
Date de dépôt 2024-10-24
Date de publication 2025-05-01
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Nguyen, Lam Thanh
  • Brentano, Grace Taixi
  • Lee, Sze Man
  • Suri, Karush
  • Singh, Anikait
  • Pradhan, Salil Vijaykumar
  • Andre, David

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating actions for a supply chain network. One of the methods includes receiving a request to generate an action in a supply chain network for a particular product based on current state information; providing a request to an action model to generate a respective probability distribution for one or more actions for one or more products; receiving, from the action model, the respective probability distributions for the one or more products; determining, for each product, a binned action from the respective probability distribution; providing a request to a sequence model to generate a respective correction for the one or more binned actions; and receiving, from the sequence model, the respective correction for the respective binned action.

Classes IPC  ?

  • G06Q 10/087 - Gestion d’inventaires ou de stocks, p. ex. exécution des commandes, approvisionnement ou régularisation par rapport aux commandes

49.

GENERATING ACTIONS FOR A SUPPLY CHAIN NETWORK

      
Numéro d'application 18926132
Statut En instance
Date de dépôt 2024-10-24
Date de la première publication 2025-04-24
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Nguyen, Lam Thanh
  • Brentano, Grace Taixi
  • Lee, Sze Man
  • Suri, Karush
  • Singh, Anikait
  • Pradhan, Salil Vijaykumar
  • Andre, David
  • Murphy, Gearoid

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating actions for a supply chain network. One of the methods includes receiving a request to generate an action in a supply chain network for a particular product based on current state information; providing a request to an action model to generate a respective probability distribution for one or more actions for one or more products; receiving, from the action model, the respective probability distributions for the one or more products; determining, for each product, a binned action from the respective probability distribution; providing a request to a sequence model to generate a respective correction for the one or more binned actions; and receiving, from the sequence model, the respective correction for the respective binned action.

Classes IPC  ?

  • G06Q 10/08 - Logistique, p. ex. entreposage, chargement ou distributionGestion d’inventaires ou de stocks

50.

LOW POWER BEACON SCHEDULING

      
Numéro d'application US2024048305
Numéro de publication 2025/085224
Statut Délivré - en vigueur
Date de dépôt 2024-09-25
Date de publication 2025-04-24
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Koprowski, Brion
  • Kawaguchi, Dean, Mamoru
  • Wong, Adrian
  • Lal, Amit

Abrégé

The technology relates to a wireless system (100,200) that can be used indoors or outdoors, and is configured to reduce interference of beacon signals on channels used by the system (100,200). Aspects of the technology provide for evaluation of channel activity to determine an optimal transmission channel. This is beneficial where there is a high density of tags (102,104,400,500,600) that may be configured for data transmission. Tags (102, 104, 400, 500, 600) may include an antenna (440, 540, 6440) to receive signals; a first conditioning element (442,542,642) to attenuate received signals corresponding with the system channels; a converter (444,544,644) and a second conditioning element (446,546,646) to prepare attenuated signals for analysis; a comparator (448,548,648) to compare an attenuated signal to a threshold value; and a processor (450,550,650) to transmit a beacon signal to a reader apparatus (106) based on the comparison.

Classes IPC  ?

  • G06K 7/10 - Méthodes ou dispositions pour la lecture de supports d'enregistrement par radiation électromagnétique, p. ex. lecture optiqueMéthodes ou dispositions pour la lecture de supports d'enregistrement par radiation corpusculaire
  • G06K 19/07 - Supports d'enregistrement avec des marques conductrices, des circuits imprimés ou des éléments de circuit à semi-conducteurs, p. ex. cartes d'identité ou cartes de crédit avec des puces à circuit intégré
  • H04W 4/029 - Services de gestion ou de suivi basés sur la localisation

51.

POLARIZATION BEAM SPLITTER USING ASYMMETRIC POWER SPLITTING AND MULTIPATH INTERFEROMETRY

      
Numéro d'application US2024047469
Numéro de publication 2025/075786
Statut Délivré - en vigueur
Date de dépôt 2024-09-19
Date de publication 2025-04-10
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s) Wu, Yi-Kuei Ryan

Abrégé

A polarization beam splitter includes an input port, first and second output ports, and a polarization splitting region coupled between the input port and the first and second output ports. The input port is adapted to receive guided optical signals that are polarization multiplexed, including a transverse electric (TE) optical signal and a transverse magnetic (TM) optical signal. The polarization splitting region includes a pattern of at least two materials having different refractive indexes. The pattern is shaped to demultiplex the TE and TM optical signals by directing a first power majority of the TE optical signal received at the input port to the second output port via asymmetrical power splitting while directing a second power majority of the TM optical signal received at the input port to the first output port via multipath interferometry.

Classes IPC  ?

  • G02B 6/126 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques du genre à circuit intégré utilisant des effets de polarisation
  • G02B 27/28 - Systèmes ou appareils optiques non prévus dans aucun des groupes , pour polariser
  • G02B 6/12 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques du genre à circuit intégré

52.

TECHNIQUES FOR USING INVERSE DESIGN FOR COMBINED OPTIMIZATION OF OPTICAL AND ELECTRICAL COMPONENTS IN AN OPTOELECTRONIC RECEIVER

      
Numéro d'application US2024047989
Numéro de publication 2025/075814
Statut Délivré - en vigueur
Date de dépôt 2024-09-23
Date de publication 2025-04-10
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Adolf, Brian
  • Wu, Yi-Kuei, Ryan
  • Williamson, Ian

Abrégé

In some embodiments, a computer-implemented method of creating a design for an optoelectronic detector device is provided. A computing system determines an initial design that includes circuit parameters for at least one photodetector region and for conductors that couple the photodetector region to circuitry. The computing system simulates performance of an optically active region to generate a plurality of field values, and simulates performance of the at least one photodetector region based on the plurality of field values to generate charge values. The computing system simulates performance of at least the conductors based on the charge values to generate a performance loss value, and determines a loss metric based on the performance loss value. The computing system backpropagates the loss metric to determine a circuit parameter gradient, and revises the circuit parameters based at least in part on the circuit parameter gradient to create an updated initial design

Classes IPC  ?

  • G06F 30/27 - Optimisation, vérification ou simulation de l’objet conçu utilisant l’apprentissage automatique, p. ex. l’intelligence artificielle, les réseaux neuronaux, les machines à support de vecteur [MSV] ou l’apprentissage d’un modèle
  • G06F 30/23 - Optimisation, vérification ou simulation de l’objet conçu utilisant les méthodes des éléments finis [MEF] ou les méthodes à différences finies [MDF]
  • G06N 3/084 - Rétropropagation, p. ex. suivant l’algorithme du gradient
  • G06F 119/02 - Analyse de fiabilité ou optimisation de fiabilitéAnalyse de défaillance, p. ex. performance dans le pire scénario, analyse du mode de défaillance et de ses effets [FMEA]
  • G06F 119/10 - Analyse du bruit ou optimisation du bruit

53.

Large Language Models for Predictive Modeling and Inverse Design

      
Numéro d'application 18830758
Statut En instance
Date de dépôt 2024-09-11
Date de la première publication 2025-04-10
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Ling, Julia Black
  • Martinez, Alberto Camacho
  • Andre, David
  • Hahn, Christopher

Abrégé

An inverse design system combines a large language model (LLM) with a task-specific optimizer, which includes a search function, a forward model, and a comparator. The LLM adjusts parameters of the optimizer's components in response to a design scenario. Then the optimizer processes the design scenario to produce design candidates. Optionally, the LLM learns from the design candidates in an iterative process. A stochastic predictive modeling system combines an LLM with input distributions and a forward model. The LLM adjusts one or more of the input distributions and/or the forward model in response to a forecast scenario. Then the forward model processes a sampling of the input distributions to produce a forward distribution. Optionally, the LLM informs the sampling process. Optionally, the LLM learns from the forward distribution.

Classes IPC  ?

54.

ASSET-LEVEL VULNERABILITY AND MITIGATION

      
Numéro d'application 18985943
Statut En instance
Date de dépôt 2024-12-18
Date de la première publication 2025-04-10
Propriétaire X Development LLC (USA)
Inventeur(s) Mullet, Benjamin Goddard

Abrégé

Methods, systems, and apparatus for receiving a request for a damage propensity score for a parcel, receiving imaging data for the parcel, wherein the imaging data comprises street-view imaging data of the parcel, extracting, by a machine-learned model including multiple classifiers, characteristics of vulnerability features for the parcel from the imaging data, determining, by the machine-learned model and from the characteristics of the vulnerability features, a damage propensity score for the parcel, and providing a representation of the damage propensity score for display.

Classes IPC  ?

55.

LARGE LANGUAGE MODELS FOR PREDICTIVE MODELING AND INVERSE DESIGN

      
Numéro d'application US2024046325
Numéro de publication 2025/075756
Statut Délivré - en vigueur
Date de dépôt 2024-09-12
Date de publication 2025-04-10
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Ling, Julia, Black
  • Martinez, Alberto, Camacho
  • Andre, David
  • Hahn, Christopher

Abrégé

An inverse design system combines a large language model (LLM) with a task-specific optimizer, which includes a search function, a forward model, and a comparator. The LLM adjusts parameters of the optimizer's components in response to a design scenario. Then the optimizer processes the design scenario to produce design candidates. Optionally, the LLM learns from the design candidates in an iterative process. A stochastic predictive modeling system combines an LLM with input distributions and a forward model. The LLM adjusts one or more of the input distributions and/or the forward model in response to a forecast scenario. Then the forward model processes a sampling of the input distributions to produce a forward distribution. Optionally, the LLM informs the sampling process. Optionally, the LLM learns from the forward distribution.

Classes IPC  ?

  • G06F 30/27 - Optimisation, vérification ou simulation de l’objet conçu utilisant l’apprentissage automatique, p. ex. l’intelligence artificielle, les réseaux neuronaux, les machines à support de vecteur [MSV] ou l’apprentissage d’un modèle
  • G06F 40/30 - Analyse sémantique
  • G06N 20/00 - Apprentissage automatique
  • G06Q 10/04 - Prévision ou optimisation spécialement adaptées à des fins administratives ou de gestion, p. ex. programmation linéaire ou "problème d’optimisation des stocks"

56.

OPTIMIZATION OF HEATERS FOR TUNING PHOTONIC DEVICES

      
Numéro d'application US2024047460
Numéro de publication 2025/075785
Statut Délivré - en vigueur
Date de dépôt 2024-09-19
Date de publication 2025-04-10
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Adolf, Brian
  • Watson, Philip
  • Wu, Yi-Kuei Ryan
  • Williamson, Ian

Abrégé

In some embodiments, a computer-implemented method of creating a design for an optoelectronic device is provided. A computing system determines an initial heater design that includes one or more heater parameters. The computing system determines a temperature gradation by simulating performance of the initial heater design in adjusting an environmental temperature to a nominal temperature. The computing system simulates performance of a nominal optimized design of a dispersive region of the optoelectronic device, given the temperature gradation, to determine a temperature-influenced performance loss value. The computing system determines a heater parameter gradient based on the temperature-influenced performance loss value, and revises the heater parameters based at least in part on the heater parameter gradient to create a revised heater design.

Classes IPC  ?

  • G02B 6/12 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques du genre à circuit intégré
  • G02B 6/287 - Structuration des guides de lumière pour former des éléments optiques par application de chaleur
  • G02B 27/00 - Systèmes ou appareils optiques non prévus dans aucun des groupes ,

57.

APTAMER DESIGN BY REINFORCEMENT LEARNING BASED FINE-TUNING OF GENERATIVE LANGUAGE MODELS

      
Numéro d'application 18375092
Statut En instance
Date de dépôt 2023-09-29
Date de la première publication 2025-04-03
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Deaton, Jon
  • Poplin, Ryan
  • Nagatani, Ray
  • Wynn, Michelle
  • Pai, Anand
  • D'Arcy, Joshua

Abrégé

The present disclosure relates to a closed loop aptamer development system that leverages in vitro experiments and in silico computation and artificial intelligence-based techniques to iteratively improve a process for identifying binders that can bind a molecular target. Particularly, aspects of the present disclosure are directed to obtaining, using an experimental assay, experimental data for a set of aptamers. The experimental data includes multiple pairs of data, each pair of data having: (i) an aptamer sequence for an aptamer from a set of aptamers, and (ii) a measurement for the characteristic of the aptamer with respect to a given target. A reward model is fine-tuned, using the experimental data, to predict a function-approximation metric for the characteristic of each aptamer in the set of aptamers. A decoder model is fine-tuned for generating novel aptamer sequences based on the function-approximation metric generated by the reward model for the novel aptamer sequences.

Classes IPC  ?

  • G16B 15/30 - Ciblage de médicament à l’aide de données structurellesPrévision d’amarrage ou de liaison moléculaire
  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance
  • G16B 40/20 - Analyse de données supervisée

58.

POLARIZATION BEAM SPLITTER USING ASYMMETRIC POWER SPLITTING AND MULTIPATH INTERFEROMETRY

      
Numéro d'application 18375717
Statut En instance
Date de dépôt 2023-10-02
Date de la première publication 2025-04-03
Propriétaire X Development LLC (USA)
Inventeur(s) Wu, Yi-Kuei Ryan

Abrégé

A polarization beam splitter includes an input port, first and second output ports, and a polarization splitting region coupled between the input port and the first and second output ports. The input port is adapted to receive guided optical signals that are polarization multiplexed, including a transverse electric (TE) optical signal and a transverse magnetic (TM) optical signal. The polarization splitting region includes a pattern of at least two materials having different refractive indexes. The pattern is shaped to demultiplex the TE and TM optical signals by directing a first power majority of the TE optical signal received at the input port to the second output port via asymmetrical power splitting while directing a second power majority of the TM optical signal received at the input port to the first output port via multipath interferometry.

Classes IPC  ?

  • G02F 1/01 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur
  • G02B 27/00 - Systèmes ou appareils optiques non prévus dans aucun des groupes ,
  • G02F 1/21 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur par interférence

59.

TECHNIQUES FOR USING INVERSE DESIGN FOR COMBINED OPTIMIZATION OF OPTICAL AND ELECTRICAL COMPONENTS IN AN OPTOELECTRONIC RECEIVER

      
Numéro d'application 18479724
Statut En instance
Date de dépôt 2023-10-02
Date de la première publication 2025-04-03
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Adolf, Brian
  • Wu, Yi-Kuei Ryan
  • Williamson, Ian

Abrégé

In some embodiments, a computer-implemented method of creating a design for an optoelectronic detector device is provided. A computing system determines an initial design that includes circuit parameters for at least one photodetector region and for conductors that couple the photodetector region to circuitry. The computing system simulates performance of an optically active region to generate a plurality of field values, and simulates performance of the at least one photodetector region based on the plurality of field values to generate charge values. The computing system simulates performance of at least the conductors based on the charge values to generate a performance loss value, and determines a loss metric based on the performance loss value. The computing system backpropagates the loss metric to determine a circuit parameter gradient, and revises the circuit parameters based at least in part on the circuit parameter gradient to create an updated initial design.

Classes IPC  ?

  • G06F 30/392 - Conception de plans ou d’agencements, p. ex. partitionnement ou positionnement
  • G06F 119/06 - Analyse de puissance ou optimisation de puissance

60.

OPTIMIZATION OF HEATERS FOR TUNING PHOTONIC DEVICES

      
Numéro d'application 18479731
Statut En instance
Date de dépôt 2023-10-02
Date de la première publication 2025-04-03
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Adolf, Brian
  • Watson, Philip
  • Wu, Yi-Kuei Ryan
  • Williamson, Ian

Abrégé

In some embodiments, a computer-implemented method of creating a design for an optoelectronic device is provided. A computing system determines an initial heater design that includes one or more heater parameters. The computing system determines a temperature gradation by simulating performance of the initial heater design in adjusting an environmental temperature to a nominal temperature. The computing system simulates performance of a nominal optimized design of a dispersive region of the optoelectronic device, given the temperature gradation, to determine a temperature-influenced performance loss value. The computing system determines a heater parameter gradient based on the temperature-influenced performance loss value, and revises the heater parameters based at least in part on the heater parameter gradient to create a revised heater design.

Classes IPC  ?

61.

TEMPORAL BOUNDS OF WILDFIRES

      
Numéro d'application 18787405
Statut En instance
Date de dépôt 2024-07-29
Date de la première publication 2025-03-27
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Cowan, Eliot Julien
  • Cowan, Avery Noam

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a temporal range of a fire. In some implementations, a server obtains a date when a fire occurred within a region. The server obtains satellite imagery of the region from before the date when the fire occurred. The server generates a first statistical distribution from the satellite imagery. The server determines a start date of the fire using the first statistical distribution. The server obtains second satellite imagery of the region from before and after the start date. The server selects a second set of imagery from the second satellite imagery from before the start date. The server generates a second statistical distribution from the second set of imagery. The server determines an end date of the fire using the second statistical distribution. The server provides the start date and the end date for output.

Classes IPC  ?

  • G06T 7/00 - Analyse d'image
  • G06F 16/587 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des informations géographiques ou spatiales, p. ex. la localisation

62.

UNIFIED PLATFORM FOR PLANNING AND OPERATIONS OF AN ELECTRIC POWER GRID

      
Numéro d'application 18884957
Statut En instance
Date de dépôt 2024-09-13
Date de la première publication 2025-03-20
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Wong, Sze Mei Cat
  • Casey, Leo Francis
  • Kumar, Sushant

Abrégé

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for simulation of electrical power grid behaviors. In some instances, a data model associated with an electrical power grid is obtained. The data model stores static data and dynamic data that can be continuously integrated into the data model based on data streams obtained from data sources associated with properties of the electrical power grid. A set of interfaces can be instantiated for querying data based on the data model. The querying is related to data from at least one of a planning analysis modeling domain or an operation analysis modeling domain from the data model related to the electrical power grid. A query associated with a first planning operation in the planning analysis modeling domain is executed. The query defines one or more nodes of the electrical power grid and relates to the planning analysis domain.

Classes IPC  ?

  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • G06F 113/04 - Réseaux de distribution électrique

63.

UNIFIED PLATFORM FOR PLANNING AND OPERATIONS OF AN ELECTRIC POWER GRID

      
Numéro d'application US2024046620
Numéro de publication 2025/059468
Statut Délivré - en vigueur
Date de dépôt 2024-09-13
Date de publication 2025-03-20
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Wong, Sze Mei Cat
  • Casey, Leo Francis
  • Kumar, Sushant

Abrégé

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for simulation of electrical power grid behaviors. In some instances, a data model associated with an electrical power grid is obtained. The data model stores static data and dynamic data that can be continuously integrated into the data model based on data streams obtained from data sources associated with properties of the electrical power grid. A set of interfaces can be instantiated for querying data based on the data model. The querying is related to data from at least one of a planning analysis modeling domain or an operation analysis modeling domain from the data model related to the electrical power grid. A query associated with a first planning operation in the planning analysis modeling domain is executed. The query defines one or more nodes of the electrical power grid and relates to the planning analysis domain.

Classes IPC  ?

  • G06Q 10/04 - Prévision ou optimisation spécialement adaptées à des fins administratives ou de gestion, p. ex. programmation linéaire ou "problème d’optimisation des stocks"
  • G06Q 50/06 - Fourniture d’énergie ou d’eau
  • H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs

64.

EFFICIENT AND ACCURATE SUBPIXEL SMOOTHING FOR FDTD SIMULATION

      
Numéro d'application 18463983
Statut En instance
Date de dépôt 2023-09-08
Date de la première publication 2025-03-13
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Adolf, Brian
  • Chandrasekhar, Aaditya

Abrégé

In some embodiments, a computer-implemented method for simulating performance of a physical device is provided. Calculating a current time step of an operational simulation of the physical device includes, for each voxel of a simulated environment, concurrently with loading a set of field values for the voxel for a previous time step from a main memory, determining permittivity values for the voxel using feature parameter values. The computing system calculates a set of field values for the voxel for the current time step based on the set of field values for the voxel for the previous time step and the permittivity values.

Classes IPC  ?

  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu

65.

FAST ONE-SHOT OPEN VOCABULARY IMAGE-CONDITIONED DETECTION AND SEARCH METHOD FOR UTILITY ASSETS

      
Numéro d'application 18242739
Statut En instance
Date de dépôt 2023-09-06
Date de la première publication 2025-03-06
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Wang, Xin-Jing
  • Ha, Anthony

Abrégé

This disclosure describes a system, method, and non-transitory computer-readable medium for image search-based object detection of utility assets in image databases. The method includes receiving an input image of a utility asset and a query bounding box representing an image-based object query. Bounding boxes of objects represented in the input image are generated based on the input image and the query bounding box, in which anchoring boxes corresponding to object classifications are identified from the bounding boxes. A textual label is determined for a selected subset of anchoring boxes. An image embedding representing the region is encoded, and image tokens are generated based on the encoded image embedding. Output images of other utility assets relevant to the image-based object query are identified from images in an image database, based on at least one of (i) the encoded image embedding, (ii) the image tokens, or (iii) the textual label. The output images are provided for output.

Classes IPC  ?

  • G06F 16/58 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement
  • G06F 16/535 - Filtrage basé sur des données supplémentaires, p. ex. sur des profils d'utilisateurs ou de groupes
  • G06T 7/11 - Découpage basé sur les zones
  • G06V 20/70 - Étiquetage du contenu de scène, p. ex. en tirant des représentations syntaxiques ou sémantiques

66.

GENERATION AND IMPLEMENTATION OF GEOSPATIAL WORKFLOWS

      
Numéro d'application 18816539
Statut En instance
Date de dépôt 2024-08-27
Date de la première publication 2025-03-06
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Gupta, Ananya
  • Murphy, Gearoid
  • Goncharuk, Artem
  • Gupta, Akshina
  • Zhang, Haoyu
  • Walker, Adrian

Abrégé

Implementations are described herein for automatically generating multimodal geospatial workflows for accomplishing geospatial tasks. In various implementations, a natural language request may be processed based on generative model(s) such as LLM(s) to generate workflow output tokens that identify high-level actions for completing a geospatial task conveyed in the natural language request. First data indicative of the high-level actions may be processed using one or more of the generative models to generate dataset output tokens that identify responsive dataset(s) that likely contain data responsive to the geospatial task. Second data indicative of both the high-level actions and the responsive dataset(s) may be processed based on one or more of the generative models to generate data manipulation output tokens that identify data manipulation instructions for assembling data from the responsive dataset(s) into a response that fulfills the geospatial task.

Classes IPC  ?

  • G06F 16/387 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des informations géographiques ou spatiales, p. ex. la localisation
  • G06F 40/284 - Analyse lexicale, p. ex. segmentation en unités ou cooccurrence

67.

GENERATION AND IMPLEMENTATION OF GEOSPATIAL WORKFLOWS

      
Numéro d'application US2024043667
Numéro de publication 2025/049321
Statut Délivré - en vigueur
Date de dépôt 2024-08-23
Date de publication 2025-03-06
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Gupta, Ananya
  • Murphy, Gearoid
  • Goncharuk, Artem
  • Gupta, Akshina
  • Zhang, Haoyu
  • Walker, Adrian

Abrégé

Implementations are described herein for automatically generating multimodal geospatial workflows for accomplishing geospatial tasks. In various implementations, a natural language request may be processed based on generative model(s) such as LLM(s) to generate workflow output tokens that identify high-level actions for completing a geospatial task conveyed in the natural language request. First data indicative of the high-level actions may be processed using one or more of the generative models to generate dataset output tokens that identify responsive dataset(s) that likely contain data responsive to the geospatial task. Second data indicative of both the high-level actions and the responsive dataset(s) may be processed based on one or more of the generative models to generate data manipulation output tokens that identify data manipulation instructions for assembling data from the responsive dataset(s) into a response that fulfills the geospatial task.

Classes IPC  ?

  • G06F 16/9032 - Formulation de requêtes
  • G06F 16/909 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des informations géographiques ou spatiales, p. ex. la localisation

68.

AGGREGATING DISPARATE DATA REPRESENTATIVE OF AN ADVERSE EVENT FOR MACHINE LEARNING

      
Numéro d'application US2024043869
Numéro de publication 2025/049394
Statut Délivré - en vigueur
Date de dépôt 2024-08-26
Date de publication 2025-03-06
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Gupta, Akshina
  • Cowan, Eliot Julien

Abrégé

Methods, systems, and apparatus for accepting, by a training system, a plurality of sets of data elements, wherein a first set of data elements describe a first property of a first adverse event, a second set of data elements describe the first property of a second adverse event, and a third set of data elements describe the first property of a third adverse event, determining, by the training system, that the first adverse event and the second adverse event are associated with a first adverse event complex, and in response: aggregating at least a subset of the first set of data elements and at least a subset of the second set of data elements into an aggregate set of data elements describing the first property for the first adverse event complex, and training, by the training system, a ML model.

Classes IPC  ?

  • G06Q 10/04 - Prévision ou optimisation spécialement adaptées à des fins administratives ou de gestion, p. ex. programmation linéaire ou "problème d’optimisation des stocks"
  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 20/00 - Apprentissage automatique
  • G06Q 10/0635 - Analyse des risques liés aux activités d’entreprises ou d’organisations

69.

A-LIFE

      
Numéro d'application 1841989
Statut Enregistrée
Date de dépôt 2024-11-26
Date d'enregistrement 2024-11-26
Propriétaire X Development LLC (USA)
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Scientific research and development; research and development of technology in the fields of biology, synthetic biology, pharmaceutical preparations, biotechnology, living systems, renewable materials, chemicals, organisms, and bioprocesses; research, development and engineering services in the fields of biology, synthetic biology, pharmaceutical preparations, biotechnology, living systems, renewable materials, chemicals, organisms, and bioprocesses; design, engineering, research, development and testing services in the fields of biology, synthetic biology, pharmaceutical preparations, biotechnology, living systems, renewable materials, chemicals, organisms, and bioprocesses; custom synthesis in the nature of genetic engineering of DNA, biological organisms, cells, viruses and special purpose cells for scientific, engineering, research, medical, agricultural, food, chemical, energy, industrial, and manufacturing use; consulting services in the fields of research in biology, synthetic biology, pharmaceutical preparations, biotechnology, living systems, renewable materials, chemicals, organisms, and bioprocesses; biotechnology research; biological research; design of computer-simulated models; computer modeling services in the fields of biology, synthetic biology, pharmaceutical preparations, biotechnology, living systems, renewable materials, chemicals, organisms, and bioprocesses; providing online non-downloadable proprietary software to evaluate, analyze and collect data for data automation and collection purposes in the fields of scientific research and engineering; providing temporary use of on-line non-downloadable software development tools using artificial intelligence (AI), machine learning, and deep learning for research, modeling, data collection, data ingestion, data storage, and simulations in the fields of biology, synthetic biology, pharmaceutical preparations, biotechnology, living systems, renewable materials, chemicals, organisms, and bioprocesses; computer software platforms using artificial intelligence (AI), machine learning, and deep learning for research, modeling, data collection, data ingestion, data storage, and simulations in the fields of biology, synthetic biology, pharmaceutical preparations, biotechnology, living systems, renewable materials, chemicals, organisms, and bioprocesses.

70.

PRODUCING CARBON DIOXIDE WITH WASTE HEAT

      
Numéro d'application 18948550
Statut En instance
Date de dépôt 2024-11-15
Date de la première publication 2025-02-27
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Gilroysmith, Bryan Christopher
  • Gagne, Jacques
  • Nelson, Robert
  • Malone, Christopher Gregory

Abrégé

Techniques for providing carbon dioxide include generating thermal energy, an exhaust fluid, and electrical power from a power plant; providing the exhaust fluid and the generated electrical power to an exhaust fluid scrubbing system to separate components of the exhaust fluid; capturing heat from a source of heat of an industrial process in a heating fluid; transferring the heat of the industrial process captured in the heating fluid to a carbon dioxide source material of a direct air capture (DAC) system; providing the generated electrical power from the power plant to the DAC system; providing the thermal energy from the power plant to the DAC system; and separating, with the transferred portion of the heat of the industrial process and the provided thermal energy, carbon dioxide from the carbon dioxide source material of the DAC system.

Classes IPC  ?

  • C01B 32/50 - Anhydride carbonique
  • B01D 53/62 - Oxydes de carbone
  • F25J 3/02 - Procédés ou appareils pour séparer les constituants des mélanges gazeux impliquant l'emploi d'une liquéfaction ou d'une solidification par rectification, c.-à-d. par échange continuel de chaleur et de matière entre un courant de vapeur et un courant de liquide

71.

TAARA LIGHTBRIDGE

      
Numéro d'application 019146860
Statut Enregistrée
Date de dépôt 2025-02-24
Date d'enregistrement 2025-06-18
Propriétaire X Development LLC (USA)
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 38 - Services de télécommunications
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Telecommunication exchangers; telecommunication cables; telecommunication transmitters; electric capacitators for telecommunication apparatus; broadband wireless equipment, namely, telecommunications base station equipment for cellular and fixed networking and communications applications; telecommunications hardware and recorded software for monitoring and alerting remote sensor status via the Internet sold as a unit; lasers for non-medical use; laser equipment for non-medical purposes; electronic and optical communications instruments and components, namely, optical transmitters, optical receivers, communication link testers for testing communication links, digital transmitters, optical transceivers, and optical data links; telecommunications equipment, namely, free-space optics transmission systems; downloadable computer software for providing internet and broadband access. Telecommunication services, namely, providing internet access, fiber optic network services, gateway services, routing and junction services, and telecommunication consultation; providing telecommunications connections to the Internet or databases; telecommunication services, namely, providing internet access via free-space optics transmission systems. Computer technology consulting in the fields of information technology relating to computer network design, computer programming, and global communication computer network design; design for others in the fields of information technology, computer programming, telecommunications and global computer networks; installation and maintenance of Internet access software; software as a service (SAAS) services featuring software for providing internet and broadband access.

72.

Miscellaneous Design

      
Numéro d'application 019146831
Statut Enregistrée
Date de dépôt 2025-02-24
Date d'enregistrement 2025-06-13
Propriétaire X Development LLC (USA)
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 38 - Services de télécommunications
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Telecommunication exchangers; telecommunication cables; telecommunication transmitters; electric capacitators for telecommunication apparatus; broadband wireless equipment, namely, telecommunications base station equipment for cellular and fixed networking and communications applications; telecommunications hardware and recorded software for monitoring and alerting remote sensor status via the Internet sold as a unit; lasers for non-medical use; laser equipment for non-medical purposes; electronic and optical communications instruments and components, namely, optical transmitters, optical receivers, communication link testers for testing communication links, digital transmitters, optical transceivers, and optical data links; telecommunications equipment, namely, free-space optics transmission systems; downloadable computer software for providing internet and broadband access. Telecommunication services, namely, providing internet access, fiber optic network services, gateway services, routing and junction services, and telecommunication consultation; providing telecommunications connections to the Internet or databases; telecommunication services, namely, providing internet access via free-space optics transmission systems. Computer technology consulting in the fields of information technology relating to computer network design, computer programming, and global communication computer network design; design for others in the fields of information technology, computer programming, telecommunications and global computer networks; installation and maintenance of Internet access software; software as a service (SAAS) services featuring software for providing internet and broadband access.

73.

X

      
Numéro de série 99053733
Statut En instance
Date de dépôt 2025-02-24
Propriétaire X Development LLC ()
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Research and development of new products; Providing a website that features information on research and product development; Providing information in the fields of technology and product design and development; Providing a website featuring information on the use of technology to solve international problems; Design and testing for new product development; New company incubator services; Scientific and technological research and development services; Research and development in the field of computer software and hardware; Research and development in the field of artificial intelligence and machine learning; Development of new technology for others in the field of artificial intelligence and machine learning; Development of new technology for others in the field of environmental sustainability, automation, supply chain logistics, communications and Internet access, utility access and monitoring, and bioengineering.

74.

IMAGING A SUBTERRANEAN FORMATION THROUGH ACOUSTIC ENERGY DELIVERED THROUGH A LIQUID

      
Numéro d'application 18233584
Statut En instance
Date de dépôt 2023-08-14
Date de la première publication 2025-02-20
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Miller, Alex S.
  • Clapp, Robert
  • Raghavan, Aparajit
  • Goncharuk, Artem
  • Smith, Kevin Forsythe

Abrégé

Techniques for imaging a subterranean formation include activating an acoustic energy source that is at least partially submerged in a volume of liquid on or under a terranean surface; based on the activating, producing acoustic wave energy that travels through the volume of liquid and to a subterranean zone below the terranean surface; receiving, at one or more acoustic receivers, reflected acoustic wave energy from the subterranean zone; and generating, with a control system, data associated with the subterranean zone based on the reflected acoustic wave energy.

Classes IPC  ?

  • G01V 1/38 - SéismologieProspection ou détection sismique ou acoustique spécialement adaptées aux zones recouvertes d'eau
  • G01V 1/104 - Production d'énergie sismique en utilisant des charges explosives

75.

INFRARED AND VISIBLE IMAGING SYSTEM FOR MONITORING EQUIPMENT

      
Numéro d'application 18924221
Statut En instance
Date de dépôt 2024-10-23
Date de la première publication 2025-02-06
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Casey, Leo Francis
  • Light, Peter
  • Atwater, Joel Fraser
  • Winston, Crystal Elayna
  • Roosta, Mehrdad
  • Xin, Siyuan
  • Mahadeswaraswamy, Chetan

Abrégé

Methods, systems, and apparatus for an infrared and visible imaging system. In some implementations, Image data from a visible-light camera is obtained. A position of a device is determined based at least in part on the image data from the visible-light camera. An infrared camera is positioned so that the device is in a field of view of the infrared camera, with the field of view of the infrared camera being narrower than the field of view of the visible-light camera. Infrared image data from the infrared camera that includes regions representing the device is obtained. Infrared image data from the infrared camera that represents the device is recorded. Position data is also recorded that indicates the location and pose of the infrared camera when the infrared image data is acquired by the infrared camera.

Classes IPC  ?

  • H04N 23/661 - Transmission des signaux de commande de la caméra par le biais de réseaux, p. ex. la commande via Internet
  • B60R 11/04 - Montage des caméras pour fonctionner pendant la marcheDisposition de leur commande par rapport au véhicule
  • G01C 19/56 - Dispositifs sensibles à la rotation utilisant des masses vibrantes, p. ex. capteurs vibratoires de vitesse angulaire basés sur les forces de Coriolis
  • G01J 5/00 - Pyrométrie des radiations, p. ex. thermométrie infrarouge ou optique
  • G01J 5/02 - Détails structurels
  • G01J 5/07 - Dispositions pour ajuster l’angle solide des radiations captées, p. ex. ajustement ou orientation du champ de vue, suivi de la position ou encodage de la position angulaire
  • G01S 19/13 - Récepteurs
  • G06T 7/70 - Détermination de la position ou de l'orientation des objets ou des caméras
  • H04N 5/33 - Transformation des rayonnements infrarouges
  • H04N 7/18 - Systèmes de télévision en circuit fermé [CCTV], c.-à-d. systèmes dans lesquels le signal vidéo n'est pas diffusé

76.

USING SIGNED DISTANCE FUNCTIONS TO EVALUATE FABRICABILITY OF PHOTONIC DEVICES DURING AN INVERSE DESIGN PROCESS

      
Numéro d'application 18357846
Statut En instance
Date de dépôt 2023-07-24
Date de la première publication 2025-01-30
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Chandrasekhar, Aaditya
  • Williamson, Ian

Abrégé

In some embodiments, a computer-implemented method for designing a physical device is provided. A computing system generates an initial design based on a design specification. The initial design includes a list of features, and each feature of the list of features represents a convex shape. The computing system determines a set of signed distance fields that includes a signed distance field for each feature of the list of features, and determines a set of structural parameters using the set of signed distance fields. The computing system simulates performance of the initial design using the set of structural parameters to determine a performance loss value. The computing system determines at least one fabrication loss value using the set of signed distance fields. The computing system updates at least one feature of the list of features using the at least one fabrication loss value and a gradient of the performance loss value.

Classes IPC  ?

  • G06F 30/39 - Conception de circuits au niveau physique

77.

REDUCING GREENHOUSE GASES THROUGH EVALUATION AND DEPLOYMENT OF WILDFIRE MITIGATION ACTIONS USING MACHINE LEARNING

      
Numéro d'application 18358695
Statut En instance
Date de dépôt 2023-07-25
Date de la première publication 2025-01-30
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Gupta, Akshina
  • Cowan, Eliot Julien

Abrégé

Methods, systems, and apparatus for using one or more machine learning (ML) models to mitigate effects of climate change by evaluating impact of wildfire mitigation actions (WMAs) for selective deployment of WMAs.

Classes IPC  ?

  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion

78.

TRAINING AND APPLICATION OF BOTTLENECK MODELS AND EMBEDDINGS

      
Numéro d'application US2024038801
Numéro de publication 2025/024298
Statut Délivré - en vigueur
Date de dépôt 2024-07-19
Date de publication 2025-01-30
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Singh, Rishabh
  • Andre, David
  • Honke, Garrett Raymond
  • Shah, Falak
  • Vyas, Nisarg
  • Parmar, Jayendra
  • Rosen, Brian M.
  • Trivedi, Shaili

Abrégé

Disclosed implementations relate to adding "bottleneck" models to machine learning pipelines that already apply domain models to translate and/or transfer representations of high-level semantic concepts between domains. In various implementations, an initial representation in a first domain of a transition from an initial state of an environment to a goal state of the environment may be processed based on a pre-trained first domain encoder to generate a first embedding that semantically represents the transition. The first embedding may be processed based on one or more bottleneck models to generate a second embedding with fewer dimensions than the first embedding. In various implementations, the second embedding may be processed in various ways to train one or more of the bottleneck model(s) based on various different auxiliary loss functions.

Classes IPC  ?

79.

FILLING GAPS IN ELECTRIC GRID MODELS

      
Numéro d'application 18759165
Statut En instance
Date de dépôt 2024-06-28
Date de la première publication 2025-01-30
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Stahlfeld, Phillip Ellsworth
  • Gupta, Ananya

Abrégé

Methods, systems, and apparatus, including computer programs encoded on a storage device, for filling gaps in electric grid models are enclosed. A method includes obtaining vector data representing first portions of paths of electric grid wires over a geographic region; converting the vector data to first raster image data that depicts an overhead view of the electric grid wires including a first set of line segments representing the first portions of the paths; processing the first raster image data using a gap filling model; obtaining, as output from the gap filling model, second raster image data including a second set of line segments corresponding to gaps included in the input raster image data and representing second portions of paths of the electric grid wires; and converting the second raster image data to vector data representing the first portions and the second portions of paths of the electric grid wires.

Classes IPC  ?

  • G06T 11/20 - Traçage à partir d'éléments de base, p. ex. de lignes ou de cercles
  • G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
  • G06V 20/10 - Scènes terrestres
  • G06V 20/17 - Scènes terrestres transmises par des avions ou des drones

80.

DETECTING ELECTRICAL GRID ASSETS

      
Numéro d'application 18226716
Statut En instance
Date de dépôt 2023-07-26
Date de la première publication 2025-01-30
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Wang, Xin-Jing
  • Ha, Anthony
  • Wong, Sze Mei Cat
  • Nahouraii, Reuben
  • Pope, Arthur Robert
  • Ravi, Om Prakash

Abrégé

Methods, systems, and apparatus, including computer programs encoded on a storage device, for mapping an electrical grid are disclosed. A method includes sampling multiple locations within a geographic region, executing a detection process for each location, the detection process including applying the set of images for the location as input to a machine learning (ML) model that is trained to identify electrical grid assets depicted within images taken from a combination of different perspectives and obtaining an output from the machine learning model that indicates whether a same electrical grid asset is identified in each of the images of the location. In response to an ML output that indicates a positive identification of the same electrical grid asset being depicted in a particular set of images of a particular location, the method further includes: selecting a number of sublocations within the region, and executing the detection process for each sublocation.

Classes IPC  ?

  • G06V 20/10 - Scènes terrestres
  • G06T 7/70 - Détermination de la position ou de l'orientation des objets ou des caméras
  • G06V 10/774 - Génération d'ensembles de motifs de formationTraitement des caractéristiques d’images ou de vidéos dans les espaces de caractéristiquesDispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p. ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]Séparation aveugle de source méthodes de Bootstrap, p. ex. "bagging” ou “boosting”

81.

REDUCING GREENHOUSE GASES THROUGH EVALUATION AND DEPLOYMENT OF WILDFIRE MITIGATION ACTIONS USING MACHINE LEARNING

      
Numéro d'application US2024039018
Numéro de publication 2025/024384
Statut Délivré - en vigueur
Date de dépôt 2024-07-22
Date de publication 2025-01-30
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Gupta, Akshina
  • Cowan, Eliot Julien

Abrégé

Methods, systems, and apparatus for using one or more machine learning (ML) models to mitigate effects of climate change by evaluating impact of wildfire mitigation actions (WMAs) for selective deployment of WMAs.

Classes IPC  ?

  • G06Q 10/0631 - Planification, affectation, distribution ou ordonnancement de ressources d’entreprises ou d’organisations

82.

DETECTING ELECTRICAL GRID ASSETS

      
Numéro d'application US2024039572
Numéro de publication 2025/024677
Statut Délivré - en vigueur
Date de dépôt 2024-07-25
Date de publication 2025-01-30
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Wang, Xin-Jing
  • Ha, Anthony
  • Wong, Sze Mei Cat
  • Nahouraii, Reuben
  • Pope, Arthur Robert
  • Ravi, Om Prakash

Abrégé

Methods, systems, and apparatus, including computer programs encoded on a storage device, for mapping an electrical grid are disclosed. A method includes sampling multiple locations within a geographic region, executing a detection process for each location, the detection process including applying the set of images for the location as input to a machine learning (ML) model that is trained to identify electrical grid assets depicted within images taken from a combination of different perspectives and obtaining an output from the machine learning model that indicates whether a same electrical grid asset is identified in each of the images of the location. In response to an ML output that indicates a positive identification of the same electrical grid asset being depicted in a particular set of images of a particular location, the method further includes: selecting a number of sublocations within the region, and executing the detection process for each sublocation.

Classes IPC  ?

  • G06F 18/214 - Génération de motifs d'entraînementProcédés de Bootstrapping, p. ex. ”bagging” ou ”boosting”
  • G06V 10/774 - Génération d'ensembles de motifs de formationTraitement des caractéristiques d’images ou de vidéos dans les espaces de caractéristiquesDispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p. ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]Séparation aveugle de source méthodes de Bootstrap, p. ex. "bagging” ou “boosting”
  • G06V 20/10 - Scènes terrestres

83.

TRAINING AND APPLICATION OF BOTTLENECK MODELS AND EMBEDDINGS

      
Numéro d'application 18224889
Statut En instance
Date de dépôt 2023-07-21
Date de la première publication 2025-01-23
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Singh, Rishabh
  • Andre, David
  • Honke, Garrett Raymond
  • Shah, Falak
  • Vyas, Nisarg
  • Parmar, Jayendra
  • Rosen, Brian M.
  • Trivedi, Shaili

Abrégé

Disclosed implementations relate to adding “bottleneck” models to machine learning pipelines that already apply domain models to translate and/or transfer representations of high-level semantic concepts between domains. In various implementations, an initial representation in a first domain of a transition from an initial state of an environment to a goal state of the environment may be processed based on a pre-trained first domain encoder to generate a first embedding that semantically represents the transition. The first embedding may be processed based on one or more bottleneck models to generate a second embedding with fewer dimensions than the first embedding. In various implementations, the second embedding may be processed in various ways to train one or more of the bottleneck model(s) based on various different auxiliary loss functions.

Classes IPC  ?

84.

GREENHOUSE GAS MITIGATION INFRASTRUCTURE

      
Numéro d'application 18776107
Statut En instance
Date de dépôt 2024-07-17
Date de la première publication 2025-01-23
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Bronevetsky, Grigory
  • Pradhan, Salil Vijaykumar
  • Stivoric, John Michael
  • Williams, Dominic Deshawn
  • Boisseree, Kaitlin Marie
  • Singal, Dhruv
  • Chona, Ashish Jagmohan

Abrégé

A method includes generating a greenhouse gas (GHG) mitigation credit including identifying a set of tasks to be completed by a respective set of first entities that collectively generate a GHG mitigation having a set of GHG mitigation parameters; receiving, from a second entity, a request for a GHG credit acquisition for the GHG mitigation credit; in response to receiving the request, executing the request for the GHG credit acquisition and providing the GHG mitigation credit to the second entity; and providing, to at least one of the set of first entities, instructions to cause the at least one of the set of first entities to execute a respective task of the set of tasks.

Classes IPC  ?

  • G06Q 10/0637 - Gestion ou analyse stratégiques, p. ex. définition d’un objectif ou d’une cible pour une organisationPlanification des actions en fonction des objectifsAnalyse ou évaluation de l’efficacité des objectifs

85.

SYSTEMS AND METHODS FOR GREENHOUSE GAS MITIGATION

      
Numéro d'application 18776120
Statut En instance
Date de dépôt 2024-07-17
Date de la première publication 2025-01-23
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Bronevetsky, Grigory
  • Pradhan, Salil Vijaykumar
  • Stivoric, John Michael
  • Williams, Dominic Deshawn
  • Boisseree, Kaitlyn
  • Singal, Dhruv
  • Chona, Ashish Jagmohan

Abrégé

A method includes: generating a set of tasks; determining, by a machine learning model and based on multiple data types from multiple sources, that an overall risk score exceeds a first failure threshold due to a risk score of a task exceeding a second threshold; selecting a replacement task for the task, the selecting including: receiving, replacement candidates, each replacement candidate including a candidate offset potential and one or more candidate failure mechanisms; assigning, by the machine learning model and to each of the replacement candidates, a replacement score for the replacement candidate based on a failure correlation of the replacement candidate with respect to each other sets of the set of tasks; ranking the replacement candidates based on the replacement scores; and selecting, based on the ranking, the replacement task; and generating, an updated set of tasks including the replacement task.

Classes IPC  ?

  • G06Q 10/0635 - Analyse des risques liés aux activités d’entreprises ou d’organisations
  • G06Q 10/0631 - Planification, affectation, distribution ou ordonnancement de ressources d’entreprises ou d’organisations

86.

ARCHITECTURE FOR INCREASED POWER CONVERSION IN A POWER CONVERSION OVER LASER SYSTEM

      
Numéro d'application US2024037551
Numéro de publication 2025/019257
Statut Délivré - en vigueur
Date de dépôt 2024-07-11
Date de publication 2025-01-23
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Palese, Stephen
  • Larco Gomez, Luis, Angelo
  • Goncalves De Oliveira Filho, Mauro

Abrégé

Aspects of the disclosure provide a method of converting power received in one or more optical power beams to electrical power. The method comprising receiving, at an OP A (114, 418, 504) of a first optical terminal (102, 402), a first optical power beam from a remote optical terminal (122, 412); determining, by one or more processors (104, 424, 516, 516b, 516c, 516e), a first distribution of the received first optical power beam across a plurality of cells (510), wherein the plurality of cells (510) are configured to convert power from the from optical power beams to electrical power, and the first distribution is determined based on an initial conversion capability of each of the plurality of cells (510); distributing, by an optical switch matrix (508), power from the first optical power beam across the plurality of cells (510) based on the determined first distribution; and converting, by the plurality of cells (510), at least a portion of the first optical power beam to electrical power.

Classes IPC  ?

  • H02J 50/30 - Circuits ou systèmes pour l'alimentation ou la distribution sans fil d'énergie électrique utilisant de la lumière, p. ex. des lasers
  • H02J 50/40 - Circuits ou systèmes pour l'alimentation ou la distribution sans fil d'énergie électrique utilisant plusieurs dispositifs de transmission ou de réception
  • H04B 10/80 - Aspects optiques concernant l’utilisation de la transmission optique pour des applications spécifiques non prévues dans les groupes , p. ex. alimentation par faisceau optique ou transmission optique dans l’eau

87.

SYSTEMS AND METHODS FOR GREENHOUSE GAS MITIGATION

      
Numéro d'application US2024038359
Numéro de publication 2025/019572
Statut Délivré - en vigueur
Date de dépôt 2024-07-17
Date de publication 2025-01-23
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Bronevetsky, Grigory
  • Pradhan, Salil Vijaykumar
  • Stivoric, John Michael
  • Williams, Dominic Deshawn
  • Boisseree, Kaitlyn
  • Singal, Dhruv
  • Chona, Ashish Jagmohan

Abrégé

A method includes: generating a set of tasks; determining, by a machine learning model and based on multiple data types from multiple sources, that an overall risk score exceeds a first failure threshold due to a risk score of a task exceeding a second threshold; selecting a replacement task for the task, the selecting including: receiving, replacement candidates, each replacement candidate including a candidate offset potential and one or more candidate failure mechanisms; assigning, by the machine learning model and to each of the replacement candidates, a replacement score for the replacement candidate based on a failure correlation of the replacement candidate with respect to each other sets of the set of tasks; ranking the replacement candidates based on the replacement scores; and selecting, based on the ranking, the replacement task; and generating, an updated set of tasks including the replacement task.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G06Q 10/0631 - Planification, affectation, distribution ou ordonnancement de ressources d’entreprises ou d’organisations
  • G06Q 10/0635 - Analyse des risques liés aux activités d’entreprises ou d’organisations
  • G06Q 10/0637 - Gestion ou analyse stratégiques, p. ex. définition d’un objectif ou d’une cible pour une organisationPlanification des actions en fonction des objectifsAnalyse ou évaluation de l’efficacité des objectifs

88.

GREENHOUSE GAS MITIGATION INFRASTRUCTURE

      
Numéro d'application US2024038367
Numéro de publication 2025/019578
Statut Délivré - en vigueur
Date de dépôt 2024-07-17
Date de publication 2025-01-23
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Bronevetsky, Grigory
  • Pradhan, Salil Vijaykumar
  • Stivoric, John Michael
  • Williams, Dominic Deshawn
  • Boisseree, Kaitlyn
  • Singal, Dhruv
  • Chona, Ashish Jagmohan

Abrégé

A method includes: generating a greenhouse gas (GHG) mitigation credit including identifying a set of tasks to be completed by a respective set of first entities that collectively generate a GHG mitigation having a set of GHG mitigation parameters; receiving, from a second entity, a request for a GHG credit acquisition for the GHG mitigation credit; in response to receiving the request, executing the request for the GHG credit acquisition and providing the GHG mitigation credit to the second entity; and providing, to at least one of the set of first entities, instructions to cause the at least one of the set of first entities to execute a respective task of the set of tasks.

Classes IPC  ?

  • G01N 33/00 - Recherche ou analyse des matériaux par des méthodes spécifiques non couvertes par les groupes
  • G06Q 10/0635 - Analyse des risques liés aux activités d’entreprises ou d’organisations
  • G06Q 10/0637 - Gestion ou analyse stratégiques, p. ex. définition d’un objectif ou d’une cible pour une organisationPlanification des actions en fonction des objectifsAnalyse ou évaluation de l’efficacité des objectifs
  • G06Q 30/018 - Certification d’entreprises ou de produits
  • G06Q 30/0214 - Systèmes de récompense de recommandation
  • G06Q 40/04 - TransactionsOpérations boursières, p. ex. actions, marchandises, produits dérivés ou change de devises

89.

OPTIMIZING ENERGY EFFICIENCY FOR ORE SMELTING IN BLAST FURNACES BY SURFACE SCANNING

      
Numéro d'application US2024036866
Numéro de publication 2025/014794
Statut Délivré - en vigueur
Date de dépôt 2024-07-05
Date de publication 2025-01-16
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Yan, Weishi
  • Papania-Davis, Antonio Raymond

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for optimizing energy efficiency for ore smelting in blast furnaces. One of the methods is a pelletization process control method that includes obtaining images of pelletized particles; determining one or more characteristics of the pelletized particles; in response to determining that at least one or more of the characteristics is outside of a pelletization parameter, determining an adjustment to a control parameter of the pelletization system; and sending one or more signals to adjust the control parameter of the pelletization system. Another method is an iron ore smelting method that includes determining quantities of reactants to be added to the blast furnace with the pelletized particles in the stream of pelletized particles; and sending one or more signals that cause the controller to add the reactants of to the blast furnace according to the determined quantities.

Classes IPC  ?

  • C21B 5/00 - Fabrication de la fonte brute dans les hauts fourneaux
  • C21B 7/24 - Barres d'essai ou autres dispositifs de contrôle
  • C22B 1/24 - AgglutinationBriquetage

90.

PLANNING FOR AGENT CONTROL USING RESTART-AUGMENTED LOOK-AHEAD SEARCH

      
Numéro d'application 18887957
Statut En instance
Date de dépôt 2024-09-17
Date de la première publication 2025-01-09
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s) Ginsberg, Matthew L.

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for selecting, from a set of actions, actions to be performed by an agent interacting with an environment to cause the agent to perform a task. One of the methods includes receiving a current observation characterizing a current environment state of the environment, selecting an action to be performed by the agent in response to the current observation by performing multiple iterations of outer look ahead search, wherein performing the multiple iterations of outer look ahead search comprises, in each outer look ahead search iteration: determining a proper subset of the possible future states of the environment; determining that one or more inner look ahead search commencement criteria are satisfied; and in response, performing an inner look ahead search of the proper subset of the possible future states of the environment.

Classes IPC  ?

  • G06N 5/01 - Techniques de recherche dynamiqueHeuristiquesArbres dynamiquesSéparation et évaluation

91.

METHODS OF REMEDIATING WASTE AND SYSTEMS THEREOF

      
Numéro d'application US2024036770
Numéro de publication 2025/010355
Statut Délivré - en vigueur
Date de dépôt 2024-07-03
Date de publication 2025-01-09
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Guo, Jinyu
  • Jin, Shijian
  • Papania-Davis, Antonio Raymond

Abrégé

Provided herein are methods of reducing the chemical content such as metal, sulfur, phosphorus, and/or organic content of waste. The methods and systems include contacting waste with an acid or base to neutralize the waste.

Classes IPC  ?

  • C02F 1/461 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par des procédés électrochimiques par électrolyse
  • C02F 1/469 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par des procédés électrochimiques par séparation électrochimique, p. ex. par électro-osmose, électrodialyse, électrophorèse
  • C02F 1/66 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par neutralisationAjustage du pH
  • C02F 101/10 - Composés inorganiques
  • C02F 101/20 - Métaux lourds ou leurs composés
  • C02F 101/22 - Chrome ou composés du chrome, p. ex. chromates
  • C02F 101/34 - Composés organiques contenant de l'oxygène
  • C02F 103/08 - Eau de mer, p. ex. pour le dessalement
  • C02F 103/10 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant de carrières ou d'activités minières
  • C02F 103/16 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant de procédés métallurgiques, c.-à-d. de la production, de la purification ou du traitement de métaux, p. ex. déchets de procédés électrolytiques
  • C02F 103/18 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant de l'épuration des effluents gazeux par voie humide

92.

MULTI-MODAL ARTIFICIAL INTELLIGENCE PLATFORM FOR BUILDING CONSTRUCTION

      
Numéro d'application US2024035966
Numéro de publication 2025/006843
Statut Délivré - en vigueur
Date de dépôt 2024-06-28
Date de publication 2025-01-02
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Connaughton, Spencer James
  • Walker, Adrian James

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer-storage media, for a multi-modal artificial intelligence platform for building construction. The multi-model artificial intelligence platform includes various engines that perform various computer-implemented methods. The various engines include a site selector artificial intelligence (AI) engine, a geospatial database, a site compliance analyzer AI engine, a masterplan generator AI engine, a compliance analyzer AI engine, an aesthetic generator AI engine, a schematic generator AI engine, a construction plan generator AI engine, a project timeline generator AI engine, a compliance application generator AI engine, and a financial model generator AI engine. Respective AI engines collaboratively cooperate for end-to-end AI-driven building construction design and development.

Classes IPC  ?

  • G06Q 10/06 - Ressources, gestion de tâches, des ressources humaines ou de projetsPlanification d’entreprise ou d’organisationModélisation d’entreprise ou d’organisation
  • G06Q 50/08 - Construction

93.

Geochemical analysis of drainage basins

      
Numéro d'application 18726318
Numéro de brevet 12270649
Statut Délivré - en vigueur
Date de dépôt 2024-03-29
Date de la première publication 2024-12-26
Date d'octroi 2025-04-08
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Goncharuk, Artem
  • Smith, Kevin Forsythe
  • Miller, Alex S.

Abrégé

Techniques for determining a mineralogy of a portion of a drainage basin include identifying topography data associated with a drainage basin comprising at least one body of water; identifying weather data associated with the drainage basin; identifying first sensor data associated with a first water sensor installed in the drainage basin; identifying second sensor data associated with a second water sensor that is located downstream of the first water sensor in the drainage basin; providing the first sensor data, second sensor data, topography data, and weather data as input to a machine learning algorithm; and determining, by the machine learning algorithm, a mineralogy of a portion of the drainage basin.

Classes IPC  ?

  • G01C 13/00 - Géodésie spécialement adaptée à l'eau libre, p. ex. à la mer, aux lacs, aux rivières ou aux canaux
  • G01N 21/31 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique
  • G01N 33/18 - Eau
  • G01V 1/30 - Analyse
  • G01V 20/00 - Géomodélisation en général

94.

CHARACTERIZING ELECTRICAL GRID AND PREDICTING FAULT CONDITIONS USING INVERTERS

      
Numéro d'application 18339757
Statut En instance
Date de dépôt 2023-06-22
Date de la première publication 2024-12-26
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Daly, Raymond
  • Casey, Leo Francis
  • Khalilinia, Hamed

Abrégé

An inverter coupled to an electrical power grid characterizes the electrical power grid. The inverter outputs a plurality of electrical signals of different frequencies to the electrical power grid, measures responses of the electrical power grid to the plurality of electrical signals to obtain measurement data, and processes the measurement data to generate prediction data that characterizes one or more fault conditions of the electrical power grid. The inverter adjusts an operational setting of the inverter based on the prediction data. The operational setting affects a response of the electrical power grid to a fault condition.

Classes IPC  ?

  • H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs

95.

SYSTEM AND METHOD FOR DETERMINING MINIMUM PASTE ADDITION

      
Numéro d'application US2024034766
Numéro de publication 2024/263739
Statut Délivré - en vigueur
Date de dépôt 2024-06-20
Date de publication 2024-12-26
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s) Yan, Weishi

Abrégé

niinnn particles to create a workable concrete mixture, and a control signal is sent to a concrete preparation system.

Classes IPC  ?

  • B28C 7/02 - Commande de l'opération de mélange
  • C04B 20/00 - Emploi de matières comme charges pour mortiers, béton ou pierre artificielle prévu dans plus d'un groupe et caractérisées par la forme ou la répartition des grainsTraitement de matières spécialement adapté pour renforcer leur propriétés de charge dans les mortiers, béton ou pierre artificielle prévu dans plus d'un groupe de Matières expansées ou défibrillées
  • C04B 40/00 - Procédés, en général, pour influencer ou modifier les propriétés des compositions pour mortiers, béton ou pierre artificielle, p. ex. leur aptitude à prendre ou à durcir
  • G01N 15/0205 - Recherche de la dimension ou de la distribution des dimensions des particules par des moyens optiques
  • G06Q 50/08 - Construction
  • G16C 60/00 - Science informatique des matériaux, c.-à-d. TIC spécialement adaptées à la recherche des propriétés physiques ou chimiques de matériaux ou de phénomènes associés à leur conception, synthèse, traitement, caractérisation ou utilisation

96.

CHARACTERIZING ELECTRICAL GRID AND PREDICTING FAULT CONDITIONS USING INVERTERS

      
Numéro d'application US2024035050
Numéro de publication 2024/263936
Statut Délivré - en vigueur
Date de dépôt 2024-06-21
Date de publication 2024-12-26
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Daly, Raymond
  • Casey, Leo, Francis
  • Khalilinia, Hamed

Abrégé

An inverter coupled to an electrical power grid characterizes the electrical power grid. The inverter outputs a plurality of electrical signals of different frequencies to the electrical power grid, measures responses of the electrical power grid to the plurality of electrical signals to obtain measurement data, and processes the measurement data to generate prediction data that characterizes one or more fault conditions of the electrical power grid. The inverter adjusts an operational setting of the inverter based on the prediction data. The operational setting affects a response of the electrical power grid to a fault condition.

Classes IPC  ?

  • H02J 3/00 - Circuits pour réseaux principaux ou de distribution, à courant alternatif
  • G01R 31/52 - Test pour déceler la présence de courts-circuits, de fuites de courant ou de défauts à la terre
  • H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs

97.

LIGHTMIND

      
Numéro d'application 1829109
Statut Enregistrée
Date de dépôt 2024-09-24
Date d'enregistrement 2024-09-24
Propriétaire X Development LLC (USA)
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 40 - Traitement de matériaux; recyclage, purification de l'air et traitement de l'eau
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception
  • 45 - Services juridiques; services de sécurité; services personnels pour individus

Produits et services

Photonic integrated circuits; semiconductor devices; photonic components and systems for use in optical communication networks, namely, optical transceivers; indium phosphide-based photonic components, namely, integrated circuits; optical circuits, namely, integrated circuits; downloadable and recorded operating software for use in photonic integrated circuits, semiconductors, integrated circuits, fiber optic hardware, electro-optic components, optical transceivers and receivers; downloadable and recorded software for electromagnetic design, modeling and simulation, of integrated optics and photonic components; fiber optic hardware; electro-optic components; optical transceivers and receivers; metasurface optics; quantum computers; telecommunications hardware; computer chipsets; downloadable and recorded computer software for communication, wireless communication and connectivity; downloadable and recorded firmware for using and controlling wireless broadband communication technology and to enable communication and wireless communication; microprocessors; microprocessor cores; central processing units; converged network interface controllers; integrated circuits; downloadable and recorded software for communication, interoperability and connectivity, and for controlling and using integrated circuits; software contained or embedded in computer hardware for communication, interoperability and connectivity, and for controlling and using integrated circuits. Consulting services in the field of manufacturing process for photonic integrated circuits, semiconductors, integrated circuits, fiber optic hardware, electro-optic components, optical transceivers and receivers. Design, development, and engineering of photonic integrated circuits, semiconductors, integrated circuits, fiber optic hardware, electro-optic components, optical transceivers and receivers, antennas, radio-frequency receivers and transmitters; research and engineering services in the field of photonics, integrated photonics design, electronics design, and fiber-optic technology; consulting in the fields of design, development, engineering, and electronic monitoring of photonic integrated circuits, semiconductors, integrated circuits, fiber optic hardware, electro-optic components, optical transceivers and receivers, antennas, radio-frequency receivers and transmitters; technical support services, namely, troubleshooting in the nature of diagnosing computer hardware and software problems and monitoring technological functions being product testing of photonic integrated circuits, semiconductors, integrated circuits, fiber optic hardware, electro-optic components, optical transceivers and receivers, antennas, radio-frequency receivers and transmitters; engineering services; product research and development; development of software for photonic integrated circuits, semiconductors, integrated circuits, fiber optic hardware, electro-optic components, optical transceivers and receivers, antennas, radio-frequency receivers and transmitters; quantum computing. Licensing of intellectual property.

98.

ACCESS CONTROLLED POWER GRID MODEL

      
Numéro d'application US2024033607
Numéro de publication 2024/258962
Statut Délivré - en vigueur
Date de dépôt 2024-06-12
Date de publication 2024-12-19
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Khalilinia, Hamed
  • Daly, Raymond
  • Pope, Arthur Robert
  • Kumar, Sushant
  • Babinskii, Sergei
  • Stahlfeld, Phillip Ellsworth
  • Fedoruk, Laura Elizabeth
  • Hillman, Aryeh Benjamin

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for an access controlled power grid model. A power grid model can include multiple regions. Access can be provided only to a subset of regions based on access privileges, and the user can be denied access to regions of the power grid model outside of the subset. A simulation can be executed using input from the user and can include simulation parameters for at least one of the regions in the subset. The simulation can be executed on the regions of the power grid model in the subset and at least one additional region that is not in the subset. The simulation can produce results that can include electrical values of components in the regions within the subset and values of components in at least one additional region. The output can include only the simulation results for regions within the subset.

Classes IPC  ?

  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès
  • G06F 113/04 - Réseaux de distribution électrique

99.

HIGH FAULT-CURRENT INVERTERS

      
Numéro d'application 18334713
Statut En instance
Date de dépôt 2023-06-14
Date de la première publication 2024-12-19
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Casey, Leo Francis
  • Daly, Raymond

Abrégé

This disclosure describes a system and method for enabling an inverter to temporarily sustain fault current. One implementation is a system that includes an inverter having a plurality of transistors. A reservoir having an outlet channel is configured to contain a compressed gas. The outlet channel is arranged to direct the compressed gas towards a heatsink in thermal communication with one or more of the plurality of transistors. A control valve can be positioned between the reservoir and the outlet channel and a controller can be configured to detect an overcurrent event in the inverter and, in response, open the control valve. A transformer is electrically connected to an output of the inverter and configured to step down voltage from the inverter to a circuit being supplied by the inverter.

Classes IPC  ?

  • H02M 1/32 - Moyens pour protéger les convertisseurs autrement que par mise hors circuit automatique
  • H02M 1/00 - Détails d'appareils pour transformation
  • H02M 7/53862 - Circuits de commande utilisant des convertisseurs à transistors
  • H05K 7/20 - Modifications en vue de faciliter la réfrigération, l'aération ou le chauffage

100.

Scalar loss functions for multiobjective optimization

      
Numéro d'application 17337267
Numéro de brevet 12169665
Statut Délivré - en vigueur
Date de dépôt 2021-06-02
Date de la première publication 2024-12-17
Date d'octroi 2024-12-17
Propriétaire X Development LLC (USA)
Inventeur(s) Schubert, Martin

Abrégé

In some embodiments, a method for creating a design for a physical device is provided. A computing system receives a design specification. The computing system generates a proposed design based on the design specification. The computing system determines a vector of loss values based on the proposed design. The computing system determines a scalar loss value based on a distance between the vector of loss values and a volume representing desired characteristics of the physical device. The computing system updates the proposed design based on the scalar loss value.

Classes IPC  ?

  • G06F 30/10 - CAO géométrique
  • G06F 111/06 - Optimisation multi-objectif, p. ex. optimisation de Pareto utilisant le recuit simulé, les algorithmes de colonies de fourmis ou les algorithmes génétiques
  1     2     3     ...     13        Prochaine page