X Development LLC

États‑Unis d’Amérique

Retour au propriétaire

1-100 de 1 314 pour X Development LLC Trier par
Recheche Texte
Affiner par
Type PI
        Brevet 1 266
        Marque 48
Juridiction
        États-Unis 679
        International 619
        Canada 13
        Europe 3
Date
Nouveautés (dernières 4 semaines) 10
2025 décembre (MACJ) 8
2025 novembre 14
2025 octobre 9
2025 septembre 7
Voir plus
Classe IPC
B25J 9/16 - Commandes à programme 118
G06N 3/08 - Méthodes d'apprentissage 73
G06N 3/04 - Architecture, p. ex. topologie d'interconnexion 55
G06N 20/00 - Apprentissage automatique 48
G05D 1/02 - Commande de la position ou du cap par référence à un système à deux dimensions 45
Voir plus
Classe NICE
42 - Services scientifiques, technologiques et industriels, recherche et conception 43
09 - Appareils et instruments scientifiques et électriques 32
35 - Publicité; Affaires commerciales 17
38 - Services de télécommunications 16
39 - Services de transport, emballage et entreposage; organisation de voyages 12
Voir plus
Statut
En Instance 236
Enregistré / En vigueur 1 078
  1     2     3     ...     14        Prochaine page

1.

A-LIFE

      
Numéro d'application 1892610
Statut Enregistrée
Date de dépôt 2025-11-20
Date d'enregistrement 2025-11-20
Propriétaire X Development LLC (USA)
Classes de Nice  ? 09 - Appareils et instruments scientifiques et électriques

Produits et services

Downloadable and recorded computer software for research, modeling, data collection, data ingestion, data storage, and simulations in the fields of biology, synthetic biology, pharmaceutical preparations, biotechnology, living systems, renewable materials, chemicals, organisms, and bioprocesses.

2.

DETECTING SURREPTITIOUS SPEECH USING MACHINE LEARNING MODELS

      
Numéro d'application 18737324
Statut En instance
Date de dépôt 2024-06-07
Date de la première publication 2025-12-11
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Gokdemir, Ozan
  • Honke, Garrett Raymond
  • Bush, Jeffrey

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for detecting surreptitious speech. One of the methods includes obtaining data representing a sequence of text; obtaining a sequence of tokens for the sequence of text comprising one or more groups of tokens, wherein each group comprises two or more tokens; processing the one or more groups of tokens using a first machine learning model to identify tokens that are out of context in the sequence of tokens; and providing data representing the identified tokens.

Classes IPC  ?

  • G06F 40/284 - Analyse lexicale, p. ex. segmentation en unités ou cooccurrence

3.

AI-GUIDED SYNTHETIC BIOLOGY DEVELOPMENT PLATFORM, SYSTEMS, AND METHODS

      
Numéro d'application US2025031891
Numéro de publication 2025/255010
Statut Délivré - en vigueur
Date de dépôt 2025-06-02
Date de publication 2025-12-11
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Bachman, John Ata
  • Ruggero, Nicholas
  • Vaggi, Federico
  • Orth, Jeffrey David
  • Ng, Chiam Yu
  • Brandman, Relly
  • Thacker, Richard Eugene
  • Enyeart, Peter James
  • Heins, Richard Andrew
  • Falkner, Jayson
  • Mansoor, Sanaa
  • Tanouchi, Yu
  • Scherbart, Thomas Jon
  • Barker, Laura
  • Wang, Lin
  • Albach, Carl Hans

Abrégé

An AI-guided synthetic biology development platform, systems, and methods substantially as shown and described.

Classes IPC  ?

  • C12N 15/113 - Acides nucléiques non codants modulant l'expression des gènes, p. ex. oligonucléotides anti-sens
  • C12P 21/02 - Préparation de peptides ou de protéines comportant une séquence connue de plusieurs amino-acides, p. ex. glutathion
  • G16B 20/00 - TIC spécialement adaptées à la génomique ou protéomique fonctionnelle, p. ex. corrélations génotype-phénotype
  • C12N 15/10 - Procédés pour l'isolement, la préparation ou la purification d'ADN ou d'ARN
  • G16B 25/10 - Profilage de l’expression de gènes ou de protéinesEstimation ou normalisation de ratio d’expression
  • G16B 5/20 - Modèles probabilistes
  • G06N 20/10 - Apprentissage automatique utilisant des méthodes à noyaux, p. ex. séparateurs à vaste marge [SVM]
  • C12N 15/90 - Introduction stable d'ADN étranger dans le chromosome

4.

ANORI

      
Numéro d'application 1891091
Statut Enregistrée
Date de dépôt 2025-10-30
Date d'enregistrement 2025-10-30
Propriétaire X Development LLC (USA)
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 35 - Publicité; Affaires commerciales
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Downloadable AI software for assisting in real estate development, building construction, and architectural design, generating pre-development building designs, securing permitting and capital allocation for real estate projects, real estate marketing, identifying building locations and nature of real estate projects, and providing operative construction drawings; downloadable AI software for analyzing and compiling real estate, construction, and architectural data, generating and enhancing models, and generating text, images, audiovisual material, and document in response to prompts; downloadable software utilizing artificial intelligence for use in providing information and predictive recommendations on real estate development, building construction, and architectural design; downloadable computer chatbot software for simulating conversations; downloadable computer chatbot software for assisting in real estate development, building construction, and architectural design, generating pre-development building designs, securing permitting and capital allocation for real estate projects, real estate marketing, identifying building locations and nature of real estate projects, and providing operative construction drawings. Business advisory and information services in the fields of architecture, real estate, interior design and urban planning design; providing business planning and marketing solutions for real estate professionals; real estate marketing analysis; real estate sales management; business research and data analysis services in the field of in the fields of architecture, interior design and urban planning design; business consulting services in the fields of architecture, real estate, interior design and urban planning design; data processing services in the fields of architecture, real estate, interior design and urban planning design; analyzing and compiling business data in the fields of architecture, real estate, interior design and urban planning design; compiling and analyzing statistics, data and other sources of information for business purposes in the fields of architecture, real estate, interior design and urban planning design. Providing online non-downloadable software for assisting in real estate development, building construction, and architectural design, generating pre-development building designs, securing permitting and capital allocation for real estate projects, real estate marketing, identifying building locations and nature of real estate projects, and providing operative construction drawings; Software as a Service (SaaS) services featuring software for assisting in real estate development, building construction, and architectural design, generating pre-development building designs, securing permitting and capital allocation for real estate projects, real estate marketing, identifying building locations and nature of real estate projects, and providing operative construction drawings; providing online non-downloadable AI software for analyzing and compiling real estate, construction, and architectural data, generating and enhancing models, and generating text, images, audiovisual material, and document in response to prompts; Software as a Service (SaaS) services featuring AI software for analyzing and compiling real estate, construction, and architectural data, generating and enhancing models, and generating text, images, audiovisual material, and document in response to prompts; providing online non-downloadable software utilizing artificial intelligence for use in providing information and predictive recommendations on real estate development, building construction, and architectural design; Software as a Service (SaaS) services featuring software utilizing artificial intelligence for use in providing information and predictive recommendations on real estate development, building construction, and architectural design; providing online non-downloadable computer chatbot software for simulating conversations; providing online non-downloadable computer chatbot software for assisting in real estate development, building construction, and architectural design, generating pre-development building designs, securing permitting and capital allocation for real estate projects, real estate marketing, identifying building locations and nature of real estate projects, and providing operative construction drawings; architectural services; residential and commercial building design.

5.

SUBSURFACE IMAGING USING LASER VIBROMETRY

      
Numéro d'application 19307662
Statut En instance
Date de dépôt 2025-08-22
Date de la première publication 2025-12-11
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Miller, Alex S.
  • Goncharuk, Artem
  • Kim, Jaewoo

Abrégé

Techniques for generating a subsurface image include analyzing a region to be sensed to determine a plurality of reflector locations; and performing a survey. Performing the survey includes irradiating a plurality of reflectors positioned in the plurality of determined reflector locations with coherent electromagnetic energy; identifying one or more vibrations of the plurality of reflectors based on reflected electromagnetic energy from the plurality of reflectors; and generating survey data associated with the identified vibrations for at least one reflector of the plurality of reflectors. The techniques include providing the survey data as input to a machine learning algorithm; and generating, using the machine learning algorithm, a subsurface image associated with the region to be sensed.

Classes IPC  ?

  • G01H 9/00 - Mesure des vibrations mécaniques ou des ondes ultrasonores, sonores ou infrasonores en utilisant des moyens sensibles aux radiations, p. ex. des moyens optiques
  • G01V 1/00 - SéismologieProspection ou détection sismique ou acoustique
  • G01V 1/22 - Transmission des signaux sismiques aux appareils d'enregistrement ou de traitement
  • G01V 1/28 - Traitement des données sismiques, p. ex. pour l’interprétation ou pour la détection d’événements

6.

PERFORMING FACT CHECKING USING MACHINE LEARNING MODELS

      
Numéro d'application 18737572
Statut En instance
Date de dépôt 2024-06-07
Date de la première publication 2025-12-11
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Gokdemir, Ozan
  • Honke, Garrett Raymond
  • Bush, Jeffrey

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for performing tasks. One of the methods includes receiving a trigger from a user; responsive to the trigger, obtaining text data representing one or more subwords to be processed; obtaining data representing a plurality of clusters, wherein each cluster comprises one or more documents of a plurality of documents; processing the text data to identify one or more clusters of the plurality of clusters that are relevant to the text data; for each of the one or more identified clusters: identifying one or more documents of the identified cluster that are relevant to the text data; identifying one or more documents that contradict the text data of the one or more identified documents that are relevant to the text data; and providing data representing the one or more identified documents that contradict the text data.

Classes IPC  ?

7.

DETECTING SURREPTITIOUS SPEECH USING MACHINE LEARNING MODELS

      
Numéro d'application US2025032106
Numéro de publication 2025/255146
Statut Délivré - en vigueur
Date de dépôt 2025-06-03
Date de publication 2025-12-11
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Gokdemir, Ozan
  • Honke, Garrett Raymond
  • Bush, Jeffrey

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for detecting surreptitious speech. One of the methods includes obtaining data representing a sequence of text; obtaining a sequence of tokens for the sequence of text comprising one or more groups of tokens, wherein each group comprises two or more tokens; processing the one or more groups of tokens using a first machine learning model to identify tokens that are out of context in the sequence of tokens; and providing data representing the identified tokens.

Classes IPC  ?

  • G06F 40/284 - Analyse lexicale, p. ex. segmentation en unités ou cooccurrence
  • G06F 40/30 - Analyse sémantique

8.

PERFORMING FACT CHECKING USING MACHINE LEARNING MODELS

      
Numéro d'application US2025032113
Numéro de publication 2025/255151
Statut Délivré - en vigueur
Date de dépôt 2025-06-03
Date de publication 2025-12-11
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Gokdemir, Ozan
  • Honke, Garrett Raymond
  • Bush, Jeffrey

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for performing tasks. One of the methods includes receiving a trigger from a user; responsive to the trigger, obtaining text data representing one or more subwords to be processed; obtaining data representing a plurality of clusters, wherein each cluster comprises one or more documents of a plurality of documents; processing the text data to identify one or more clusters of the plurality of clusters that are relevant to the text data; for each of the one or more identified clusters: identifying one or more documents of the identified cluster that are relevant to the text data; identifying one or more documents that contradict the text data of the one or more identified documents that are relevant to the text data; and providing data representing the one or more identified documents that contradict the text data.

Classes IPC  ?

9.

GEOLOCALIZING OBLIQUE AERIAL IMAGERY

      
Numéro d'application 19037533
Statut En instance
Date de dépôt 2025-01-27
Date de la première publication 2025-11-27
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Gupta, Akshina
  • Spirakis, Charles Stephen
  • Huang, Qian
  • Thebelt, Alexander
  • Shajarisales, Naji
  • Ahmadalipour Lapvandani, Ali

Abrégé

Methods, systems, and apparatus for receiving an image file recording an image and a set of metadata, determining a search space based on one or more of at least a portion of the set of metadata and auxiliary data, generating a set of candidate images based on the search space, identifying a candidate image in the set of candidate images as a best matching image relative to the image, the candidate image being associated with a set of candidate metadata, providing a set of augmented metadata for the image based on the set of metadata and the set of candidate metadata, the set of augmented metadata including at least a portion of the set of candidate metadata, and outputting a geographic features file that is generated using the set of augmented metadata, the geographic features file including data representing one or more geographic features represented in the image file.

Classes IPC  ?

  • G06V 10/74 - Appariement de motifs d’image ou de vidéoMesures de proximité dans les espaces de caractéristiques
  • G06F 16/535 - Filtrage basé sur des données supplémentaires, p. ex. sur des profils d'utilisateurs ou de groupes
  • G06V 10/25 - Détermination d’une région d’intérêt [ROI] ou d’un volume d’intérêt [VOI]
  • G06V 20/17 - Scènes terrestres transmises par des avions ou des drones

10.

HYPERQ

      
Numéro de série 99513824
Statut En instance
Date de dépôt 2025-11-24
Propriétaire X Development LLC ()
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 35 - Publicité; Affaires commerciales
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Downloadable software for use in connection with utilities, namely, for providing information and analyzing data on energy usage, renewable energy, energy savings, energy distribution, energy transmission, energy measurement, inter-connection of energy assets, utilities assets, utilities repairs, route optimization, data optimization, customer service, energy finance, and energy forecasting; Downloadable software utilizing artificial intelligence and machine learning for use in connection with utilities services and assets, namely, for providing customers with access to utility account data and for providing information, contextual prediction, personalization, predictive analytics, and analyzing data and metrics on energy usage, inter-connection of energy assets, renewable energy, energy savings, energy distribution, energy transmission, energy measurement, utilities assets, utilities repairs, route optimization, data optimization, customer service, energy finance, and energy forecasting; Downloadable software for computing energy usage, savings, distribution, transmission, measurement, and forecasting; Downloadable simulation software for modeling, planning, designing, operating, and optimizing utilities services, utilities assets, energy grids, energy inter-connections, renewable energy grids, energy distribution, energy transmission, energy measurements, and also for energy forecasting; Downloadable application programming interface (API) software; Downloadable software development kits (SDK) Consulting services in the fields of electrical grids, energy usage, renewable energy, inter-connection of energy assets, energy usage management, and energy savings; business consulting services in the field of energy measurement to improve energy efficiency within residential, commercial, industrial and institutional facilities; Energy usage management; providing information in the fields of energy usage management, electrical grids, inter-connection of energy assets, energy savings in the nature of energy efficiency, and energy measurement Research, design and development of computer hardware and software; Computer services, namely, operating computer systems and computer networks featuring energy transmission, distribution, and management software for public utilities and others for energy usage, renewable energy, energy savings, energy distribution, energy transmission, energy measurement, inter-connection of energy assets, utilities assets, utilities repairs, route optimization, data optimization, customer service, energy finance, and energy forecasting; Providing on-line non-downloadable software for computing energy usage, savings, distribution, transmission, measurement, and forecasting; Providing on-line non-downloadable software utilizing artificial intelligence, and machine learning for use in connection with utilities services and assets, namely, for providing customers with access to utility account data and allowing customers to pay utility bills and for providing information, contextual prediction, personalization, predictive analytics, and analyzing data and metrics on energy usage, inter-connection of energy assets, renewable energy, energy savings, energy distribution, energy transmission, energy measurement, utilities assets, utilities repairs, route optimization, data optimization, customer service, energy finance, and energy forecasting; Providing online non-downloadable simulation software for modeling, planning, designing, operating, and optimizing utilities services, utilities assets, energy grids, energy inter-connections, renewable energy grids, energy distribution, energy transmission, energy measurements, and also for energy forecasting; Research and development of computer software; Consulting services in the fields of energy measurement to improve energy efficiency

11.

A-LIFE

      
Numéro d'application 244475700
Statut En instance
Date de dépôt 2025-11-20
Propriétaire X Development LLC (USA)
Classes de Nice  ? 09 - Appareils et instruments scientifiques et électriques

Produits et services

(1) Downloadable and recorded computer software for research, modeling, data collection, data ingestion, data storage, and simulations in the fields of biology, synthetic biology, pharmaceutical preparations, biotechnology, living systems, renewable materials, chemicals, organisms, and bioprocesses.

12.

SOLVENT-BASED PROCESSES FOR FUNCTIONALIZED MATERIALS

      
Numéro d'application 19209691
Statut En instance
Date de dépôt 2025-05-15
Date de la première publication 2025-11-20
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Gong, Chaokun
  • Willman, Jeremy Aaron
  • Zweber, Zoanne
  • Gagne, Jacques

Abrégé

Methods of producing functionalized materials are provided. Porous particles are introduced to a functionalization mixture including a volatile solvent. The functionalization mixture includes an adsorbing moiety including polyethylenimine, an interaction moiety including a silane moiety, a polymer, a crosslinking agent, a chelating agent, or an antioxidant. Porous particles are characterized by a porosity distribution between 100 and 200 nanometers and a diameter distribution between 0.8 and 3 millimeters. Functionalized particles are created through deposition of the functionalization mixture on a surface of a porous particle to form a surface modification layer. Compositions and functionalized materials are also provided.

Classes IPC  ?

  • B01D 53/62 - Oxydes de carbone
  • B01D 53/81 - Procédés en phase solide
  • B01J 20/26 - Composés macromoléculaires synthétiques
  • B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
  • B01J 20/32 - Imprégnation ou revêtement

13.

SENSOR FUSION APPROACH FOR PLASTICS IDENTIFICATION

      
Numéro d'application 19282731
Statut En instance
Date de dépôt 2025-07-28
Date de la première publication 2025-11-20
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Murphy, Gearoid
  • Holiday, Alexander
  • Banatao, Diosdado
  • Zhao, Allen
  • Badhwar, Shruti

Abrégé

Methods and systems for using multiple hyperspectral cameras sensitive to different wavelengths to predict characteristics of objects for further processing, including recycling, are described. The multiple hyperspectral images can be used to predict higher resolution spectra by using a trained machine learning model. The higher resolution spectra may be more easily analyzed to sort plastics into a recyclability category. The hyperspectral images may also be used to identify and analyze dark or black plastics, which are challenging for SWIR, MWIR, and other wavelengths. The machine learning model may also predict the base polymers and contaminants of plastic objects for recycling. The hyperspectral images may be used to predict recyclability and other characteristics using a trained machine learning model.

Classes IPC  ?

  • G06V 10/58 - Extraction de caractéristiques d’images ou de vidéos relative aux données hyperspectrales
  • G01J 3/28 - Étude du spectre
  • G01J 3/40 - Mesure de l'intensité des raies spectrales par détermination de la densité d'une photographie du spectreSpectrographie
  • G06V 10/56 - Extraction de caractéristiques d’images ou de vidéos relative à la couleur
  • G06V 10/774 - Génération d'ensembles de motifs de formationTraitement des caractéristiques d’images ou de vidéos dans les espaces de caractéristiquesDispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p. ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]Séparation aveugle de source méthodes de Bootstrap, p. ex. "bagging” ou “boosting”
  • G06V 10/80 - Fusion, c.-à-d. combinaison des données de diverses sources au niveau du capteur, du prétraitement, de l’extraction des caractéristiques ou de la classification
  • G06V 20/64 - Objets tridimensionnels

14.

SAMPLE SEGMENTATION

      
Numéro d'application 19282810
Statut En instance
Date de dépôt 2025-07-28
Date de la première publication 2025-11-20
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Ma, Hongxu
  • Zhao, Allen Richard
  • Behroozi, Cyrus
  • Werdenberg, Derek
  • Jacquot, Jie
  • Tschernezki, Vadim

Abrégé

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for improved image segmentation using hyperspectral imaging. In some implementations, a system obtains image data of a hyperspectral image, the image data comprising image data for each of multiple wavelength bands. The system accesses stored segmentation profile data for a particular object type that indicates a predetermined subset of the wavelength bands designated for segmenting different region types for images of an object of the particular object type. The system segments the image data into multiple regions using the predetermined subset of the wavelength bands specified in the stored segmentation profile data to segment the different region types. The system provides output data indicating the multiple regions and the respective region types of the multiple regions.

Classes IPC  ?

  • G06T 7/11 - Découpage basé sur les zones
  • G06V 10/26 - Segmentation de formes dans le champ d’imageDécoupage ou fusion d’éléments d’image visant à établir la région de motif, p. ex. techniques de regroupementDétection d’occlusion

15.

SOLVENT-BASED PROCESSES FOR FUNCTIONALIZED MATERIALS

      
Numéro d'application US2025029652
Numéro de publication 2025/240797
Statut Délivré - en vigueur
Date de dépôt 2025-05-15
Date de publication 2025-11-20
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Gong, Chaokun
  • Willman, Jeremy, Aaron
  • Zweber, Zoanne
  • Gagne, Jacques

Abrégé

Methods of producing functionalized materials are provided. Porous particles are introduced to a functionalization mixture including a volatile solvent. The functionalization mixture includes an adsorbing moiety including polyethylenimine, an interaction moiety including a silane moiety, a polymer, a crosslinking agent, a chelating agent, or an antioxidant. Porous particles are characterized by a porosity distribution between 100 and 200 nanometers and a diameter distribution between 0.8 and 3 millimeters. Functionalized particles are created through deposition of the functionalization mixture on a surface of a porous particle to form a surface modification layer. Compositions and functionalized materials are also provided.

Classes IPC  ?

  • B01J 20/26 - Composés macromoléculaires synthétiques
  • B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
  • B01J 20/32 - Imprégnation ou revêtement
  • B01D 53/02 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse

16.

TEMPLATE-BASED BUILDING DESIGN OPTIMIZATION

      
Numéro d'application US2025028029
Numéro de publication 2025/235541
Statut Délivré - en vigueur
Date de dépôt 2025-05-06
Date de publication 2025-11-13
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Ling, Julia Black
  • Yarkoni, Tal
  • Appelle, Aaron Bennett
  • Choudhary, Divya
  • Gheta, Nicholas Cassab
  • Miller, Martin Fields
  • Walker, Adrian James
  • Connaughton, Spencer James

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer-storage media, for template-based building design optimization for building projects. Constraints for a building project are identified. Building design templates that meet the constraints are identified in a design template library. Building design options for the building project are automatically determined, based on identified building design templates. The building design options for the building project are evaluated based on building performance metrics. Selected building design options are selected based on evaluated building design options. A building plan is automatically generated for the building project that includes building designs that include selected building design options.

Classes IPC  ?

  • G06F 30/13 - Conception architecturale, p. ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes
  • G06Q 50/08 - Construction
  • G06Q 10/06 - Ressources, gestion de tâches, des ressources humaines ou de projetsPlanification d’entreprise ou d’organisationModélisation d’entreprise ou d’organisation

17.

X

      
Numéro d'application 1886253
Statut Enregistrée
Date de dépôt 2025-07-23
Date d'enregistrement 2025-07-23
Propriétaire X Development LLC (USA)
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Research and development of new products; providing information on product research and product development via a website; providing information in the fields of technology and product design and development; providing technological information on the use of technology to solve international problems via a website; design and testing for new product development; scientific and technological research and development services; research and development in the field of computer software and hardware; research and development in the field of software and technology using artificial intelligence and machine learning; development of new technology for others in the field of artificial intelligence and machine learning; development of new technology for others in the field of environmental sustainability, software automation, supply chain logistics, communications and Internet access, utility access and monitoring, and bioengineering.

18.

SUBTERRANEAN PARAMETER SENSING SYSTEMS AND METHODS

      
Numéro d'application 19219692
Statut En instance
Date de dépôt 2025-05-27
Date de la première publication 2025-11-13
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Smith, Kevin Forsythe
  • Goncharuk, Artem
  • Zhao, Allen Richard
  • Wilfong, Jonathan Gray

Abrégé

A carbon dioxide (CO2) sequestration sensor system includes an underground sub-assembly including one or more sensors configured to detect at least one attribute associated with CO2 sequestration below a terranean surface; and an above-ground sub-assembly positionable on the terranean surface proximate the underground sub-assembly and including at least one controller communicably coupled to the one or more sensors.

Classes IPC  ?

  • G01N 33/00 - Recherche ou analyse des matériaux par des méthodes spécifiques non couvertes par les groupes
  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes
  • E21B 47/117 - Détection de fuites, p. ex. du tubage, par test de pression
  • E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p. ex. pour la diagraphie pendant le forage
  • G01V 1/18 - Éléments récepteurs, p. ex. sismomètre, géophone
  • G01V 1/30 - Analyse

19.

SYNTHETIC DATA GENERATION MODELS

      
Numéro d'application US2025028707
Numéro de publication 2025/235927
Statut Délivré - en vigueur
Date de dépôt 2025-05-09
Date de publication 2025-11-13
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Clapp, Robert
  • Farris, Stuart
  • Goncharuk, Artem
  • Smith, Kevin Forsythe
  • Park, Min Jun

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating data items. One of the methods includes obtaining a conditioning input that characterizes a target seismic data item; and processing the conditioning input that characterizes the target seismic data item using a diffusion model that comprises a denoising neural network to generate the target seismic data item.

Classes IPC  ?

  • G01V 1/30 - Analyse
  • G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p. ex. correction de l'étalementÉtablissement d'une corrélation entre signaux sismiquesÉlimination des effets produits par un excès d'énergie
  • G06N 3/084 - Rétropropagation, p. ex. suivant l’algorithme du gradient

20.

A-LIFE

      
Numéro de série 99493921
Statut En instance
Date de dépôt 2025-11-12
Propriétaire X Development LLC ()
Classes de Nice  ? 09 - Appareils et instruments scientifiques et électriques

Produits et services

Downloadable and recorded computer software for research, modeling, data collection, data ingestion, data storage, and simulations in the fields of biology, synthetic biology, pharmaceutical preparations, biotechnology, living systems, renewable materials, chemicals, organisms, and bioprocesses

21.

ELECTRICAL POWER GRID VISUALIZATION

      
Numéro d'application 19202619
Statut En instance
Date de dépôt 2025-05-08
Date de la première publication 2025-11-06
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Casey, Leo Francis
  • Daly, Raymond
  • Evans, Peter
  • Mcnary, Amanda
  • Crahan, Page Furey
  • Kohl, Elena Jordan
  • Burch, Alec Bradford
  • Lichtner, Benjamin
  • Mcconchie, Alan Lowe
  • Dixit, Dhananjay Anant

Abrégé

Methods, systems, and apparatus are disclosed for electrical power grid visualization. A computer-implemented method includes: obtaining power grid data including different temporal and spatially dependent characteristics of a power grid, the characteristics including a first characteristic, a second characteristic, and a third characteristic; and generating a graphical user interface (GUI) representing a visualization of the power grid data. The GUI includes a line-diagram representation of power lines in the power grid overlaid on a map of a geographic region in which the power grid is located, the line-diagram including a plurality of line segments, wherein attributes of each line segment represent the power grid data at a particular spatial location of the power grid. The attributes include a time-changing thickness of the line segment representing the first characteristic; a plurality of time-changing directional arrows on the line segment representing the second characteristic; and a color shading representing the third characteristic.

Classes IPC  ?

  • H02J 13/00 - Circuits pour pourvoir à l'indication à distance des conditions d'un réseau, p. ex. un enregistrement instantané des conditions d'ouverture ou de fermeture de chaque sectionneur du réseauCircuits pour pourvoir à la commande à distance des moyens de commutation dans un réseau de distribution d'énergie, p. ex. mise en ou hors circuit de consommateurs de courant par l'utilisation de signaux d'impulsion codés transmis par le réseau
  • G06Q 50/06 - Fourniture d’énergie ou d’eau

22.

AUTOMATED KINETIC MODEL GENERATION FOR BIOCHEMICAL PATHWAYS

      
Numéro d'application US2025015891
Numéro de publication 2025/230601
Statut Délivré - en vigueur
Date de dépôt 2025-02-14
Date de publication 2025-11-06
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Orth, Jeffrey David
  • Dale, Joseph Mark
  • Bachman, John Ata

Abrégé

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training kinetic models on experimental data of biochemical pathways. In one aspect, a method comprises: receiving chemical reaction data for a biochemical pathway; automatically generating data defining a kinetic model of the biochemical pathway based on the chemical reaction data; obtaining experimental data for the biochemical pathway; training the kinetic model on the experimental data using a numerical optimization technique to optimize an objective function that measures a discrepancy between: (i) simulated data characterizing the biochemical pathway that is generated using the kinetic model, and (ii) the experimental data characterizing the biochemical pathway; and outputting the kinetic model of the biochemical pathway after training the set of kinetic model parameters.

Classes IPC  ?

  • G16C 20/10 - Analyse ou conception des réactions, des synthèses ou des procédés chimiques
  • G16B 5/00 - TIC spécialement adaptées à la modélisation ou aux simulations dans la biologie des systèmes, p. ex. réseaux de régulation génétique, réseaux d’interaction entre protéines ou réseaux métaboliques

23.

ANORI

      
Numéro d'application 244300300
Statut En instance
Date de dépôt 2025-10-30
Propriétaire X Development LLC (USA)
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 35 - Publicité; Affaires commerciales
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

(1) Downloadable AI software for assisting in real estate development, building construction, and architectural design, generating pre-development building designs, securing permitting and capital allocation for real estate projects, real estate marketing, identifying building locations and nature of real estate projects, and providing operative construction drawings; downloadable AI software for analyzing and compiling real estate, construction, and architectural data, generating and enhancing models, and generating text, images, audiovisual material, and document in response to prompts; downloadable software utilizing artificial intelligence for use in providing information and predictive recommendations on real estate development, building construction, and architectural design; downloadable computer chatbot software for simulating conversations; downloadable computer chatbot software for assisting in real estate development, building construction, and architectural design, generating pre-development building designs, securing permitting and capital allocation for real estate projects, real estate marketing, identifying building locations and nature of real estate projects, and providing operative construction drawings. (1) Business advisory and information services in the fields of architecture, real estate, interior design and urban planning design; providing business planning and marketing solutions for real estate professionals; real estate marketing analysis; real estate sales management; business research and data analysis services in the field of in the fields of architecture, interior design and urban planning design; business consulting services in the fields of architecture, real estate, interior design and urban planning design; data processing services in the fields of architecture, real estate, interior design and urban planning design; analyzing and compiling business data in the fields of architecture, real estate, interior design and urban planning design; compiling and analyzing statistics, data and other sources of information for business purposes in the fields of architecture, real estate, interior design and urban planning design. (2) Providing online non-downloadable software for assisting in real estate development, building construction, and architectural design, generating pre-development building designs, securing permitting and capital allocation for real estate projects, real estate marketing, identifying building locations and nature of real estate projects, and providing operative construction drawings; Software as a Service (SaaS) services featuring software for assisting in real estate development, building construction, and architectural design, generating pre-development building designs, securing permitting and capital allocation for real estate projects, real estate marketing, identifying building locations and nature of real estate projects, and providing operative construction drawings; providing online non-downloadable AI software for analyzing and compiling real estate, construction, and architectural data, generating and enhancing models, and generating text, images, audiovisual material, and document in response to prompts; Software as a Service (SaaS) services featuring AI software for analyzing and compiling real estate, construction, and architectural data, generating and enhancing models, and generating text, images, audiovisual material, and document in response to prompts; providing online non-downloadable software utilizing artificial intelligence for use in providing information and predictive recommendations on real estate development, building construction, and architectural design; Software as a Service (SaaS) services featuring software utilizing artificial intelligence for use in providing information and predictive recommendations on real estate development, building construction, and architectural design; providing online non-downloadable computer chatbot software for simulating conversations; providing online non-downloadable computer chatbot software for assisting in real estate development, building construction, and architectural design, generating pre-development building designs, securing permitting and capital allocation for real estate projects, real estate marketing, identifying building locations and nature of real estate projects, and providing operative construction drawings; architectural services; residential and commercial building design.

24.

AUTOMATED KINETIC MODEL GENERATION FOR BIOCHEMICAL PATHWAYS

      
Numéro d'application 19170980
Statut En instance
Date de dépôt 2025-04-04
Date de la première publication 2025-10-30
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Orth, Jeffrey David
  • Dale, Joseph Mark
  • Bachman, John Ata

Abrégé

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training kinetic models on experimental data of biochemical pathways. In one aspect, a method comprises: receiving chemical reaction data for a biochemical pathway; automatically generating data defining a kinetic model of the biochemical pathway based on the chemical reaction data; obtaining experimental data for the biochemical pathway; training the kinetic model on the experimental data using a numerical optimization technique to optimize an objective function that measures a discrepancy between: (i) simulated data characterizing the biochemical pathway that is generated using the kinetic model, and (ii) the experimental data characterizing the biochemical pathway; and outputting the kinetic model of the biochemical pathway after training the set of kinetic model parameters.

Classes IPC  ?

  • G16B 5/00 - TIC spécialement adaptées à la modélisation ou aux simulations dans la biologie des systèmes, p. ex. réseaux de régulation génétique, réseaux d’interaction entre protéines ou réseaux métaboliques
  • G06F 30/27 - Optimisation, vérification ou simulation de l’objet conçu utilisant l’apprentissage automatique, p. ex. l’intelligence artificielle, les réseaux neuronaux, les machines à support de vecteur [MSV] ou l’apprentissage d’un modèle
  • G16B 40/20 - Analyse de données supervisée

25.

AUTOMATING SEMANTICALLY-RELATED COMPUTING TASKS ACROSS CONTEXTS

      
Numéro d'application 19262832
Statut En instance
Date de dépôt 2025-07-08
Date de la première publication 2025-10-30
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Radkoff, Rebecca
  • Andre, David

Abrégé

Disclosed implementations relate to automating semantically-similar computing tasks across multiple contexts. In various implementations, an initial natural language input and a first plurality of actions performed using a first computer application may be used to generate a first task embedding and a first action embedding in action embedding space. An association between the first task embedding and first action embedding may be stored. Later, subsequent natural language input may be used to generate a second task embedding that is then matched to the first task embedding. Based on the stored association, the first action embedding may be identified and processed using a selected domain model to select actions to be performed using a second computer application. The selected domain model may be trained to translate between an action space of the second computer application and the action embedding space.

Classes IPC  ?

  • G06F 9/455 - ÉmulationInterprétationSimulation de logiciel, p. ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation
  • G06F 3/0482 - Interaction avec des listes d’éléments sélectionnables, p. ex. des menus
  • G06F 3/16 - Entrée acoustiqueSortie acoustique
  • G06F 16/3329 - Formulation de requêtes en langage naturel
  • G06F 16/334 - Exécution de requêtes
  • G06F 16/9032 - Formulation de requêtes
  • G06F 16/9535 - Adaptation de la recherche basée sur les profils des utilisateurs et la personnalisation
  • G06F 40/30 - Analyse sémantique
  • G06F 40/35 - Représentation du discours ou du dialogue
  • G06F 40/40 - Traitement ou traduction du langage naturel
  • G06F 40/58 - Utilisation de traduction automatisée, p. ex. pour recherches multilingues, pour fournir aux dispositifs clients une traduction effectuée par le serveur ou pour la traduction en temps réel

26.

MOLECULAR STRUCTURE TRANSFORMERS FOR PROPERTY PREDICTION

      
Numéro d'application 19257315
Statut En instance
Date de dépôt 2025-07-01
Date de la première publication 2025-10-23
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Gadhiya, Tusharkumar
  • Shah, Falak
  • Vyas, Nisarg
  • Yang, Julia
  • Gharakhanyan, Vahe
  • Holiday, Alexander

Abrégé

Computer-implemented methods may include accessing a multi-dimensional embedding space that supports relating embeddings of molecules to predicted values of a given property of the molecules. The method may also include identifying one or more points of interest within the embedding space based on the predicted values. Each of the one or more points of interest may include a set of coordinate values within the multi-dimensional embedding space and may be associated with a corresponding predicted value of the given property. The method may further include generating, for each of the one or more points of interest, a structural representation of a molecule by transforming the set of coordinate values included in the point of interest using a decoder network. The method may include outputting a result that identifies, for each of the one or more points of interest, the structural representation of the molecule corresponding to the point of interest.

Classes IPC  ?

  • C08J 11/16 - Récupération ou traitement des résidus des polymères par coupure des chaînes moléculaires des polymères ou rupture des liaisons de réticulation par voie chimique, p. ex. dévulcanisation par traitement avec une substance inorganique
  • C08J 11/10 - Récupération ou traitement des résidus des polymères par coupure des chaînes moléculaires des polymères ou rupture des liaisons de réticulation par voie chimique, p. ex. dévulcanisation
  • G16C 10/00 - Chimie théorique computationnelle, c.-à-d. TIC spécialement adaptées aux aspects théoriques de la chimie quantique, de la mécanique moléculaire, de la dynamique moléculaire ou similaires
  • G16C 20/10 - Analyse ou conception des réactions, des synthèses ou des procédés chimiques
  • G16C 20/20 - Identification d’entités moléculaires, de leurs parties ou de compositions chimiques
  • G16C 20/40 - Recherche de structures chimiques ou de données physicochimiques
  • G16C 20/70 - Apprentissage automatique, exploration de données ou chimiométrie
  • G16C 20/80 - Visualisation de données
  • G16C 60/00 - Science informatique des matériaux, c.-à-d. TIC spécialement adaptées à la recherche des propriétés physiques ou chimiques de matériaux ou de phénomènes associés à leur conception, synthèse, traitement, caractérisation ou utilisation

27.

ANORI

      
Numéro de série 99457270
Statut En instance
Date de dépôt 2025-10-22
Propriétaire X Development LLC ()
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 35 - Publicité; Affaires commerciales
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Downloadable AI software for assisting in real estate development, building construction, and architectural design, generating pre-development building designs, securing permitting and capital allocation for real estate projects, real estate marketing, identifying building locations and nature of real estate projects, and providing operative construction drawings; Downloadable AI software for analyzing and compiling real estate, construction, and architectural data, generating and enhancing models, and generating text, images, audiovisual material, and document in response to prompts; Downloadable software utilizing artificial intelligence for use in providing information and predictive recommendations on real estate development, building construction, and architectural design; Downloadable computer chatbot software for simulating conversations; Downloadable computer chatbot software for assisting in real estate development, building construction, and architectural design, generating pre-development building designs, securing permitting and capital allocation for real estate projects, real estate marketing, identifying building locations and nature of real estate projects, and providing operative construction drawings Business advisory and information services in the fields of architecture, real estate, interior design and urban planning design; Providing business planning and marketing solutions for real estate professionals; Real estate marketing analysis; Real estate sales management; Business research and data analysis services in the field of in the fields of architecture, interior design and urban planning design; Business consulting services in the fields of architecture, real estate, interior design and urban planning design; Data processing services in the fields of architecture, real estate, interior design and urban planning design; Analyzing and compiling business data in the fields of architecture, real estate, interior design and urban planning design; Compiling and analyzing statistics, data and other sources of information for business purposes in the fields of architecture, real estate, interior design and urban planning design Providing online non-downloadable software for assisting in real estate development, building construction, and architectural design, generating pre-development building designs, securing permitting and capital allocation for real estate projects, real estate marketing, identifying building locations and nature of real estate projects, and providing operative construction drawings; Software as a Service (SaaS) services featuring software for assisting in real estate development, building construction, and architectural design, generating pre-development building designs, securing permitting and capital allocation for real estate projects, real estate marketing, identifying building locations and nature of real estate projects, and providing operative construction drawings; Providing online non-downloadable AI software for analyzing and compiling real estate, construction, and architectural data, generating and enhancing models, and generating text, images, audiovisual material, and document in response to prompts; Software as a Service (SaaS) services featuring AI software for analyzing and compiling real estate, construction, and architectural data, generating and enhancing models, and generating text, images, audiovisual material, and document in response to prompts; Providing online non-downloadable software utilizing artificial intelligence for use in providing information and predictive recommendations on real estate development, building construction, and architectural design; Software as a Service (SaaS) services featuring software utilizing artificial intelligence for use in providing information and predictive recommendations on real estate development, building construction, and architectural design; Providing online non-downloadable computer chatbot software for simulating conversations; Providing online non-downloadable computer chatbot software for assisting in real estate development, building construction, and architectural design, generating pre-development building designs, securing permitting and capital allocation for real estate projects, real estate marketing, identifying building locations and nature of real estate projects, and providing operative construction drawings; Architectural services; Residential and commercial building design

28.

CHARACTERIZATION OF MACHINE-LEARNING MODELS

      
Numéro d'application 19042774
Statut En instance
Date de dépôt 2025-01-31
Date de la première publication 2025-10-16
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Kirchenbauer, John William K.
  • Andre, David
  • Honke, Garrett Raymond

Abrégé

Disclosed herein are systems and methods for objectively characterizing machine-learning models including receiving first training data formatted to be used in the training of a machine-learning model; receiving one or more challenge queries formatted to be run on the machine-learning model; generating, for the first training data, a plurality of associated training vectors that embed at least some of the first training data into a vector space; generating, for each of the one or more challenge queries, a plurality of associated challenge vectors that embed at least some of the challenge queries into the vector space; and determining, for each challenge query, a corresponding quality metric for the machine-learning model by determining a neighborhood density for each of the challenge queries in the vector space.

Classes IPC  ?

  • G06F 16/2453 - Optimisation des requêtes
  • G06F 16/215 - Amélioration de la qualité des donnéesNettoyage des données, p. ex. déduplication, suppression des entrées non valides ou correction des erreurs typographiques

29.

ATTENTION GUIDING LAYER IN CONVOLUTIONAL NEURAL NETWORKS

      
Numéro d'application US2025022973
Numéro de publication 2025/212900
Statut Délivré - en vigueur
Date de dépôt 2025-04-03
Date de publication 2025-10-09
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Cowan, Eliot Julien
  • Gupta, Akshina
  • Cowan, Avery Noam
  • Li, Xin
  • Singaraju, Nishanth

Abrégé

Methods, systems, and apparatus for receiving a request for a prediction relevant to an object of interest (OOI) in the geographic region, providing an attention guiding layer based on a location of the OOI within the geographic layer, the attention guiding layer including a matrix of pixels, each pixel having an attention value assigned thereto, retrieving a set of layers representative of the geographic region, processing the set of layers and the attention guiding layer by a ML model to generate the prediction relevant to the OOI, the ML model including a convolutional neural network (CNN), and providing a representation of the prediction for display.

Classes IPC  ?

  • G06V 10/25 - Détermination d’une région d’intérêt [ROI] ou d’un volume d’intérêt [VOI]
  • G06V 10/44 - Extraction de caractéristiques locales par analyse des parties du motif, p. ex. par détection d’arêtes, de contours, de boucles, d’angles, de barres ou d’intersectionsAnalyse de connectivité, p. ex. de composantes connectées
  • G06V 10/58 - Extraction de caractéristiques d’images ou de vidéos relative aux données hyperspectrales
  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
  • G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
  • G06V 20/13 - Images satellite
  • G06V 20/10 - Scènes terrestres
  • G06V 20/70 - Étiquetage du contenu de scène, p. ex. en tirant des représentations syntaxiques ou sémantiques
  • G06V 20/52 - Activités de surveillance ou de suivi, p. ex. pour la reconnaissance d’objets suspects
  • G06V 10/80 - Fusion, c.-à-d. combinaison des données de diverses sources au niveau du capteur, du prétraitement, de l’extraction des caractéristiques ou de la classification

30.

TECHNIQUES FOR USING INVERSE DESIGN FOR COMBINED OPTIMIZATION OF OPTICAL AND ELECTRICAL COMPONENTS IN AN OPTOELECTRONIC MODULATOR

      
Numéro d'application US2025021647
Numéro de publication 2025/212350
Statut Délivré - en vigueur
Date de dépôt 2025-03-26
Date de publication 2025-10-09
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Adolf, Brian
  • Wu, Yi-Kuei Ryan
  • Williamson, Ian
  • Watson, Philip

Abrégé

In some embodiments, a computer-implemented method for creating a design for an optoelectronic modulator device is provided. A computing system determines an initial design that includes optical structural parameters and electrical structural parameters for a design region. The computing system simulates electrical performance based on the electrical structural parameters to adjust optical characteristics of the optical structural parameters. The computing system simulates optical performance of the optical structural parameters having the adjusted optical characteristics to generate a performance loss value. The computing system determines a loss metric based on the performance loss value. The computing system backpropagates the loss metric to determine a structural gradient. The computing system revises at least one of the optical structural parameters and the electrical structural parameters based at least in part on the structural gradient to create an updated initial design.

Classes IPC  ?

  • G02F 1/01 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur
  • G02F 1/025 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur basés sur des éléments à semi-conducteurs ayant des barrières de potentiel, p. ex. une jonction PN ou PIN dans une structure de guide d'ondes optique
  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • G06F 119/02 - Analyse de fiabilité ou optimisation de fiabilitéAnalyse de défaillance, p. ex. performance dans le pire scénario, analyse du mode de défaillance et de ses effets [FMEA]

31.

TECHNIQUES FOR USING INVERSE DESIGN FOR COMBINED OPTIMIZATION OF OPTICAL AND ELECTRICAL COMPONENTS IN AN OPTOELECTRONIC MODULATOR

      
Numéro d'application 19091369
Statut En instance
Date de dépôt 2025-03-26
Date de la première publication 2025-10-02
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Adolf, Brian
  • Wu, Yi-Kuei Ryan
  • Williamson, Ian
  • Watson, Philip

Abrégé

In some embodiments, a computer-implemented method for creating a design for an optoelectronic modulator device is provided. A computing system determines an initial design that includes optical structural parameters and electrical structural parameters for a design region. The computing system simulates electrical performance based on the electrical structural parameters to adjust optical characteristics of the optical structural parameters. The computing system simulates optical performance of the optical structural parameters having the adjusted optical characteristics to generate a performance loss value. The computing system determines a loss metric based on the performance loss value. The computing system backpropagates the loss metric to determine a structural gradient. The computing system revises at least one of the optical structural parameters and the electrical structural parameters based at least in part on the structural gradient to create an updated initial design.

Classes IPC  ?

  • G06F 30/32 - Conception de circuits au niveau numérique

32.

SENSOR-ENABLED MARKETPLACE FOR MINED OR RECYCLED MATERIALS

      
Numéro d'application US2025018163
Numéro de publication 2025/193459
Statut Délivré - en vigueur
Date de dépôt 2025-03-03
Date de publication 2025-09-18
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Nagatani Jr., Ray, Anthony
  • Papania-Davis, Antonio, Raymond
  • Yan, Weishi
  • Jin, Shijian
  • Rodriguez Martinez, Cristian

Abrégé

An integrated geomaterials preparation method including receiving, through an API of an integrated geomaterials preparation platform, a raw material request and a set of end-product parameters, determining, from the set of end-product parameters, required characteristics for at least one raw material ingredient to an end product to meet the raw material request, obtaining raw material sensor data from a plurality of raw material sensor systems, identifying, from the raw material sensor data, a particular raw material having characteristics similar to the required characteristics, where each sensor system is configured to scan and characterize raw materials, generating, using the characteristics of the particular raw material, operational parameters for geomaterial processing equipment to produce a raw material ingredient to meet the raw material request, and providing, the operational parameters to the geomaterial processing equipment, which when executed by the geomaterial processing equipment cause the geomaterial processing equipment to execute the operational parameters.

Classes IPC  ?

  • G06Q 10/0639 - Analyse des performances des employésAnalyse des performances des opérations d’une entreprise ou d’une organisation

33.

SENSOR-ENABLED MARKETPLACE FOR MINED OR RECYCLED MATERIALS

      
Numéro d'application 19070128
Statut En instance
Date de dépôt 2025-03-04
Date de la première publication 2025-09-18
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Nagatani Jr., Ray Anthony
  • Papania-Davis, Antonio Raymond
  • Yan, Weishi
  • Jin, Shijian
  • Rodriguez Martinez, Cristian

Abrégé

An integrated geomaterials preparation method including receiving, through an API of an integrated geomaterials preparation platform, a raw material request and a set of end-product parameters, determining, from the set of end-product parameters, required characteristics for at least one raw material ingredient to an end product to meet the raw material request, obtaining raw material sensor data from a plurality of raw material sensor systems, identifying, from the raw material sensor data, a particular raw material having characteristics similar to the required characteristics, where each sensor system is configured to scan and characterize raw materials, generating, using the characteristics of the particular raw material, operational parameters for geomaterial processing equipment to produce a raw material ingredient to meet the raw material request, and providing, the operational parameters to the geomaterial processing equipment, which when executed by the geomaterial processing equipment cause the geomaterial processing equipment to execute the operational parameters.

Classes IPC  ?

  • G06Q 10/0875 - Énumération ou classification des pièces, des fournitures ou des services, p. ex. nomenclatures
  • G06Q 50/04 - Fabrication
  • G06T 7/00 - Analyse d'image
  • G06V 10/74 - Appariement de motifs d’image ou de vidéoMesures de proximité dans les espaces de caractéristiques

34.

THERMALLY TUNABLE PHOTONIC CIRCUIT

      
Numéro d'application 19071087
Statut En instance
Date de dépôt 2025-03-05
Date de la première publication 2025-09-18
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Serey, Xavier
  • Wu, Yi-Kuei Ryan

Abrégé

A thermally regulated photonic system includes a photonic component, a sensor adapted to measure a temperature related to the photonic component or a power output of the photonic component and generate a sensor value that is indicative of the temperature or the power output, a heat distribution system thermally coupled to the photonic component and adapted to generate and distribute heat to the photonic component, and a controller coupled to the sensor and the heat distribution system in a feedback loop configuration to thermally regulate the photonic component based upon the sensor value.

Classes IPC  ?

  • G02B 6/293 - Moyens de couplage optique ayant des bus de données, c.-à-d. plusieurs guides d'ondes interconnectés et assurant un système bidirectionnel par nature en mélangeant et divisant les signaux avec des moyens de sélection de la longueur d'onde

35.

THERMALLY TUNABLE PHOTONIC CIRCUIT

      
Numéro d'application US2025019557
Numéro de publication 2025/193820
Statut Délivré - en vigueur
Date de dépôt 2025-03-12
Date de publication 2025-09-18
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Serey, Xavier
  • Wu, Yi-Kuei Ryan

Abrégé

A thermally regulated photonic system includes a photonic component, a sensor adapted to measure a temperature related to the photonic component or a power output of the photonic component and generate a sensor value that is indicative of the temperature or the power output, a heat distribution system thermally coupled to the photonic component and adapted to generate and distribute heat to the photonic component, and a controller coupled to the sensor and the heat distribution system in a feedback loop configuration to thermally regulate the photonic component based upon the sensor value.

Classes IPC  ?

  • G02B 6/12 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques du genre à circuit intégré
  • G02F 1/01 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur
  • G02B 6/42 - Couplage de guides de lumière avec des éléments opto-électroniques

36.

FUNCTIONALIZED MATERIALS FOR CARBON CAPTURE AND SYSTEMS THEREOF

      
Numéro d'application 18880190
Statut En instance
Date de dépôt 2023-06-30
Date de la première publication 2025-09-11
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Gong, Chaokun
  • Willman, Jeremy Aaron
  • Gagne, Jacques
  • Rampertab, Amanda Marie
  • Robertson, Kenneth Gerald
  • Saxena, Anand
  • Nelson, Robert

Abrégé

The present disclosure relates to a functionalized material, which may optionally be employed as a sorbent for carbon dioxide, as well as methods of making such materials and systems of using such materials. The processes, methods, and systems herein can be used for the separation of carbon dioxide from fluid streams.

Classes IPC  ?

  • B01J 20/32 - Imprégnation ou revêtement
  • B01D 53/62 - Oxydes de carbone
  • B01D 53/83 - Procédés en phase solide avec des réactifs en mouvement
  • B01D 53/96 - Régénération, réactivation ou recyclage des réactifs
  • B01J 20/10 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant de la silice ou un silicate
  • B01J 20/22 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance organique
  • B01J 20/26 - Composés macromoléculaires synthétiques
  • B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
  • B01J 20/30 - Procédés de préparation, de régénération ou de réactivation
  • B01J 20/34 - Régénération ou réactivation

37.

INVERSE DESIGNED POLARIZATION ROTATOR AND BEAM SPLITTER

      
Numéro d'application 18591912
Statut En instance
Date de dépôt 2024-02-29
Date de la première publication 2025-09-04
Propriétaire X Development LLC (USA)
Inventeur(s) Wu, Yi-Kuei Ryan

Abrégé

A polarization rotating and beam splitting photonic device includes a planar waveguide having an input port and output ports disposed in or on a multi-layer semiconductor stack and a polarization rotating and beam splitting components integrated into the planar waveguide. The polarization rotating component includes a first irregular pattern of at least two materials having different refractive indexes. The first irregular pattern is shaped to rotate at least a portion of an optical signal received via the input port from a transverse magnetic (TM) polarization to a transverse electric (TE) polarization. The beam splitting component includes a second irregular pattern shaped to split the optical signal between the output ports. The first and second irregularly shaped patterns are optically coupled and collectively shaped to receive input TE and TM signals multiplexed on the optical signal at the input port and generate output TE signals demultiplexed on the output ports.

Classes IPC  ?

  • G02B 27/10 - Systèmes divisant ou combinant des faisceaux
  • G02B 5/30 - Éléments polarisants

38.

INVERSE DESIGNED POLARIZATION ROTATOR AND BEAM SPLITTER

      
Numéro d'application US2025012759
Numéro de publication 2025/183825
Statut Délivré - en vigueur
Date de dépôt 2025-01-23
Date de publication 2025-09-04
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s) Wu, Yi-Kuei Ryan

Abrégé

A polarization rotating and beam splitting photonic device includes a planar waveguide having an input port and output ports disposed in or on a multi-layer semiconductor stack and a polarization rotating and beam splitting components integrated into the planar waveguide. The polarization rotating component includes a first irregular pattern of at least two materials having different refractive indexes. The first irregular pattern is shaped to rotate at least a portion of an optical signal received via the input port from a transverse magnetic (TM) polarization to a transverse electric (TE) polarization. The beam splitting component includes a second irregular pattern shaped to split the optical signal between the output ports. The first and second irregularly shaped patterns are optically coupled and collectively shaped to receive input TE and TM signals multiplexed on the optical signal at the input port and generate output TE signals demultiplexed on the output ports.

Classes IPC  ?

  • G02B 27/00 - Systèmes ou appareils optiques non prévus dans aucun des groupes ,
  • G02B 6/14 - Convertisseurs de mode
  • G02B 6/126 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques du genre à circuit intégré utilisant des effets de polarisation
  • G02B 6/125 - Courbures, branchements ou intersections
  • G02B 6/12 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques du genre à circuit intégré
  • G02B 27/28 - Systèmes ou appareils optiques non prévus dans aucun des groupes , pour polariser

39.

GENERATING BOUNDING BOXES FOR GEOLOCALIZING OBLIQUE AERIAL IMAGERY

      
Numéro d'application US2025012585
Numéro de publication 2025/165621
Statut Délivré - en vigueur
Date de dépôt 2025-01-22
Date de publication 2025-08-07
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Spirakis, Charles Stephen
  • Thebelt, Alexander
  • Gupta, Akshina
  • Shajarisales, Naji

Abrégé

Methods, systems, and apparatus for receiving a first image file recording a first image and a first set of metadata associated with the first image, determining that the first image depicts a horizon, and in response, providing a modified first set of metadata by applying a visibility radius to a projection of the Earth depicted in the first image, determining a tangent line based on the visibility radius, and adjusting a height of the first image based on the tangent line to provide a modified height in the modified first set of metadata, and outputting a first geographic features file that is generated using the modified first set of metadata, the first geographic features file including data representing one or more geographic features represented in the first image file.

Classes IPC  ?

  • G06V 10/25 - Détermination d’une région d’intérêt [ROI] ou d’un volume d’intérêt [VOI]
  • G06V 20/17 - Scènes terrestres transmises par des avions ou des drones

40.

GEOLOCALIZING OBLIQUE AERIAL IMAGERY

      
Numéro d'application US2025013132
Numéro de publication 2025/165680
Statut Délivré - en vigueur
Date de dépôt 2025-01-27
Date de publication 2025-08-07
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Gupta, Akshina
  • Spirakis, Charles Stephen
  • Huang, Qian
  • Thebelt, Alexander
  • Shajarisales, Naji
  • Ahmadalipour Lapvandani, Ali

Abrégé

Methods, systems, and apparatus for receiving an image file recording an image and a set of metadata, determining a search space based on one or more of at least a portion of the set of metadata and auxiliary data, generating a set of candidate images based on the search space, identifying a candidate image in the set of candidate images as a best matching image relative to the image, the candidate image being associated with a set of candidate metadata, providing a set of augmented metadata for the image based on the set of metadata and the set of candidate metadata, the set of augmented metadata including at least a portion of the set of candidate metadata, and outputting a geographic features file that is generated using the set of augmented metadata, the geographic features file including data representing one or more geographic features represented in the image file.

Classes IPC  ?

  • G06F 16/58 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement
  • G06F 16/587 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des informations géographiques ou spatiales, p. ex. la localisation

41.

TOWARDS PREDICTION OF GEOMATERIAL PROPERTIES POST-PROCESSING VIA HIGH-THROUGHPUT CHEMICAL AND SPATIAL CHARACTERIZATION

      
Numéro d'application US2025013829
Numéro de publication 2025/166031
Statut Délivré - en vigueur
Date de dépôt 2025-01-30
Date de publication 2025-08-07
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Nagatani, Ray Anthony, Jr
  • Jin, Shijian
  • Papania-Davis, Antonio Raymond
  • Zhao, Allen Richard
  • Rodriguez Martinez, Cristian
  • Yan, Weishi

Abrégé

Methods, systems, and apparatus, including computer programs encoded on a storage device, for determining characteristics of particles are disclosed. A system includes a conveyor belt, wherein a first section of the conveyor belt comprises one or more mechanisms arranged to create environmental conditions favorable to sensor reading. The system includes a sensor rig located proximate to the first section of the conveyor belt comprising a plurality of different types of sensors. The system includes a controller configured to: obtain measurement data from the plurality of different types of sensors; apply the measurement data to a machine learning model configured to determine surface chemical characteristics of particles given measurement data; and output the surface chemical characteristics of particles from the machine learning model to one or more components along the conveyor belt.

Classes IPC  ?

  • G01N 15/08 - Recherche de la perméabilité, du volume des pores ou de l'aire superficielle des matériaux poreux

42.

CHARACTERIZATION OF MACHINE-LEARNING MODELS

      
Numéro d'application US2025014125
Numéro de publication 2025/166231
Statut Délivré - en vigueur
Date de dépôt 2025-01-31
Date de publication 2025-08-07
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Kirchenbauer, John William K.
  • Andre, David
  • Honke, Garrett Raymond

Abrégé

Disclosed herein are systems and methods for objectively characterizing machine-learning models including receiving first training data formatted to be used in the training of a machine-learning model; receiving one or more challenge queries formatted to be run on the machine-learning model; generating, for the first training data, a plurality of associated training vectors that embed at least some of the first training data into a vector space; generating, for each of the one or more challenge queries, a plurality of associated challenge vectors that embed at least some of the challenge queries into the vector space; and determining, for each challenge query, a corresponding quality metric for the machine-learning model by determining a neighborhood density for each of the challenge queries in the vector space.

Classes IPC  ?

  • G06N 3/0475 - Réseaux génératifs
  • G06N 3/0895 - Apprentissage faiblement supervisé, p. ex. apprentissage semi-supervisé ou auto-supervisé
  • G06N 20/10 - Apprentissage automatique utilisant des méthodes à noyaux, p. ex. séparateurs à vaste marge [SVM]

43.

SELF-SUPERVISED IMAGE EMBEDDINGS

      
Numéro d'application 19035680
Statut En instance
Date de dépôt 2025-01-23
Date de la première publication 2025-07-31
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Banatao, Diosdado
  • Rosenfeld, Daniel
  • Spyra, Aleksandra
  • Holiday, Alexander
  • Parfenuk, Anna

Abrégé

The present disclosure relates to a method and system for acquiring and processing large unlabeled dataset of images to train an embedding model using a self-supervision technique, which may then be used to generate image embeddings with reduced dimensions for any downstream task or model. The downstream model can be a simple model and can be trained efficiently using a small, labeled training dataset as the embedding model may distill important information from the images of the small, labeled training dataset. According to present disclosure, the downstream task or model may include predicting a material category or quantity of a target material of interest in an image that captures (part or all of) one or more objects on a feedstock or a waste stream. In some instances, the image may correspond to a hyperspectral image that is collected using a camera system.

Classes IPC  ?

  • G06T 1/00 - Traitement de données d'image, d'application générale
  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo

44.

GENERATING BOUNDING BOXES FOR GEOLOCALIZING OBLIQUE AERIAL IMAGERY

      
Numéro d'application 19034380
Statut En instance
Date de dépôt 2025-01-22
Date de la première publication 2025-07-31
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Spirakis, Charles Stephen
  • Thebelt, Alexander
  • Gupta, Akshina
  • Shajarisales, Naji

Abrégé

Methods, systems, and apparatus for receiving a first image file recording a first image and a first set of metadata associated with the first image, determining that the first image depicts a horizon, and in response, providing a modified first set of metadata by applying a visibility radius to a projection of the Earth depicted in the first image, determining a tangent line based on the visibility radius, and adjusting a height of the first image based on the tangent line to provide a modified height in the modified first set of metadata, and outputting a first geographic features file that is generated using the modified first set of metadata, the first geographic features file including data representing one or more geographic features represented in the first image file.

Classes IPC  ?

  • G06V 20/17 - Scènes terrestres transmises par des avions ou des drones
  • G06T 7/70 - Détermination de la position ou de l'orientation des objets ou des caméras

45.

SEARCH FOR CANDIDATE MOLECULES USING QUANTUM OR THERMODYNAMICAL SIMULATIONS AND AUTOENCODER

      
Numéro d'application 19175250
Statut En instance
Date de dépôt 2025-04-10
Date de la première publication 2025-07-24
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Gharakhanyan, Vahe
  • Yang, Julia
  • Gadhiya, Tusharkumar
  • Holiday, Alexander

Abrégé

Computer-implemented techniques may include identifying a polymer for decomposition. For an ionic liquid, one or more properties corresponding to the polymer is accessed. One or more properties characterize a reaction between the polymer and the ionic liquid. A value of the property is accessed using a quantum-mechanical or thermodynamical method. A bond string and position (BSP) representation of a molecule of the ionic liquid is determined. An embedded representation of the ionic liquid is determined based on the BSP representation. A relationship between BSP representations of molecules and the one or more properties is generated. An ionic liquid is identified as a prospect for depolymerizing the specific polymer based on the relationship. An identification of the ionic liquid is output.

Classes IPC  ?

  • C08J 11/16 - Récupération ou traitement des résidus des polymères par coupure des chaînes moléculaires des polymères ou rupture des liaisons de réticulation par voie chimique, p. ex. dévulcanisation par traitement avec une substance inorganique
  • C08J 11/10 - Récupération ou traitement des résidus des polymères par coupure des chaînes moléculaires des polymères ou rupture des liaisons de réticulation par voie chimique, p. ex. dévulcanisation
  • G16C 10/00 - Chimie théorique computationnelle, c.-à-d. TIC spécialement adaptées aux aspects théoriques de la chimie quantique, de la mécanique moléculaire, de la dynamique moléculaire ou similaires
  • G16C 20/10 - Analyse ou conception des réactions, des synthèses ou des procédés chimiques
  • G16C 20/20 - Identification d’entités moléculaires, de leurs parties ou de compositions chimiques
  • G16C 20/40 - Recherche de structures chimiques ou de données physicochimiques
  • G16C 20/70 - Apprentissage automatique, exploration de données ou chimiométrie
  • G16C 20/80 - Visualisation de données
  • G16C 60/00 - Science informatique des matériaux, c.-à-d. TIC spécialement adaptées à la recherche des propriétés physiques ou chimiques de matériaux ou de phénomènes associés à leur conception, synthèse, traitement, caractérisation ou utilisation

46.

X

      
Numéro d'application 243685300
Statut En instance
Date de dépôt 2025-07-23
Propriétaire X Development LLC (USA)
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

(1) Research and development of new products; providing information on product research and product development via a website; providing information in the fields of technology and product design and development; providing technological information on the use of technology to solve international problems via a website; design and testing for new product development; scientific and technological research and development services; research and development in the field of computer software and hardware; research and development in the field of software and technology using artificial intelligence and machine learning; development of new technology for others in the field of artificial intelligence and machine learning; development of new technology for others in the field of environmental sustainability, software automation, supply chain logistics, communications and Internet access, utility access and monitoring, and bioengineering.

47.

GEOCHEMICAL ANALYSIS OF DRAINAGE BASINS

      
Numéro d'application 19169213
Statut En instance
Date de dépôt 2025-04-03
Date de la première publication 2025-07-17
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Goncharuk, Artem
  • Smith, Kevin Forsythe
  • Miller, Alex S.

Abrégé

Techniques for determining a mineralogy of a portion of a drainage basin include identifying topography data associated with a drainage basin comprising at least one body of water; identifying weather data associated with the drainage basin; identifying first sensor data associated with a first water sensor installed in the drainage basin; identifying second sensor data associated with a second water sensor that is located downstream of the first water sensor in the drainage basin; providing the first sensor data, second sensor data, topography data, and weather data as input to a machine learning algorithm; and determining, by the machine learning algorithm, a mineralogy of a portion of the drainage basin.

Classes IPC  ?

  • G01C 13/00 - Géodésie spécialement adaptée à l'eau libre, p. ex. à la mer, aux lacs, aux rivières ou aux canaux
  • G01N 21/31 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique
  • G01N 33/18 - Eau
  • G01V 1/30 - Analyse
  • G01V 20/00 - Géomodélisation en général

48.

Robust natural language based control of computer applications

      
Numéro d'application 18400307
Numéro de brevet 12353797
Statut Délivré - en vigueur
Date de dépôt 2023-12-29
Date de la première publication 2025-07-08
Date d'octroi 2025-07-08
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Hunt, Thomas
  • Andre, David
  • Vyas, Nisarg
  • Radkoff, Rebecca
  • Singh, Rishabh

Abrégé

This specification is generally directed to techniques for robust natural language (NL) based control of computer applications. In many implementations, the NL control is at least selectively interactive in that the user feedback input is solicited, and received, in resolving action(s), resolving action set(s), generating domain specific knowledge, and/or in providing feedback on implemented action set(s). The user feedback input can be utilized in further training of machine learning model(s) utilized in the NL based control of the computer applications.

Classes IPC  ?

  • G06F 3/0481 - Techniques d’interaction fondées sur les interfaces utilisateur graphiques [GUI] fondées sur des propriétés spécifiques de l’objet d’interaction affiché ou sur un environnement basé sur les métaphores, p. ex. interaction avec des éléments du bureau telles les fenêtres ou les icônes, ou avec l’aide d’un curseur changeant de comportement ou d’aspect
  • G06F 3/0484 - Techniques d’interaction fondées sur les interfaces utilisateur graphiques [GUI] pour la commande de fonctions ou d’opérations spécifiques, p. ex. sélection ou transformation d’un objet, d’une image ou d’un élément de texte affiché, détermination d’une valeur de paramètre ou sélection d’une plage de valeurs
  • G06F 3/16 - Entrée acoustiqueSortie acoustique
  • G10L 15/22 - Procédures utilisées pendant le processus de reconnaissance de la parole, p. ex. dialogue homme-machine

49.

ELECTRICAL GRID PROTECTION USING GRID COMPONENTS

      
Numéro d'application 19002545
Statut En instance
Date de dépôt 2024-12-26
Date de la première publication 2025-07-03
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Wong, Sze Mei Cat
  • Fedoruk, Laura Elizabeth
  • Casey, Leo Francis
  • Khalilinia, Hamed

Abrégé

Methods, systems, and apparatus, including computer programs encoded on a storage device, for protecting an electrical grid are disclosed. A method includes obtaining electrical grid data corresponding to grid reliability factors and grid safety factors; determining, based on an analysis of the grid reliability factors and the grid safety factors, one or more operating parameters for at least one electrical protection device; and controlling the at least one electrical protection device based on the one or more operating parameters.

Classes IPC  ?

  • H02J 3/00 - Circuits pour réseaux principaux ou de distribution, à courant alternatif
  • H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs

50.

WILDFIRE IDENTIFICATION IN IMAGERY

      
Numéro d'application 19018987
Statut En instance
Date de dépôt 2025-01-13
Date de la première publication 2025-07-03
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Cowan, Eliot Julien
  • Cowan, Avery Noam
  • Gupta, Akshina

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for identifying wildfire in satellite imagery. In some implementations, a server obtains a satellite image of a geographic region and a date corresponding to when the satellite image was generated. The server determines a number of pixels in the satellite image that are indicated as on fire. The server obtains satellite imagery of the geographic region from before the date. The server generates a statistical distribution from the satellite imagery. The server determines a likelihood that the satellite image illustrates fire based on a comparison of the determined number of pixels in the satellite image that are indicated as on fire to the generated statistical distribution. The server can compare the determined likelihood to a threshold. In response to comparing the determined likelihood to the threshold, the server provides an indication that the satellite image illustrates fire.

Classes IPC  ?

  • G08B 17/00 - Alarmes d'incendieAlarmes réagissant à une explosion
  • G06F 16/29 - Bases de données d’informations géographiques
  • G06T 7/77 - Détermination de la position ou de l'orientation des objets ou des caméras utilisant des procédés statistiques
  • G06T 11/20 - Traçage à partir d'éléments de base, p. ex. de lignes ou de cercles

51.

MULTI-MODAL UTILITY ASSET SEARCHING

      
Numéro d'application US2024058922
Numéro de publication 2025/144576
Statut Délivré - en vigueur
Date de dépôt 2024-12-06
Date de publication 2025-07-03
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s) Wang, Xin-Jing

Abrégé

This disclosure describes systems and methods for multi-modal search-based object detection and electric grid object search. Annotations and bounding boxes for images in an image database are determined. A first subset of images is determined from the images that share annotations. A textual token representing the first subset of images is generated and stored in a search index. A second subset of images that share visual features is determined from image pixels enclosed by the bounding boxes. An image token is generated based on the second subset of images and the shared visual features. A user interface configured to receive a search query input is provided for display on a user device. Search tokens are generated based on the search query input. A candidate image is identified and provided for display within the user interface at a position within a respective region of a geographic map of an electric grid.

Classes IPC  ?

  • G06F 16/54 - NavigationVisualisation à cet effet
  • G06F 16/583 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des métadonnées provenant automatiquement du contenu
  • G06F 16/58 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement
  • G06F 16/587 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des informations géographiques ou spatiales, p. ex. la localisation

52.

STATE TRANSITION MATRIX-BASED POWER SYSTEM SIMULATION

      
Numéro d'application US2024060793
Numéro de publication 2025/144658
Statut Délivré - en vigueur
Date de dépôt 2024-12-18
Date de publication 2025-07-03
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Khalilinia, Hamed
  • Casey, Leo Francis

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for electrical power grid simulation. One of the methods includes obtaining a state-transition matrix model of an electrical power grid and executing a simulation of electric power grid behaviors by executing the state-transition matrix model using a parallel processing device that includes multiple cores.

Classes IPC  ?

  • G06F 30/367 - Vérification de la conception, p. ex. par simulation, programme de simulation avec emphase de circuit intégré [SPICE], méthodes directes ou de relaxation
  • G06Q 50/06 - Fourniture d’énergie ou d’eau

53.

FUNCTIONALIZED AND CROSSLINKED MATERIALS

      
Numéro d'application US2024061804
Numéro de publication 2025/144830
Statut Délivré - en vigueur
Date de dépôt 2024-12-23
Date de publication 2025-07-03
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Willman, Jeremy, Aaron
  • Gong, Chaokun
  • Seybert, Kevin, Wayne
  • Pour, Gavin

Abrégé

Functionalized and crosslinked material, which may optionally be employed as a sorbent, as well as methods of making such materials and systems of using such materials are provided. The processes, methods, systems and materials herein can be used for the separation of carbon dioxide from fluid streams. In one aspect, a method of forming functionalized crosslinked particles comprises introducing at least a portion of a surface of each porous particle in at least a subset of a plurality of porous particles to a crosslinking agent and a first reagent comprising at least one adsorbing moiety. Examples of adsorbing moiety include silane-functionalized amines, amino-functionalized silanes (aminosilane), and polyamines. In some aspects the method further comprises introducing the porous particles to a second reagent comprising at least one interaction moiety such as a silane-functionalized amine, amino-functionalized silane (aminosilane), or polyamine. Examples of crosslinking agent include dialdehyde, diisocyanates, dihaloalkane, diepoxide and dianhydrides.

Classes IPC  ?

  • B01J 20/22 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance organique
  • B01J 20/26 - Composés macromoléculaires synthétiques
  • B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
  • B01J 20/30 - Procédés de préparation, de régénération ou de réactivation
  • B01J 20/32 - Imprégnation ou revêtement
  • B01D 53/02 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse

54.

NEGATIVE EMISSIONS USING INORGANIC WASTE RECYCLING

      
Numéro d'application US2024061920
Numéro de publication 2025/144901
Statut Délivré - en vigueur
Date de dépôt 2024-12-26
Date de publication 2025-07-03
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Jin, Shijian
  • Papania-Davis, Antonio Raymond
  • Van Arsdale, Christopher Hunter
  • Mortenson Tyka, Michael Dominik

Abrégé

Provided herein are methods and systems for achieving ocean alkalinity enhancement (OAE), which provides a means of reducing atmospheric carbon dioxide levels, through electrolytic salt splitting. Treatment of ocean waters with the alkaline portion of salt splitting and treatment of inorganic waste with the acid portion of the salt splitting provide a means of achieving OAE without adding mineral content from land while at the same time providing a means of recycling inorganic waste in the form of recycled concrete aggregates.

Classes IPC  ?

  • C02F 1/46 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par des procédés électrochimiques
  • B01D 61/42 - ÉlectrodialyseÉlectro-osmose
  • C02F 1/461 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par des procédés électrochimiques par électrolyse
  • C02F 103/08 - Eau de mer, p. ex. pour le dessalement
  • C02F 103/12 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant des industries des silicates ou des céramiques, p. ex. eaux résiduaires provenant des usines du ciment ou du verre
  • C04B 18/00 - Emploi de matières agglomérées, de résidus ou de déchets comme charges pour mortiers, béton ou pierre artificielleTraitement de matières agglomérées, de résidus ou de déchets, spécialement adapté pour renforcer leurs propriétés de charge, dans les mortiers, le béton ou la pierre artificielle

55.

MULTI-MODAL UTILITY ASSET SEARCHING

      
Numéro d'application 18971727
Statut En instance
Date de dépôt 2024-12-06
Date de la première publication 2025-07-03
Propriétaire X Development LLC (USA)
Inventeur(s) Wang, Xin-Jing

Abrégé

This disclosure describes systems and methods for multi-modal search-based object detection and electric grid object search. Annotations and bounding boxes for images in an image database are determined. A first subset of images is determined from the images that share annotations. A textual token representing the first subset of images is generated and stored in a search index. A second subset of images that share visual features is determined from image pixels enclosed by the bounding boxes. An image token is generated based on the second subset of images and the shared visual features. A user interface configured to receive a search query input is provided for display on a user device. Search tokens are generated based on the search query input. A candidate image is identified and provided for display within the user interface at a position within a respective region of a geographic map of an electric grid.

Classes IPC  ?

  • G06F 16/532 - Formulation de requêtes, p. ex. de requêtes graphiques
  • G06F 16/538 - Présentation des résultats des requêtes

56.

LARGE LANGUAGE MODEL DRIVEN DATA AUGMENTATION FOR PROTEIN MACHINE LEARNING

      
Numéro d'application 18397412
Statut En instance
Date de dépôt 2023-12-27
Date de la première publication 2025-07-03
Propriétaire X Development LLC (USA)
Inventeur(s) Vaggi, Federico

Abrégé

A method for training a machine learning model (MLM) to predict the activity of a protein is described herein. In an example, a method involves accessing a set of training data comprising labeled examples with known activity levels. A large language model is used to generate synthetic examples of each labeled example by incorporating each possible amino acid (AA) mutation at each AA position in the labeled example and predicting the probability each AA mutation has of replacing the original AA. Based on a predetermined cutoff, a subset of negative synthetic examples that comprises at least one AA mutation with the lowest probability of being incorporated are selected. An augmented training dataset is generated and a MLM is trained, using the training data and the augmented training data set, by performing iterative operations to find a set of parameters that jointly minimize the sum of at least two loss functions.

Classes IPC  ?

  • G16B 40/00 - TIC spécialement adaptées aux biostatistiquesTIC spécialement adaptées à l’apprentissage automatique ou à l’exploration de données liées à la bio-informatique, p. ex. extraction de connaissances ou détection de motifs
  • G16B 30/00 - TIC spécialement adaptées à l’analyse de séquences impliquant des nucléotides ou des aminoacides

57.

2X2 PHOTONIC SPLITTER USING MODE CONVERTING Y-JUNCTIONS

      
Numéro d'application 18399413
Statut En instance
Date de dépôt 2023-12-28
Date de la première publication 2025-07-03
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Cheung, Alfred Ka Chun
  • Wu, Yi-Kuei Ryan

Abrégé

A 2×2 photonic splitter includes two mode converting Y-junctions. A first stage mode converting Y-junction includes input branch ports adapted to receive an input optical signal propagating in a fundamental spatial mode at either of the input branch ports, a first trunk port, and a first mode converting region. The first mode converting region is adapted to convert at least a first power portion of the fundamental spatial mode of the input optical signal when received via at least one of the input branch ports to a higher order spatial mode at the first trunk port. The second stage mode converting Y-junction includes output branch ports adapted to emit output optical signals having the fundamental spatial mode, a second trunk port, and a second mode converting region optically coupling the output branch ports to the second trunk port. A connected trunk section photonically links the trunk ports.

Classes IPC  ?

  • G02B 6/28 - Moyens de couplage optique ayant des bus de données, c.-à-d. plusieurs guides d'ondes interconnectés et assurant un système bidirectionnel par nature en mélangeant et divisant les signaux

58.

POWER GRID SIMULATION WITH REDUCED COMPONENT MODELS

      
Numéro d'application 18999158
Statut En instance
Date de dépôt 2024-12-23
Date de la première publication 2025-07-03
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Casey, Leo Francis
  • He, Mike Miao
  • Khalilinia, Hamed
  • Daly, Raymond

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products that perform operations that include obtaining one or more physical parameters and one or more predetermined operating conditions for a component to be connected to the electric power grid at a predetermined grid connection point. And, obtaining training data characterizing the component; generating, based on the obtained training data, physical parameters and one or more predetermined operating conditions, a reduced order simulator of the component, where the reduced order model is trained to simulate the behavior of the component at the predetermined connection point under the predetermined operating conditions.

Classes IPC  ?

  • G06F 30/27 - Optimisation, vérification ou simulation de l’objet conçu utilisant l’apprentissage automatique, p. ex. l’intelligence artificielle, les réseaux neuronaux, les machines à support de vecteur [MSV] ou l’apprentissage d’un modèle
  • G06F 113/04 - Réseaux de distribution électrique
  • G06F 119/06 - Analyse de puissance ou optimisation de puissance

59.

2X2 PHOTONIC SPLITTER USING MODE CONVERTING Y-JUNCTIONS

      
Numéro d'application US2024051773
Numéro de publication 2025/144493
Statut Délivré - en vigueur
Date de dépôt 2024-10-17
Date de publication 2025-07-03
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Cheung, Alfred Ka Chun
  • Wu, Yi-Kuei Ryan

Abrégé

A 2x2 photonic splitter includes two mode converting Y-junctions. A first stage mode converting Y-junction includes input branch ports adapted to receive an input optical signal propagating in a fundamental spatial mode at either of the input branch ports, a first trunk port, and a first mode converting region. The first mode converting region is adapted to convert at least a first power portion of the fundamental spatial mode of the input optical signal when received via at least one of the input branch ports to a higher order spatial mode at the first trunk port. The second stage mode converting Y-junction includes output branch ports adapted to emit output optical signals having the fundamental spatial mode, a second trunk port, and a second mode converting region optically coupling the output branch ports to the second trunk port. A connected trunk section photonically links the trunk ports.

Classes IPC  ?

  • G02B 6/28 - Moyens de couplage optique ayant des bus de données, c.-à-d. plusieurs guides d'ondes interconnectés et assurant un système bidirectionnel par nature en mélangeant et divisant les signaux
  • G02B 6/293 - Moyens de couplage optique ayant des bus de données, c.-à-d. plusieurs guides d'ondes interconnectés et assurant un système bidirectionnel par nature en mélangeant et divisant les signaux avec des moyens de sélection de la longueur d'onde

60.

LARGE LANGUAGE MODEL DRIVEN DATA AUGMENTATION FOR PROTEIN MACHINE LEARNING

      
Numéro d'application US2024061228
Numéro de publication 2025/144699
Statut Délivré - en vigueur
Date de dépôt 2024-12-20
Date de publication 2025-07-03
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s) Vaggi, Federico

Abrégé

A method for training a machine learning model (MLM) to predict the activity of a protein is described herein. In an example, a method involves accessing a set of training data comprising labeled examples with known activity levels. A large language model is used to generate synthetic examples of each labeled example by incorporating each possible amino acid (AA) mutation at each AA position in the labeled example and predicting the probability each AA mutation has of replacing the original AA. Based on a predetermined cutoff, a subset of negative synthetic examples that comprises at least one AA mutation with the lowest probability of being incorporated are selected. An augmented training dataset is generated and a MLM is trained, using the training data and the augmented training data set, by performing iterative operations to find a set of parameters that jointly minimize the sum of at least two loss functions.

Classes IPC  ?

  • G16B 30/00 - TIC spécialement adaptées à l’analyse de séquences impliquant des nucléotides ou des aminoacides
  • G16B 40/20 - Analyse de données supervisée

61.

POLYMER REINFORCEMENT ON DOUBLE AMINE COATED SORBENT

      
Numéro d'application US2024061805
Numéro de publication 2025/144831
Statut Délivré - en vigueur
Date de dépôt 2024-12-23
Date de publication 2025-07-03
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Willman, Jeremy, Aaron
  • Gong, Chaokun
  • Rampertab, Amanda, Marie
  • Gagne, Jacques

Abrégé

Disclosed herein are methods, and compositions produced using the methods, including introducing porous substrate particles and a first reagent comprising a polymer to a solvent to provide a plurality of coated particles; and introducing a second reagent comprising a polymeric amine and a third reagent comprising a silane moiety and an amine moiety to the coated particles, thereby providing a plurality of functionalized, coated particles.

Classes IPC  ?

  • B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
  • B01D 53/04 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse avec adsorbants fixes
  • B01D 53/62 - Oxydes de carbone
  • B01J 20/32 - Imprégnation ou revêtement

62.

LIFETIME IMPROVEMENT OF FUNCTIONALIZED MATERIALS

      
Numéro d'application US2024061806
Numéro de publication 2025/144832
Statut Délivré - en vigueur
Date de dépôt 2024-12-23
Date de publication 2025-07-03
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Gong, Chaokun
  • Willman, Jeremy, Aaron

Abrégé

22 from fluid streams. In one aspect, the disclosed materials are synthesized by forming coated particles through the introduction of porous particles, such as silica, to a first reagent comprising a polymer. Then the functionalized material is formed as functionalized coated particles by the introduction of a second reagent comprising at least one adsorbing moiety to the surfaces of the coated particles. Formation of the functionalized material is in the presence of a chelating agent, antioxidant, and/or crosslinker. In some instances, formation of the functionalized material is further in the presence of a third reagent comprising an interaction moiety that is incorporated into the functionalized coated particles.

Classes IPC  ?

  • B01J 20/22 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance organique
  • B01J 20/26 - Composés macromoléculaires synthétiques
  • B01J 20/10 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant de la silice ou un silicate
  • B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
  • B01J 20/30 - Procédés de préparation, de régénération ou de réactivation
  • B01J 20/32 - Imprégnation ou revêtement
  • B01D 53/02 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse

63.

Multimodal photonic components

      
Numéro d'application 18366427
Numéro de brevet 12345878
Statut Délivré - en vigueur
Date de dépôt 2023-08-07
Date de la première publication 2025-07-01
Date d'octroi 2025-07-01
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Lu, Jesse
  • Adolf, Brian John
  • Schubert, Martin Friedrich

Abrégé

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for designing a multimodal photonic component. In one aspect, a method includes defining a loss function within a simulation space including multiple voxels and encompassing features of the multimodal photonic component. The loss function corresponds to a target output mode profile for an input mode profile, where the target output mode profile includes a relationship between a set of operating conditions and one or more supported modes of the multimodal photonic component at a particular operative wavelength. The initial structure is defined for one or more features, where at least some of the voxels corresponding to features have a dimension smaller than a smallest operative wavelength of the multimodal photonic component, and values for structural parameters for the features are determined so that a loss according to the loss function is within a threshold loss.

Classes IPC  ?

  • G02B 27/00 - Systèmes ou appareils optiques non prévus dans aucun des groupes ,
  • G06F 30/23 - Optimisation, vérification ou simulation de l’objet conçu utilisant les méthodes des éléments finis [MEF] ou les méthodes à différences finies [MDF]
  • G06F 111/10 - Modélisation numérique

64.

FUNCTIONALIZED AND CROSSLINKED MATERIALS

      
Numéro d'application 19000591
Statut En instance
Date de dépôt 2024-12-23
Date de la première publication 2025-06-26
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Willman, Jeremy Aaron
  • Gong, Chaokun
  • Seybert, Kevin Wayne
  • Pour, Gavin

Abrégé

Functionalized and crosslinked material, which may optionally be employed as a sorbent, as well as methods of making such materials and systems of using such materials are provided. The processes, methods, systems and materials herein can be used for the separation of carbon dioxide from fluid streams. In one aspect, a method of forming functionalized crosslinked particles comprises introducing at least a portion of a surface of each porous particle in at least a subset of a plurality of porous particles to a crosslinking agent and a first reagent comprising at least one adsorbing moiety. Examples of adsorbing moiety include silane-functionalized amines, amino-functionalized silanes (aminosilane), and polyamines. In some aspects the method further comprises introducing the porous particles to a second reagent comprising at least one interaction moiety such as a silane-functionalized amine, amino-functionalized silane (aminosilane), or polyamine. Examples of crosslinking agent include dialdehyde, diisocyanates, dihaloalkane, diepoxide and dianhydrides.

Classes IPC  ?

  • B01J 20/26 - Composés macromoléculaires synthétiques
  • B01D 53/62 - Oxydes de carbone
  • B01D 53/81 - Procédés en phase solide
  • B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
  • B01J 20/32 - Imprégnation ou revêtement

65.

POLYMER REINFORCEMENT ON DOUBLE AMINE COATED SORBENT

      
Numéro d'application 19000606
Statut En instance
Date de dépôt 2024-12-23
Date de la première publication 2025-06-26
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Willman, Jeremy Aaron
  • Gong, Chaokun
  • Rampertab, Amanda Marie
  • Gagne, Jacques

Abrégé

Disclosed herein are methods, and compositions produced using the methods, including introducing porous substrate particles and a first reagent comprising a polymer to a solvent to provide a plurality of coated particles; and introducing a second reagent comprising a polymeric amine and a third reagent comprising a silane moiety and an amine moiety to the coated particles, thereby providing a plurality of functionalized, coated particles.

Classes IPC  ?

  • B01J 20/30 - Procédés de préparation, de régénération ou de réactivation
  • B01J 20/10 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant de la silice ou un silicate
  • B01J 20/26 - Composés macromoléculaires synthétiques
  • B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
  • B01J 20/32 - Imprégnation ou revêtement

66.

LIFETIME IMPROVEMENT OF FUNCTIONALIZED MATERIALS

      
Numéro d'application 19000613
Statut En instance
Date de dépôt 2024-12-23
Date de la première publication 2025-06-26
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Gong, Chaokun
  • Willman, Jeremy Aaron

Abrégé

Functionalized materials that act as sorbent, as well as methods of making such materials and systems of using such materials, are provided. The disclosed processes, methods, and materials can be used for the separation of CO2 from fluid streams. In one aspect, the disclosed materials are synthesized by forming coated particles through the introduction of porous particles, such as silica, to a first reagent comprising a polymer. Then the functionalized material is formed as functionalized coated particles by the introduction of a second reagent comprising at least one adsorbing moiety to the surfaces of the coated particles. Formation of the functionalized material is in the presence of a chelating agent, antioxidant, and/or crosslinker. In some instances, formation of the functionalized material is further in the presence of a third reagent comprising an interaction moiety that is incorporated into the functionalized coated particles.

Classes IPC  ?

  • B01J 20/32 - Imprégnation ou revêtement
  • B01D 53/04 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse avec adsorbants fixes
  • B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
  • B01J 20/30 - Procédés de préparation, de régénération ou de réactivation

67.

SPIRAL GRAVITY FED HEAT EXCHANGER

      
Numéro d'application US2024061208
Numéro de publication 2025/137407
Statut Délivré - en vigueur
Date de dépôt 2024-12-20
Date de publication 2025-06-26
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s) Nelson, Robert

Abrégé

A system for transferring heat between fluid and a bulk solid. The system includes a plurality of heat exchanger units, each heat exchanger unit comprising: an annular structure including an inner shell and an outer shell; and a first plate and a second plate defining therebetween a conduit for transporting the fluid, wherein the conduit forms a spiral around the inner shell, the spiral extending from the inner shell towards the outer shell, a space between turns of the spiral defining a channel for passage of the bulk solid. The inner shell defines a cylindrical annulus of the annular structure, an axis of the cylindrical annulus being aligned with the direction of gravity during operation. The bulk solid comprises a sorbent material configured to adsorb carbon dioxide from air. The fluid comprises a cooling fluid or a heating fluid.

Classes IPC  ?

  • F28D 9/04 - Appareils échangeurs de chaleur comportant des ensembles de canalisations fixes en forme de plaques ou de laminés pour les deux sources de potentiel calorifique, ces sources étant en contact chacune avec un côté de la paroi d'une canalisation les canalisations étant formées par des plaques ou des laminés enroulés en spirale
  • F28D 7/04 - Appareils échangeurs de chaleur comportant des ensembles de canalisations tubulaires fixes pour les deux sources de potentiel calorifique, ces sources étant en contact chacune avec un côté de la paroi d'une canalisation les canalisations étant enroulées en spirale
  • F25B 15/16 - Machines, installations ou systèmes à sorption, à marche continue, p. ex. à absorption utilisant le cycle de désorption
  • F25B 37/00 - AbsorbeursAdsorbeurs

68.

ELECTRICAL GRID SERVICE MONITORING, VALUATION, AND CONTROL

      
Numéro d'application 18394120
Statut En instance
Date de dépôt 2023-12-22
Date de la première publication 2025-06-26
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Casey, Leo Francis
  • Crahan, Page Furey
  • Fedoruk, Laura Elizabeth
  • Raab, Patrick
  • Khalilinia, Hamed
  • Ott, Andrew Lee
  • Daly, Raymond
  • Wong, Sze Mei Cat

Abrégé

A method for electrical grid service monitoring and valuation includes detecting a connection of a grid asset to an electric grid; receiving, from the grid asset, a communication indicating operating parameters for the grid asset; adding, to a database of grid assets, an identifier for the grid asset and the operating parameters; and simulating conditions of the electric grid based on data corresponding to a plurality of grid assets, the data being stored in the database; obtaining data indicating a status of the grid asset; determining that the grid asset is performing a grid service; obtaining an estimated value of the grid service using simulation results; obtaining energy market data indicating a market value of energy provided by the electric grid; and determining a value for the grid service performed based on (a) the estimated value of the grid service and (b) the energy market data.

Classes IPC  ?

  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu

69.

TRANSFORMER CONNECTION MAPPING IN AN OPERATING ELECTRIC POWER GRID

      
Numéro d'application 18396278
Statut En instance
Date de dépôt 2023-12-26
Date de la première publication 2025-06-26
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Pope, Arthur Robert
  • Li, Xinyue

Abrégé

Methods, systems, and apparatus, including medium-encoded computer program products, for transformer connection mapping in an operating electric power grid. The system can determine that a first utility meter is fed by a transformer in an electrical power distribution network based on a geographic distance between the first utility meter and the transformer as determined from non-electrical data. The system can obtain first electrical measurements from the first utility meter at predetermined time intervals and second electrical measurements from a second utility meter at the predetermined time intervals. The system can determine a likelihood that the second utility meter is fed by the transformer by, at least, performing a time-based correlation between the first electrical measurements and the second electrical measurements within a predefined time window. The system can associate a load supplied through the second utility meter with the transformer in a computer model of the electrical power distribution network.

Classes IPC  ?

  • G06Q 50/06 - Fourniture d’énergie ou d’eau
  • G06Q 10/04 - Prévision ou optimisation spécialement adaptées à des fins administratives ou de gestion, p. ex. programmation linéaire ou "problème d’optimisation des stocks"
  • G06Q 10/0631 - Planification, affectation, distribution ou ordonnancement de ressources d’entreprises ou d’organisations

70.

SPIRAL GRAVITY FED HEAT EXCHANGER

      
Numéro d'application 18988502
Statut En instance
Date de dépôt 2024-12-19
Date de la première publication 2025-06-26
Propriétaire X Development LLC (USA)
Inventeur(s) Nelson, Robert

Abrégé

A system for transferring heat between fluid and a bulk solid. The system includes a plurality of heat exchanger units, each heat exchanger unit comprising: an annular structure including an inner shell and an outer shell; and a first plate and a second plate defining therebetween a conduit for transporting the fluid, wherein the conduit forms a spiral around the inner shell, the spiral extending from the inner shell towards the outer shell, a space between turns of the spiral defining a channel for passage of the bulk solid. The inner shell defines a cylindrical annulus of the annular structure, an axis of the cylindrical annulus being aligned with the direction of gravity during operation. The bulk solid comprises a sorbent material configured to adsorb carbon dioxide from air. The fluid comprises a cooling fluid or a heating fluid.

Classes IPC  ?

  • F28D 7/04 - Appareils échangeurs de chaleur comportant des ensembles de canalisations tubulaires fixes pour les deux sources de potentiel calorifique, ces sources étant en contact chacune avec un côté de la paroi d'une canalisation les canalisations étant enroulées en spirale

71.

Distributed Acoustic Sensing Based on Two-Dimensional Waveguides

      
Numéro d'application 18977381
Statut En instance
Date de dépôt 2024-12-11
Date de la première publication 2025-06-19
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Miller, Alex S.
  • Karrenbach, Martin Horst
  • Goncharuk, Artem
  • Dolivo, Marina Andrea
  • Piercy, Brenton Edward

Abrégé

The present disclosure generally relates to systems, software, and computer-implemented methods for distributed acoustic sensing (DAS). One example system includes a two-dimensional (2D) waveguide, including a 2D substrate and a waveguide embedded in the 2D substrate, the waveguide configured to backscatter optical signals, and a first optical sensing system. The first optical sensing system can be configured to transmit a first optical signal into the 2D waveguide, receive a backscattered optical signal generated based on backscattering the first optical signal by the 2D waveguide, and generate a sensing result based on the backscattered optical signal.

Classes IPC  ?

  • G01H 9/00 - Mesure des vibrations mécaniques ou des ondes ultrasonores, sonores ou infrasonores en utilisant des moyens sensibles aux radiations, p. ex. des moyens optiques
  • G01D 5/353 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensibleMoyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminéTransducteurs non spécialement adaptés à une variable particulière utilisant des moyens optiques, c.-à-d. utilisant de la lumière infrarouge, visible ou ultraviolette avec atténuation ou obturation complète ou partielle des rayons lumineux les rayons lumineux étant détectés par des cellules photo-électriques en modifiant les caractéristiques de transmission d'une fibre optique
  • G02B 6/125 - Courbures, branchements ou intersections
  • G02B 6/13 - Circuits optiques intégrés caractérisés par le procédé de fabrication

72.

IIMAGE TRANSLATION FOR IMAGE RECOGNITION TO COMPENSATE FOR SOURCE IMAGE REGIONAL DIFFERENCES

      
Numéro d'application 18989417
Statut En instance
Date de dépôt 2024-12-20
Date de la première publication 2025-05-29
Propriétaire X Development LLC (USA)
Inventeur(s) Stahlfeld, Phillip E.

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for predicting locations of utility assets. One of the methods includes receiving an input image of an area in a first geographical region; generating, from the input image and using a generative adversarial network, a corresponding reference image; and generating, by an object detection model and from the reference image, an output that identifies respective locations of one or more utility assets with reference to the input image.

Classes IPC  ?

  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
  • G06F 17/15 - Calcul de fonction de corrélation
  • G06N 3/045 - Combinaisons de réseaux
  • G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
  • G06V 20/13 - Images satellite
  • G06V 20/17 - Scènes terrestres transmises par des avions ou des drones
  • G06V 20/52 - Activités de surveillance ou de suivi, p. ex. pour la reconnaissance d’objets suspects

73.

JOINT ASSET AND DEFECT DETECTION MACHINE LEARNING MODEL

      
Numéro d'application 18935234
Statut En instance
Date de dépôt 2024-11-01
Date de la première publication 2025-05-08
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Wang, Xin-Jing
  • Ha, Anthony

Abrégé

This disclosure describes a system, method, and computer storage medium for joint asset and defect detection. The approach includes receiving input data including an input image of a utility asset, the input image including one or more objects. Deep neural networks are configured to generate embeddings for classification labels of the one or more objects, each embedding corresponding to a classification label and including a mapping between the classification label and a subset of feature vectors. Defect classifiers are configured to determine a likelihood of an object from the one or more objects in the input image containing a type of defect. Each defect classifier is trained to determine a type of defect based on the embeddings for the one or more classification labels. The approach includes generating an output image that includes bounding boxes for the objects and an annotation corresponding a respective object from the objects.

Classes IPC  ?

  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
  • G06T 11/00 - Génération d'images bidimensionnelles [2D]
  • G06V 10/26 - Segmentation de formes dans le champ d’imageDécoupage ou fusion d’éléments d’image visant à établir la région de motif, p. ex. techniques de regroupementDétection d’occlusion
  • G06V 10/77 - Traitement des caractéristiques d’images ou de vidéos dans les espaces de caractéristiquesDispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p. ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]Séparation aveugle de source
  • G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
  • G06V 20/10 - Scènes terrestres
  • G06V 20/70 - Étiquetage du contenu de scène, p. ex. en tirant des représentations syntaxiques ou sémantiques

74.

PARTICLE CHARACTERIZATION SYSTEM AND METHOD

      
Numéro d'application US2024050771
Numéro de publication 2025/096166
Statut Délivré - en vigueur
Date de dépôt 2024-10-10
Date de publication 2025-05-08
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Papania-Davis, Antonio Raymond
  • Yan, Weishi

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for characterizing a particulate ingredient of a mixture including a hopper configured to dispense particles along an axis and in freefall through an imaging region, an illumination sub-system including at least one light source arranged at a first location with respect to the axis and configured to illuminate the imaging region, an image capture sub-system including at least one image capture device including a telecentric lens and arranged at a second location with respect to the axis and configured to align a focal plane of the at least one image capture device with the axis within the imaging region, such that when a particle freefalls through the imaging region, the particle is illuminated by the illumination sub-system and the image capture sub-system captures images of at least three silhouettes of the particle within the imaging region.

Classes IPC  ?

  • G01N 15/1434 - Dispositions optiques
  • G01N 15/14 - Techniques de recherche optique, p. ex. cytométrie en flux
  • G01N 33/00 - Recherche ou analyse des matériaux par des méthodes spécifiques non couvertes par les groupes
  • G01N 33/38 - BétonChauxMortierPlâtreBriquesProduits céramiquesVerre
  • G06T 7/593 - Récupération de la profondeur ou de la forme à partir de plusieurs images à partir d’images stéréo
  • G01N 15/00 - Recherche de caractéristiques de particulesRecherche de la perméabilité, du volume des pores ou de l'aire superficielle effective de matériaux poreux

75.

GENERATING ACTIONS FOR A SUPPLY CHAIN NETWORK

      
Numéro d'application US2024052856
Numéro de publication 2025/090795
Statut Délivré - en vigueur
Date de dépôt 2024-10-24
Date de publication 2025-05-01
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Nguyen, Lam Thanh
  • Brentano, Grace Taixi
  • Lee, Sze Man
  • Suri, Karush
  • Singh, Anikait
  • Pradhan, Salil Vijaykumar
  • Andre, David

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating actions for a supply chain network. One of the methods includes receiving a request to generate an action in a supply chain network for a particular product based on current state information; providing a request to an action model to generate a respective probability distribution for one or more actions for one or more products; receiving, from the action model, the respective probability distributions for the one or more products; determining, for each product, a binned action from the respective probability distribution; providing a request to a sequence model to generate a respective correction for the one or more binned actions; and receiving, from the sequence model, the respective correction for the respective binned action.

Classes IPC  ?

  • G06Q 10/087 - Gestion d’inventaires ou de stocks, p. ex. exécution des commandes, approvisionnement ou régularisation par rapport aux commandes

76.

GENERATING ACTIONS FOR A SUPPLY CHAIN NETWORK

      
Numéro d'application 18926132
Statut En instance
Date de dépôt 2024-10-24
Date de la première publication 2025-04-24
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Nguyen, Lam Thanh
  • Brentano, Grace Taixi
  • Lee, Sze Man
  • Suri, Karush
  • Singh, Anikait
  • Pradhan, Salil Vijaykumar
  • Andre, David
  • Murphy, Gearoid

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating actions for a supply chain network. One of the methods includes receiving a request to generate an action in a supply chain network for a particular product based on current state information; providing a request to an action model to generate a respective probability distribution for one or more actions for one or more products; receiving, from the action model, the respective probability distributions for the one or more products; determining, for each product, a binned action from the respective probability distribution; providing a request to a sequence model to generate a respective correction for the one or more binned actions; and receiving, from the sequence model, the respective correction for the respective binned action.

Classes IPC  ?

  • G06Q 10/08 - Logistique, p. ex. entreposage, chargement ou distributionGestion d’inventaires ou de stocks

77.

LOW POWER BEACON SCHEDULING

      
Numéro d'application US2024048305
Numéro de publication 2025/085224
Statut Délivré - en vigueur
Date de dépôt 2024-09-25
Date de publication 2025-04-24
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Koprowski, Brion
  • Kawaguchi, Dean, Mamoru
  • Wong, Adrian
  • Lal, Amit

Abrégé

The technology relates to a wireless system (100,200) that can be used indoors or outdoors, and is configured to reduce interference of beacon signals on channels used by the system (100,200). Aspects of the technology provide for evaluation of channel activity to determine an optimal transmission channel. This is beneficial where there is a high density of tags (102,104,400,500,600) that may be configured for data transmission. Tags (102, 104, 400, 500, 600) may include an antenna (440, 540, 6440) to receive signals; a first conditioning element (442,542,642) to attenuate received signals corresponding with the system channels; a converter (444,544,644) and a second conditioning element (446,546,646) to prepare attenuated signals for analysis; a comparator (448,548,648) to compare an attenuated signal to a threshold value; and a processor (450,550,650) to transmit a beacon signal to a reader apparatus (106) based on the comparison.

Classes IPC  ?

  • G06K 7/10 - Méthodes ou dispositions pour la lecture de supports d'enregistrement par radiation électromagnétique, p. ex. lecture optiqueMéthodes ou dispositions pour la lecture de supports d'enregistrement par radiation corpusculaire
  • G06K 19/07 - Supports d'enregistrement avec des marques conductrices, des circuits imprimés ou des éléments de circuit à semi-conducteurs, p. ex. cartes d'identité ou cartes de crédit avec des puces à circuit intégré
  • H04W 4/029 - Services de gestion ou de suivi basés sur la localisation

78.

POLARIZATION BEAM SPLITTER USING ASYMMETRIC POWER SPLITTING AND MULTIPATH INTERFEROMETRY

      
Numéro d'application US2024047469
Numéro de publication 2025/075786
Statut Délivré - en vigueur
Date de dépôt 2024-09-19
Date de publication 2025-04-10
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s) Wu, Yi-Kuei Ryan

Abrégé

A polarization beam splitter includes an input port, first and second output ports, and a polarization splitting region coupled between the input port and the first and second output ports. The input port is adapted to receive guided optical signals that are polarization multiplexed, including a transverse electric (TE) optical signal and a transverse magnetic (TM) optical signal. The polarization splitting region includes a pattern of at least two materials having different refractive indexes. The pattern is shaped to demultiplex the TE and TM optical signals by directing a first power majority of the TE optical signal received at the input port to the second output port via asymmetrical power splitting while directing a second power majority of the TM optical signal received at the input port to the first output port via multipath interferometry.

Classes IPC  ?

  • G02B 6/126 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques du genre à circuit intégré utilisant des effets de polarisation
  • G02B 27/28 - Systèmes ou appareils optiques non prévus dans aucun des groupes , pour polariser
  • G02B 6/12 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques du genre à circuit intégré

79.

TECHNIQUES FOR USING INVERSE DESIGN FOR COMBINED OPTIMIZATION OF OPTICAL AND ELECTRICAL COMPONENTS IN AN OPTOELECTRONIC RECEIVER

      
Numéro d'application US2024047989
Numéro de publication 2025/075814
Statut Délivré - en vigueur
Date de dépôt 2024-09-23
Date de publication 2025-04-10
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Adolf, Brian
  • Wu, Yi-Kuei, Ryan
  • Williamson, Ian

Abrégé

In some embodiments, a computer-implemented method of creating a design for an optoelectronic detector device is provided. A computing system determines an initial design that includes circuit parameters for at least one photodetector region and for conductors that couple the photodetector region to circuitry. The computing system simulates performance of an optically active region to generate a plurality of field values, and simulates performance of the at least one photodetector region based on the plurality of field values to generate charge values. The computing system simulates performance of at least the conductors based on the charge values to generate a performance loss value, and determines a loss metric based on the performance loss value. The computing system backpropagates the loss metric to determine a circuit parameter gradient, and revises the circuit parameters based at least in part on the circuit parameter gradient to create an updated initial design

Classes IPC  ?

  • G06F 30/27 - Optimisation, vérification ou simulation de l’objet conçu utilisant l’apprentissage automatique, p. ex. l’intelligence artificielle, les réseaux neuronaux, les machines à support de vecteur [MSV] ou l’apprentissage d’un modèle
  • G06F 30/23 - Optimisation, vérification ou simulation de l’objet conçu utilisant les méthodes des éléments finis [MEF] ou les méthodes à différences finies [MDF]
  • G06N 3/084 - Rétropropagation, p. ex. suivant l’algorithme du gradient
  • G06F 119/02 - Analyse de fiabilité ou optimisation de fiabilitéAnalyse de défaillance, p. ex. performance dans le pire scénario, analyse du mode de défaillance et de ses effets [FMEA]
  • G06F 119/10 - Analyse du bruit ou optimisation du bruit

80.

Large Language Models for Predictive Modeling and Inverse Design

      
Numéro d'application 18830758
Statut En instance
Date de dépôt 2024-09-11
Date de la première publication 2025-04-10
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Ling, Julia Black
  • Martinez, Alberto Camacho
  • Andre, David
  • Hahn, Christopher

Abrégé

An inverse design system combines a large language model (LLM) with a task-specific optimizer, which includes a search function, a forward model, and a comparator. The LLM adjusts parameters of the optimizer's components in response to a design scenario. Then the optimizer processes the design scenario to produce design candidates. Optionally, the LLM learns from the design candidates in an iterative process. A stochastic predictive modeling system combines an LLM with input distributions and a forward model. The LLM adjusts one or more of the input distributions and/or the forward model in response to a forecast scenario. Then the forward model processes a sampling of the input distributions to produce a forward distribution. Optionally, the LLM informs the sampling process. Optionally, the LLM learns from the forward distribution.

Classes IPC  ?

81.

ASSET-LEVEL VULNERABILITY AND MITIGATION

      
Numéro d'application 18985943
Statut En instance
Date de dépôt 2024-12-18
Date de la première publication 2025-04-10
Propriétaire X Development LLC (USA)
Inventeur(s) Mullet, Benjamin Goddard

Abrégé

Methods, systems, and apparatus for receiving a request for a damage propensity score for a parcel, receiving imaging data for the parcel, wherein the imaging data comprises street-view imaging data of the parcel, extracting, by a machine-learned model including multiple classifiers, characteristics of vulnerability features for the parcel from the imaging data, determining, by the machine-learned model and from the characteristics of the vulnerability features, a damage propensity score for the parcel, and providing a representation of the damage propensity score for display.

Classes IPC  ?

82.

LARGE LANGUAGE MODELS FOR PREDICTIVE MODELING AND INVERSE DESIGN

      
Numéro d'application US2024046325
Numéro de publication 2025/075756
Statut Délivré - en vigueur
Date de dépôt 2024-09-12
Date de publication 2025-04-10
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Ling, Julia, Black
  • Martinez, Alberto, Camacho
  • Andre, David
  • Hahn, Christopher

Abrégé

An inverse design system combines a large language model (LLM) with a task-specific optimizer, which includes a search function, a forward model, and a comparator. The LLM adjusts parameters of the optimizer's components in response to a design scenario. Then the optimizer processes the design scenario to produce design candidates. Optionally, the LLM learns from the design candidates in an iterative process. A stochastic predictive modeling system combines an LLM with input distributions and a forward model. The LLM adjusts one or more of the input distributions and/or the forward model in response to a forecast scenario. Then the forward model processes a sampling of the input distributions to produce a forward distribution. Optionally, the LLM informs the sampling process. Optionally, the LLM learns from the forward distribution.

Classes IPC  ?

  • G06F 30/27 - Optimisation, vérification ou simulation de l’objet conçu utilisant l’apprentissage automatique, p. ex. l’intelligence artificielle, les réseaux neuronaux, les machines à support de vecteur [MSV] ou l’apprentissage d’un modèle
  • G06F 40/30 - Analyse sémantique
  • G06N 20/00 - Apprentissage automatique
  • G06Q 10/04 - Prévision ou optimisation spécialement adaptées à des fins administratives ou de gestion, p. ex. programmation linéaire ou "problème d’optimisation des stocks"

83.

OPTIMIZATION OF HEATERS FOR TUNING PHOTONIC DEVICES

      
Numéro d'application US2024047460
Numéro de publication 2025/075785
Statut Délivré - en vigueur
Date de dépôt 2024-09-19
Date de publication 2025-04-10
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Adolf, Brian
  • Watson, Philip
  • Wu, Yi-Kuei Ryan
  • Williamson, Ian

Abrégé

In some embodiments, a computer-implemented method of creating a design for an optoelectronic device is provided. A computing system determines an initial heater design that includes one or more heater parameters. The computing system determines a temperature gradation by simulating performance of the initial heater design in adjusting an environmental temperature to a nominal temperature. The computing system simulates performance of a nominal optimized design of a dispersive region of the optoelectronic device, given the temperature gradation, to determine a temperature-influenced performance loss value. The computing system determines a heater parameter gradient based on the temperature-influenced performance loss value, and revises the heater parameters based at least in part on the heater parameter gradient to create a revised heater design.

Classes IPC  ?

  • G02B 6/12 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques du genre à circuit intégré
  • G02B 6/287 - Structuration des guides de lumière pour former des éléments optiques par application de chaleur
  • G02B 27/00 - Systèmes ou appareils optiques non prévus dans aucun des groupes ,

84.

APTAMER DESIGN BY REINFORCEMENT LEARNING BASED FINE-TUNING OF GENERATIVE LANGUAGE MODELS

      
Numéro d'application 18375092
Statut En instance
Date de dépôt 2023-09-29
Date de la première publication 2025-04-03
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Deaton, Jon
  • Poplin, Ryan
  • Nagatani, Ray
  • Wynn, Michelle
  • Pai, Anand
  • D'Arcy, Joshua

Abrégé

The present disclosure relates to a closed loop aptamer development system that leverages in vitro experiments and in silico computation and artificial intelligence-based techniques to iteratively improve a process for identifying binders that can bind a molecular target. Particularly, aspects of the present disclosure are directed to obtaining, using an experimental assay, experimental data for a set of aptamers. The experimental data includes multiple pairs of data, each pair of data having: (i) an aptamer sequence for an aptamer from a set of aptamers, and (ii) a measurement for the characteristic of the aptamer with respect to a given target. A reward model is fine-tuned, using the experimental data, to predict a function-approximation metric for the characteristic of each aptamer in the set of aptamers. A decoder model is fine-tuned for generating novel aptamer sequences based on the function-approximation metric generated by the reward model for the novel aptamer sequences.

Classes IPC  ?

  • G16B 15/30 - Ciblage de médicament à l’aide de données structurellesPrévision d’amarrage ou de liaison moléculaire
  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance
  • G16B 40/20 - Analyse de données supervisée

85.

Polarization beam splitter using asymmetric power splitting and multipath interferometry

      
Numéro d'application 18375717
Numéro de brevet 12461395
Statut Délivré - en vigueur
Date de dépôt 2023-10-02
Date de la première publication 2025-04-03
Date d'octroi 2025-11-04
Propriétaire X Development LLC (USA)
Inventeur(s) Wu, Yi-Kuei Ryan

Abrégé

A polarization beam splitter includes an input port, first and second output ports, and a polarization splitting region coupled between the input port and the first and second output ports. The input port is adapted to receive guided optical signals that are polarization multiplexed, including a transverse electric (TE) optical signal and a transverse magnetic (TM) optical signal. The polarization splitting region includes a pattern of at least two materials having different refractive indexes. The pattern is shaped to demultiplex the TE and TM optical signals by directing a first power majority of the TE optical signal received at the input port to the second output port via asymmetrical power splitting while directing a second power majority of the TM optical signal received at the input port to the first output port via multipath interferometry.

Classes IPC  ?

  • G02F 1/01 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur
  • G02B 27/00 - Systèmes ou appareils optiques non prévus dans aucun des groupes ,
  • G02F 1/21 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur par interférence

86.

TECHNIQUES FOR USING INVERSE DESIGN FOR COMBINED OPTIMIZATION OF OPTICAL AND ELECTRICAL COMPONENTS IN AN OPTOELECTRONIC RECEIVER

      
Numéro d'application 18479724
Statut En instance
Date de dépôt 2023-10-02
Date de la première publication 2025-04-03
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Adolf, Brian
  • Wu, Yi-Kuei Ryan
  • Williamson, Ian

Abrégé

In some embodiments, a computer-implemented method of creating a design for an optoelectronic detector device is provided. A computing system determines an initial design that includes circuit parameters for at least one photodetector region and for conductors that couple the photodetector region to circuitry. The computing system simulates performance of an optically active region to generate a plurality of field values, and simulates performance of the at least one photodetector region based on the plurality of field values to generate charge values. The computing system simulates performance of at least the conductors based on the charge values to generate a performance loss value, and determines a loss metric based on the performance loss value. The computing system backpropagates the loss metric to determine a circuit parameter gradient, and revises the circuit parameters based at least in part on the circuit parameter gradient to create an updated initial design.

Classes IPC  ?

  • G06F 30/392 - Conception de plans ou d’agencements, p. ex. partitionnement ou positionnement
  • G06F 119/06 - Analyse de puissance ou optimisation de puissance

87.

OPTIMIZATION OF HEATERS FOR TUNING PHOTONIC DEVICES

      
Numéro d'application 18479731
Statut En instance
Date de dépôt 2023-10-02
Date de la première publication 2025-04-03
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Adolf, Brian
  • Watson, Philip
  • Wu, Yi-Kuei Ryan
  • Williamson, Ian

Abrégé

In some embodiments, a computer-implemented method of creating a design for an optoelectronic device is provided. A computing system determines an initial heater design that includes one or more heater parameters. The computing system determines a temperature gradation by simulating performance of the initial heater design in adjusting an environmental temperature to a nominal temperature. The computing system simulates performance of a nominal optimized design of a dispersive region of the optoelectronic device, given the temperature gradation, to determine a temperature-influenced performance loss value. The computing system determines a heater parameter gradient based on the temperature-influenced performance loss value, and revises the heater parameters based at least in part on the heater parameter gradient to create a revised heater design.

Classes IPC  ?

88.

TEMPORAL BOUNDS OF WILDFIRES

      
Numéro d'application 18787405
Statut En instance
Date de dépôt 2024-07-29
Date de la première publication 2025-03-27
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Cowan, Eliot Julien
  • Cowan, Avery Noam

Abrégé

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a temporal range of a fire. In some implementations, a server obtains a date when a fire occurred within a region. The server obtains satellite imagery of the region from before the date when the fire occurred. The server generates a first statistical distribution from the satellite imagery. The server determines a start date of the fire using the first statistical distribution. The server obtains second satellite imagery of the region from before and after the start date. The server selects a second set of imagery from the second satellite imagery from before the start date. The server generates a second statistical distribution from the second set of imagery. The server determines an end date of the fire using the second statistical distribution. The server provides the start date and the end date for output.

Classes IPC  ?

  • G06T 7/00 - Analyse d'image
  • G06F 16/587 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des informations géographiques ou spatiales, p. ex. la localisation

89.

UNIFIED PLATFORM FOR PLANNING AND OPERATIONS OF AN ELECTRIC POWER GRID

      
Numéro d'application 18884957
Statut En instance
Date de dépôt 2024-09-13
Date de la première publication 2025-03-20
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Wong, Sze Mei Cat
  • Casey, Leo Francis
  • Kumar, Sushant

Abrégé

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for simulation of electrical power grid behaviors. In some instances, a data model associated with an electrical power grid is obtained. The data model stores static data and dynamic data that can be continuously integrated into the data model based on data streams obtained from data sources associated with properties of the electrical power grid. A set of interfaces can be instantiated for querying data based on the data model. The querying is related to data from at least one of a planning analysis modeling domain or an operation analysis modeling domain from the data model related to the electrical power grid. A query associated with a first planning operation in the planning analysis modeling domain is executed. The query defines one or more nodes of the electrical power grid and relates to the planning analysis domain.

Classes IPC  ?

  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • G06F 113/04 - Réseaux de distribution électrique

90.

UNIFIED PLATFORM FOR PLANNING AND OPERATIONS OF AN ELECTRIC POWER GRID

      
Numéro d'application US2024046620
Numéro de publication 2025/059468
Statut Délivré - en vigueur
Date de dépôt 2024-09-13
Date de publication 2025-03-20
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Wong, Sze Mei Cat
  • Casey, Leo Francis
  • Kumar, Sushant

Abrégé

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for simulation of electrical power grid behaviors. In some instances, a data model associated with an electrical power grid is obtained. The data model stores static data and dynamic data that can be continuously integrated into the data model based on data streams obtained from data sources associated with properties of the electrical power grid. A set of interfaces can be instantiated for querying data based on the data model. The querying is related to data from at least one of a planning analysis modeling domain or an operation analysis modeling domain from the data model related to the electrical power grid. A query associated with a first planning operation in the planning analysis modeling domain is executed. The query defines one or more nodes of the electrical power grid and relates to the planning analysis domain.

Classes IPC  ?

  • G06Q 10/04 - Prévision ou optimisation spécialement adaptées à des fins administratives ou de gestion, p. ex. programmation linéaire ou "problème d’optimisation des stocks"
  • G06Q 50/06 - Fourniture d’énergie ou d’eau
  • H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs

91.

EFFICIENT AND ACCURATE SUBPIXEL SMOOTHING FOR FDTD SIMULATION

      
Numéro d'application 18463983
Statut En instance
Date de dépôt 2023-09-08
Date de la première publication 2025-03-13
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Adolf, Brian
  • Chandrasekhar, Aaditya

Abrégé

In some embodiments, a computer-implemented method for simulating performance of a physical device is provided. Calculating a current time step of an operational simulation of the physical device includes, for each voxel of a simulated environment, concurrently with loading a set of field values for the voxel for a previous time step from a main memory, determining permittivity values for the voxel using feature parameter values. The computing system calculates a set of field values for the voxel for the current time step based on the set of field values for the voxel for the previous time step and the permittivity values.

Classes IPC  ?

  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu

92.

GENERATION AND IMPLEMENTATION OF GEOSPATIAL WORKFLOWS

      
Numéro d'application 18816539
Statut En instance
Date de dépôt 2024-08-27
Date de la première publication 2025-03-06
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Gupta, Ananya
  • Murphy, Gearoid
  • Goncharuk, Artem
  • Gupta, Akshina
  • Zhang, Haoyu
  • Walker, Adrian

Abrégé

Implementations are described herein for automatically generating multimodal geospatial workflows for accomplishing geospatial tasks. In various implementations, a natural language request may be processed based on generative model(s) such as LLM(s) to generate workflow output tokens that identify high-level actions for completing a geospatial task conveyed in the natural language request. First data indicative of the high-level actions may be processed using one or more of the generative models to generate dataset output tokens that identify responsive dataset(s) that likely contain data responsive to the geospatial task. Second data indicative of both the high-level actions and the responsive dataset(s) may be processed based on one or more of the generative models to generate data manipulation output tokens that identify data manipulation instructions for assembling data from the responsive dataset(s) into a response that fulfills the geospatial task.

Classes IPC  ?

  • G06F 16/387 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des informations géographiques ou spatiales, p. ex. la localisation
  • G06F 40/284 - Analyse lexicale, p. ex. segmentation en unités ou cooccurrence

93.

FAST ONE-SHOT OPEN VOCABULARY IMAGE-CONDITIONED DETECTION AND SEARCH METHOD FOR UTILITY ASSETS

      
Numéro d'application 18242739
Statut En instance
Date de dépôt 2023-09-06
Date de la première publication 2025-03-06
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Wang, Xin-Jing
  • Ha, Anthony

Abrégé

This disclosure describes a system, method, and non-transitory computer-readable medium for image search-based object detection of utility assets in image databases. The method includes receiving an input image of a utility asset and a query bounding box representing an image-based object query. Bounding boxes of objects represented in the input image are generated based on the input image and the query bounding box, in which anchoring boxes corresponding to object classifications are identified from the bounding boxes. A textual label is determined for a selected subset of anchoring boxes. An image embedding representing the region is encoded, and image tokens are generated based on the encoded image embedding. Output images of other utility assets relevant to the image-based object query are identified from images in an image database, based on at least one of (i) the encoded image embedding, (ii) the image tokens, or (iii) the textual label. The output images are provided for output.

Classes IPC  ?

  • G06F 16/58 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement
  • G06F 16/535 - Filtrage basé sur des données supplémentaires, p. ex. sur des profils d'utilisateurs ou de groupes
  • G06T 7/11 - Découpage basé sur les zones
  • G06V 20/70 - Étiquetage du contenu de scène, p. ex. en tirant des représentations syntaxiques ou sémantiques

94.

GENERATION AND IMPLEMENTATION OF GEOSPATIAL WORKFLOWS

      
Numéro d'application US2024043667
Numéro de publication 2025/049321
Statut Délivré - en vigueur
Date de dépôt 2024-08-23
Date de publication 2025-03-06
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Gupta, Ananya
  • Murphy, Gearoid
  • Goncharuk, Artem
  • Gupta, Akshina
  • Zhang, Haoyu
  • Walker, Adrian

Abrégé

Implementations are described herein for automatically generating multimodal geospatial workflows for accomplishing geospatial tasks. In various implementations, a natural language request may be processed based on generative model(s) such as LLM(s) to generate workflow output tokens that identify high-level actions for completing a geospatial task conveyed in the natural language request. First data indicative of the high-level actions may be processed using one or more of the generative models to generate dataset output tokens that identify responsive dataset(s) that likely contain data responsive to the geospatial task. Second data indicative of both the high-level actions and the responsive dataset(s) may be processed based on one or more of the generative models to generate data manipulation output tokens that identify data manipulation instructions for assembling data from the responsive dataset(s) into a response that fulfills the geospatial task.

Classes IPC  ?

  • G06F 16/9032 - Formulation de requêtes
  • G06F 16/909 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des informations géographiques ou spatiales, p. ex. la localisation

95.

AGGREGATING DISPARATE DATA REPRESENTATIVE OF AN ADVERSE EVENT FOR MACHINE LEARNING

      
Numéro d'application US2024043869
Numéro de publication 2025/049394
Statut Délivré - en vigueur
Date de dépôt 2024-08-26
Date de publication 2025-03-06
Propriétaire X DEVELOPMENT LLC (USA)
Inventeur(s)
  • Gupta, Akshina
  • Cowan, Eliot Julien

Abrégé

Methods, systems, and apparatus for accepting, by a training system, a plurality of sets of data elements, wherein a first set of data elements describe a first property of a first adverse event, a second set of data elements describe the first property of a second adverse event, and a third set of data elements describe the first property of a third adverse event, determining, by the training system, that the first adverse event and the second adverse event are associated with a first adverse event complex, and in response: aggregating at least a subset of the first set of data elements and at least a subset of the second set of data elements into an aggregate set of data elements describing the first property for the first adverse event complex, and training, by the training system, a ML model.

Classes IPC  ?

  • G06Q 10/04 - Prévision ou optimisation spécialement adaptées à des fins administratives ou de gestion, p. ex. programmation linéaire ou "problème d’optimisation des stocks"
  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 20/00 - Apprentissage automatique
  • G06Q 10/0635 - Analyse des risques liés aux activités d’entreprises ou d’organisations

96.

A-LIFE

      
Numéro d'application 1841989
Statut Enregistrée
Date de dépôt 2024-11-26
Date d'enregistrement 2024-11-26
Propriétaire X Development LLC (USA)
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Scientific research and development; research and development of technology in the fields of biology, synthetic biology, pharmaceutical preparations, biotechnology, living systems, renewable materials, chemicals, organisms, and bioprocesses; research, development and engineering services in the fields of biology, synthetic biology, pharmaceutical preparations, biotechnology, living systems, renewable materials, chemicals, organisms, and bioprocesses; design, engineering, research, development and testing services in the fields of biology, synthetic biology, pharmaceutical preparations, biotechnology, living systems, renewable materials, chemicals, organisms, and bioprocesses; custom synthesis in the nature of genetic engineering of DNA, biological organisms, cells, viruses and special purpose cells for scientific, engineering, research, medical, agricultural, food, chemical, energy, industrial, and manufacturing use; consulting services in the fields of research in biology, synthetic biology, pharmaceutical preparations, biotechnology, living systems, renewable materials, chemicals, organisms, and bioprocesses; biotechnology research; biological research; design of computer-simulated models; computer modeling services in the fields of biology, synthetic biology, pharmaceutical preparations, biotechnology, living systems, renewable materials, chemicals, organisms, and bioprocesses; providing online non-downloadable proprietary software to evaluate, analyze and collect data for data automation and collection purposes in the fields of scientific research and engineering; providing temporary use of on-line non-downloadable software development tools using artificial intelligence (AI), machine learning, and deep learning for research, modeling, data collection, data ingestion, data storage, and simulations in the fields of biology, synthetic biology, pharmaceutical preparations, biotechnology, living systems, renewable materials, chemicals, organisms, and bioprocesses; computer software platforms using artificial intelligence (AI), machine learning, and deep learning for research, modeling, data collection, data ingestion, data storage, and simulations in the fields of biology, synthetic biology, pharmaceutical preparations, biotechnology, living systems, renewable materials, chemicals, organisms, and bioprocesses.

97.

PRODUCING CARBON DIOXIDE WITH WASTE HEAT

      
Numéro d'application 18948550
Statut En instance
Date de dépôt 2024-11-15
Date de la première publication 2025-02-27
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Gilroysmith, Bryan Christopher
  • Gagne, Jacques
  • Nelson, Robert
  • Malone, Christopher Gregory

Abrégé

Techniques for providing carbon dioxide include generating thermal energy, an exhaust fluid, and electrical power from a power plant; providing the exhaust fluid and the generated electrical power to an exhaust fluid scrubbing system to separate components of the exhaust fluid; capturing heat from a source of heat of an industrial process in a heating fluid; transferring the heat of the industrial process captured in the heating fluid to a carbon dioxide source material of a direct air capture (DAC) system; providing the generated electrical power from the power plant to the DAC system; providing the thermal energy from the power plant to the DAC system; and separating, with the transferred portion of the heat of the industrial process and the provided thermal energy, carbon dioxide from the carbon dioxide source material of the DAC system.

Classes IPC  ?

  • C01B 32/50 - Anhydride carbonique
  • B01D 53/62 - Oxydes de carbone
  • F25J 3/02 - Procédés ou appareils pour séparer les constituants des mélanges gazeux impliquant l'emploi d'une liquéfaction ou d'une solidification par rectification, c.-à-d. par échange continuel de chaleur et de matière entre un courant de vapeur et un courant de liquide

98.

X

      
Numéro de série 99053733
Statut En instance
Date de dépôt 2025-02-24
Propriétaire X Development LLC ()
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Research and development of new products; Providing a website that features information on product research and product development; Providing information in the fields of technology and product design and development; Providing a website featuring information on the use of technology to solve international problems; Design and testing for new product development; Scientific and technological research and development services; Research and development in the field of computer software and hardware; Research and development in the field of software and technology using artificial intelligence and machine learning; Development of new technology for others in the field of artificial intelligence and machine learning; Development of new technology for others in the field of environmental sustainability, software automation, supply chain logistics, communications and Internet access, utility access and monitoring, and bioengineering

99.

IMAGING A SUBTERRANEAN FORMATION THROUGH ACOUSTIC ENERGY DELIVERED THROUGH A LIQUID

      
Numéro d'application 18233584
Statut En instance
Date de dépôt 2023-08-14
Date de la première publication 2025-02-20
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Miller, Alex S.
  • Clapp, Robert
  • Raghavan, Aparajit
  • Goncharuk, Artem
  • Smith, Kevin Forsythe

Abrégé

Techniques for imaging a subterranean formation include activating an acoustic energy source that is at least partially submerged in a volume of liquid on or under a terranean surface; based on the activating, producing acoustic wave energy that travels through the volume of liquid and to a subterranean zone below the terranean surface; receiving, at one or more acoustic receivers, reflected acoustic wave energy from the subterranean zone; and generating, with a control system, data associated with the subterranean zone based on the reflected acoustic wave energy.

Classes IPC  ?

  • G01V 1/38 - SéismologieProspection ou détection sismique ou acoustique spécialement adaptées aux zones recouvertes d'eau
  • G01V 1/104 - Production d'énergie sismique en utilisant des charges explosives

100.

INFRARED AND VISIBLE IMAGING SYSTEM FOR MONITORING EQUIPMENT

      
Numéro d'application 18924221
Statut En instance
Date de dépôt 2024-10-23
Date de la première publication 2025-02-06
Propriétaire X Development LLC (USA)
Inventeur(s)
  • Casey, Leo Francis
  • Light, Peter
  • Atwater, Joel Fraser
  • Winston, Crystal Elayna
  • Roosta, Mehrdad
  • Xin, Siyuan
  • Mahadeswaraswamy, Chetan

Abrégé

Methods, systems, and apparatus for an infrared and visible imaging system. In some implementations, Image data from a visible-light camera is obtained. A position of a device is determined based at least in part on the image data from the visible-light camera. An infrared camera is positioned so that the device is in a field of view of the infrared camera, with the field of view of the infrared camera being narrower than the field of view of the visible-light camera. Infrared image data from the infrared camera that includes regions representing the device is obtained. Infrared image data from the infrared camera that represents the device is recorded. Position data is also recorded that indicates the location and pose of the infrared camera when the infrared image data is acquired by the infrared camera.

Classes IPC  ?

  • H04N 23/661 - Transmission des signaux de commande de la caméra par le biais de réseaux, p. ex. la commande via Internet
  • B60R 11/04 - Montage des caméras pour fonctionner pendant la marcheDisposition de leur commande par rapport au véhicule
  • G01C 19/56 - Dispositifs sensibles à la rotation utilisant des masses vibrantes, p. ex. capteurs vibratoires de vitesse angulaire basés sur les forces de Coriolis
  • G01J 5/00 - Pyrométrie des radiations, p. ex. thermométrie infrarouge ou optique
  • G01J 5/02 - Détails structurels
  • G01J 5/07 - Dispositions pour ajuster l’angle solide des radiations captées, p. ex. ajustement ou orientation du champ de vue, suivi de la position ou encodage de la position angulaire
  • G01S 19/13 - Récepteurs
  • G06T 7/70 - Détermination de la position ou de l'orientation des objets ou des caméras
  • H04N 5/33 - Transformation des rayonnements infrarouges
  • H04N 7/18 - Systèmes de télévision en circuit fermé [CCTV], c.-à-d. systèmes dans lesquels le signal vidéo n'est pas diffusé
  1     2     3     ...     14        Prochaine page