An apparatus for producing carbon nanotubes includes a plasma apparatus and a CVD reactor which are connected in series is disclosed, and a nanoparticle catalyst in an aerosol state prepared in the plasma apparatus is transferred into the CVD reactor to synthesize carbon nanotubes, thereby continuously synthesizing the carbon nanotubes having excellent physical properties.
The present disclosure relates to a process and an apparatus for producing powder particles by atomization of a feed material in the form of an elongated member such as a wire, a rod or a filled tube. The feed material is introduced in a plasma torch. A forward portion of the feed material is moved from the plasma torch into an atomization nozzle of the plasma torch. A forward end of the feed material is surface melted by exposure to one or more plasma jets formed in the atomization nozzle. The one or more plasma jets being includes an annular plasma jet, a plurality of converging plasma jets, or a combination of an annular plasma jet with a plurality of converging plasma jets. Powder particles obtained using the process and apparatus are also described.
B22F 9/14 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques en utilisant des décharges électriques
B01J 2/02 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par division du produit liquide en gouttelettes, p. ex. par pulvérisation, et solidification des gouttelettes
B33Y 70/00 - Matériaux spécialement adaptés à la fabrication additive
There is provided a method of manufacturing nanoparticles comprising the steps of feeding a core precursor into a plasma torch in a plasma reactor, thereby producing a vapor of silicon or alloy thereof; and allowing the vapor to migrate to a quenching zone of the plasma reactor, thereby cooling the vapor and allowing condensation of the vapor into a nanoparticle core made of the silicon or alloy thereof, wherein the quenching gas comprises a passivating gas precursor that reacts with the surface of the core in the quenching zone produce a passivation layer covering the core, thereby producing said nanoparticles. The present invention also relates to nanoparticles comprising a core covered with a passivation layer, the core being made of silicon or an alloy thereof, as well as their use, in particular in the manufacture of anodes.
B22F 1/102 - Poudres métalliques revêtues de matériaux organiques
B22F 1/145 - Traitement chimique, p. ex. passivation ou décarburation
B22F 1/16 - Particules métalliques revêtues d'un non-métal
B22F 9/04 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau solide, p. ex. par broyage, meulage ou écrasement à la meule
B22F 9/12 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un produit gazeux
B22F 9/30 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par un procédé chimique avec décomposition de mélanges métalliques, p. ex. par pyrolyse
B32B 5/30 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par la présence de plusieurs couches qui comportent des fibres, filaments, grains ou poudre, ou qui sont sous forme de mousse ou essentiellement poreuses une des couches comprenant des grains ou de la poudre
4.
NANOSIZE POWDER ADVANCED MATERIALS, METHOD OF MANUFACTURING AND OF USING SAME
The present disclosure describes processes and apparatuses for manufacturing advanced nanosize powder materials that address at least some of the known issues of scalability, continuity, and quality inherent in prior art processes and apparatuses. Also described are nanosized powders with advantageous chemical and/or physical properties that can be used in various applications. The apparatus for producing nanoparticles, comprising a feeding mechanism for feeding a precursor material in fluid form toward a reaction zone along a feed path; a plasma device configured for generating a plasma jet in the reaction zone impinging upon the precursor material at a convergence point between streamlines of the plasma jet and the feed path to produce a reactant gaseous mixture, the plasma jet streamlines being at an angle with respect to the feed path, and a cooling zone receiving the reactant gaseous mixture to cause nucleation and produce the nanoparticles.
C01B 33/029 - Préparation par décomposition ou réduction de composés de silicium gazeux ou vaporisés autres que la silice ou un matériau contenant de la silice par décomposition de monosilane
B01J 19/08 - Procédés utilisant l'application directe de l'énergie ondulatoire ou électrique, ou un rayonnement particulaireAppareils à cet usage
H05H 1/42 - Torches à plasma utilisant un arc avec des dispositions pour l'introduction de matériaux dans le plasma, p. ex. de la poudre ou du liquide
5.
Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member
The present disclosure relates to a process and an apparatus for producing powder particles by atomization of a feed material in the form of an elongated member such as a wire, a rod or a filled tube. The feed material is introduced in a plasma torch. A forward portion of the feed material is moved from the plasma torch into an atomization nozzle of the plasma torch. A forward end of the feed material is surface melted by exposure to one or more plasma jets formed in the atomization nozzle. The one or more plasma jets being includes an annular plasma jet, a plurality of converging plasma jets, or a combination of an annular plasma jet with a plurality of converging plasma jets. Powder particles obtained using the process and apparatus are also described.
B22F 9/14 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques en utilisant des décharges électriques
B01J 2/02 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par division du produit liquide en gouttelettes, p. ex. par pulvérisation, et solidification des gouttelettes
The present invention relates to a method for synthesizing carbon nanotubes by using a nanoparticle catalyst prepared by condensation after vaporization of catalytic raw material using plasma. When the manufacturing method of the present invention is used, the synthesized carbon nanotubes may have high crystallinity, and mass synthesis may be facilitated.
The present invention relates to a carbon nanotube manufacturing apparatus including a plasma device and a CVD reactor which are connected in series, in which a nanoparticle catalyst in an aerosol state prepared in the plasma device is transferred into the CVD reactor to synthesize carbon nanotubes, and thus carbon nanotubes having excellent physical properties can be continuously synthesized.
C01B 32/164 - Préparation faisant intervenir des procédés continus
C01B 32/162 - Préparation caractérisée par les catalyseurs
B01J 13/00 - Chimie des colloïdes, p. ex. production de substances colloïdales ou de leurs solutions, non prévue ailleursFabrication de microcapsules ou de microbilles
B01J 19/08 - Procédés utilisant l'application directe de l'énergie ondulatoire ou électrique, ou un rayonnement particulaireAppareils à cet usage
B01J 19/24 - Réacteurs fixes sans élément interne mobile
8.
Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member
The present disclosure related to a process and an apparatus for producing powder particles by atomization of a feed material in the form of an elongated member such as a wire, a rod or a filled tube. The feed material is introduced in a plasma torch. A forward portion of the feed material is moved from the plasma torch into an atomization nozzle of the plasma torch. A forward end of the feed material is surface melted by exposure to one or more plasma jets formed in the atomization nozzle. The one or more plasma jets being includes an annular plasma jet, a plurality of converging plasma jets. Powder particles obtained using the process and apparatus are also described.
B01J 2/02 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par division du produit liquide en gouttelettes, p. ex. par pulvérisation, et solidification des gouttelettes
B22F 9/14 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques en utilisant des décharges électriques
B33Y 70/00 - Matériaux spécialement adaptés à la fabrication additive
H05H 1/42 - Torches à plasma utilisant un arc avec des dispositions pour l'introduction de matériaux dans le plasma, p. ex. de la poudre ou du liquide
9.
RAILWAY-RAIL INDUCTION WELDING DEVICE, APPARATUS AND ASSOCIATED METHOD
A railway-rail induction welding device (10) which comprises a copper tubular body (14) having a cooling-fluid inlet and a cooling-fluid outlet. The copper tubular body has a rail-facing rail-heating portion (18) and a cooling-fluid return portion (20). The rail-facing rail-heating portion (18) has a longitudinal extent which is non-linear and profiled to correspond or substantially correspond to one side of a railway rail to be treated. A lateral extent of the rail-facing rail-heating portion (18) is non-uniform along the said longitudinal extent.
B23K 13/01 - Soudage par chauffage au moyen d'un courant haute fréquence par chauffage par induction
B23K 37/04 - Dispositifs ou procédés auxiliaires non spécialement adaptés à un procédé couvert par un seul des autres groupes principaux de la présente sous-classe pour maintenir ou mettre en position les pièces
E01B 29/46 - Dispositifs pour maintenir, mettre en position ou presser l'une contre l'autre les extrémités de rails
B23K 101/26 - Rails pour chemins de fer ou similaires
09 - Appareils et instruments scientifiques et électriques
37 - Services de construction; extraction minière; installation et réparation
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Power supply devices and power supply apparatus, namely
stationary and mobile energy charging modules and power
storage devices; batteries; batteries, namely, anode
batteries, lithium batteries, dry cell batteries, vaporizer
batteries, lithium ion batteries, nickel cadmium batteries,
solar batteries and secondary lithium batteries; chargers
for electric accumulators; computer software for power
supply, computer software for battery management and
management of energy systems. Installation, maintenance and repair of batteries, power
supply units and power storage units; charging batteries,
power supply units and power storage units; replacement of
batteries, power supply units and power storage units. Research, development and testing of batteries, power supply
units and power storage units.
09 - Appareils et instruments scientifiques et électriques
37 - Services de construction; extraction minière; installation et réparation
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Power supply devices and power supply apparatus, namely, stationary and mobile energy charging modules and power storage devices, namely, electrical storage batteries; batteries; batteries, namely, anode batteries, lithium batteries, dry cell batteries, vaporizer batteries, lithium ion batteries, nickel cadmium batteries, solar batteries and secondary lithium batteries; chargers for electric accumulators; downloadable computer software for power supply, downloadable computer software for battery management and management of energy systems Installation, maintenance and repair of batteries, power supply units and power storage units; charging batteries, power supply units and power storage units; replacement of batteries, power supply units and power storage units Research, development and testing of batteries, power supply units and power storage units
12.
BORON NITRIDE NANOTUBES AND PROCESSES FOR PRODUCING SAME
The present disclosure relates to as-produced BNNTs having low impurity contents, a process and an apparatus for making same. The BNNTs have an average diameter of about 10 nm or less and having an impurity content of ≤ 20 wt.%, wherein the impurity content is measured after manufacture of the BNNTs and prior to a purification process. The process and apparatus are configured to provide a heated gas stream of boron species which is hydrogen-free, cooling the gas stream and incorporating a nitrogen-containing gas into the cooled gas stream under conditions to obtain the BNNTs. The process and apparatus thus afford manufacturing BNNTs whiles avoiding formation of hazardous boron hydrides.
The present disclosure relates to as-produced BNNTs having low impurity contents, a process and an apparatus for making same. The BNNTs have an average diameter of about 10 nm or less and having an impurity content of = 20 wt.%, wherein the impurity content is measured after manufacture of the BNNTs and prior to a purification process. The process and apparatus are configured to provide a heated gas stream of boron species which is hydrogen-free, cooling the gas stream and incorporating a nitrogen-containing gas into the cooled gas stream under conditions to obtain the BNNTs. The process and apparatus thus afford manufacturing BNNTs whiles avoiding formation of hazardous boron hydrides.
The present disclosure generally relates to metallic powders for use in multilayer ceramic capacitors, to multilayer ceramic capacitors containing same and to methods of manufacturing such powders and capacitors. The disclosure addresses the problem of having better controlled smaller particle size distribution, with minimal contaminant contents which can be implemented at an industrial scale.
B22F 1/052 - Poudres métalliques caractérisées par la dimension ou la surface spécifique des particules caractérisées par un mélange de particules de dimensions différentes ou par la distribution granulométrique des particules
B22F 9/12 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un produit gazeux
C22C 1/04 - Fabrication des alliages non ferreux par métallurgie des poudres
H01G 4/012 - Forme des électrodes non autoporteuses
The present disclosure relates to a process and an apparatus for producing powder particles by atomization of a feed material in the form of an elongated member such as a wire, a rod or a filled tube. The feed material is introduced in a plasma torch. A forward portion of the feed material is moved from the plasma torch into an atomization nozzle of the plasma torch. A forward end of the feed material is surface melted by exposure to one or more plasma jets formed in the atomization nozzle. The one or more plasma jets being includes an annular plasma jet, a plurality of converging plasma jets, or a combination of an annular plasma jet with a plurality of converging plasma jets. Powder particles obtained using the process and apparatus are also described.
B22F 9/14 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques en utilisant des décharges électriques
B01J 2/02 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par division du produit liquide en gouttelettes, p. ex. par pulvérisation, et solidification des gouttelettes
The present disclosure describes processes and apparatuses for manufacturing advanced nanosize powder materials that address at least some of the known issues of scalability, continuity, and quality inherent in prior art processes and apparatuses. Also described are nanosized powders with advantageous chemical and/or physical properties that can be used in various applications. The apparatus for producing nanoparticles, comprising a feeding mechanism for feeding a precursor material in fluid form toward a reaction zone along a feed path; a plasma device configured for generating a plasma jet in the reaction zone impinging upon the precursor material at a convergence point between streamlines of the plasma jet and the feed path to produce a reactant gaseous mixture, the plasma jet streamlines being at an angle with respect to the feed path, and a cooling zone receiving the reactant gaseous mixture to cause nucleation and produce the nanoparticles.
The present disclosure describes processes and apparatuses for manufacturing advanced nanosize powder materials that address at least some of the known issues of scalability, continuity, and quality inherent in prior art processes and apparatuses. Also described are nanosized powders with advantageous chemical and/or physical properties that can be used in various applications. The apparatus for producing nanoparticles, comprising a feeding mechanism for feeding a precursor material in fluid form toward a reaction zone along a feed path; a plasma device configured for generating a plasma jet in the reaction zone impinging upon the precursor material at a convergence point between streamlines of the plasma jet and the feed path to produce a reactant gaseous mixture, the plasma jet streamlines being at an angle with respect to the feed path, and a cooling zone receiving the reactant gaseous mixture to cause nucleation and produce the nanoparticles.
In additive manufacturing operations, powders used in stereolithographic processes need to be precisely spread out in a uniform fashion at every pass of the stereolithographic process to ensure predictability in powder surface morphology. Typically, this is difficult to achieve with conventional powders because often these powders suffer from poor flowability, which may further deteriorate over time, and impairs the efficiency of the stereolithographic processes. The present disclosure describes additive manufacturing powders having improved physical characteristics such as flowability and tap density, which are less sensitive or insensitive to ambient humidity. For example, there is described a powder that includes spherical particles having a particle size distribution of less than 1000 micrometers and having a measurable flowability as determined in accordance with ASTM B213 at 75% relative humidity.
B22F 1/00 - Poudres métalliquesTraitement des poudres métalliques, p. ex. en vue de faciliter leur mise en œuvre ou d'améliorer leurs propriétés
B22F 1/02 - Traitement particulier des poudres métalliques, p.ex. en vue de faciliter leur mise en œuvre, d'améliorer leurs propriétés; Poudres métalliques en soi, p.ex. mélanges de particules de compositions différentes comportant un enrobage des particules
B29C 64/153 - Procédés de fabrication additive n’utilisant que des matériaux solides utilisant des couches de poudre avec jonction sélective, p. ex. par frittage ou fusion laser sélectif
B33Y 70/00 - Matériaux spécialement adaptés à la fabrication additive
B33Y 70/10 - Composites de différents types de matériaux, p. ex. mélanges de céramiques et de polymères ou mélanges de métaux et de biomatériaux
C04B 35/00 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques
C08L 77/00 - Compositions contenant des polyamides obtenus par des réactions créant une liaison amide carboxylique dans la chaîne principaleCompositions contenant des dérivés de tels polymères
21.
ADDITIVE MANUFACTURING POWDERS WITH IMPROVED PHYSICAL CHARACTERISTICS, METHOD OF MANUFACTURE AND USE THEREOF
In additive manufacturing operations, powders used in stereolithographic processes need to be precisely spread out in a uniform fashion at every pass of the stereolithographic process to ensure predictability in powder surface morphology. Typically, this is difficult to achieve with conventional powders because often these powders suffer from poor flowability, which may further deteriorate over time, and impairs the efficiency of the stereolithographic processes. The present disclosure describes additive manufacturing powders having improved physical characteristics such as flowability and tap density, which are less sensitive or insensitive to ambient humidity. For example, there is described a powder that includes spherical particles having a particle size distribution of less than 1000 micrometers and having a measurable flowability as determined in accordance with ASTM B213 at 75% relative humidity.
B22F 1/00 - Poudres métalliquesTraitement des poudres métalliques, p. ex. en vue de faciliter leur mise en œuvre ou d'améliorer leurs propriétés
B33Y 70/00 - Matériaux spécialement adaptés à la fabrication additive
B29C 64/153 - Procédés de fabrication additive n’utilisant que des matériaux solides utilisant des couches de poudre avec jonction sélective, p. ex. par frittage ou fusion laser sélectif
B33Y 70/10 - Composites de différents types de matériaux, p. ex. mélanges de céramiques et de polymères ou mélanges de métaux et de biomatériaux
C04B 35/00 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques
C08L 77/00 - Compositions contenant des polyamides obtenus par des réactions créant une liaison amide carboxylique dans la chaîne principaleCompositions contenant des dérivés de tels polymères
22.
Metallic powders for use as electrode material in multilayer ceramic capacitors and method of manufacturing and of using same
The present disclosure generally relates to metallic powders for use in multilayer ceramic capacitors, to multilayer ceramic capacitors containing same and to methods of manufacturing such powders and capacitors. The disclosure addresses the problem of having better controlled smaller particle size distribution, with minimal contaminant contents which can be implemented at an industrial scale.
B22F 9/12 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un produit gazeux
H01G 4/012 - Forme des électrodes non autoporteuses
The present disclosure relates to a process and an apparatus for producing powder particles by atomization of a feed material in the form of an elongated member such as a wire, a rod or a filled tube. The feed material is introduced in a plasma torch. A forward portion of the feed material is moved from the plasma torch into an atomization nozzle of the plasma torch. A forward end of the feed material is surface melted by exposure to one or more plasma jets formed in the atomization nozzle. The one or more plasma jets being includes an annular plasma jet, a plurality of converging plasma jets, or a combination of an annular plasma jet with a plurality of converging plasma jets. Powder particles obtained using the process and apparatus are also described.
B22F 9/14 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques en utilisant des décharges électriques
H05H 1/42 - Torches à plasma utilisant un arc avec des dispositions pour l'introduction de matériaux dans le plasma, p. ex. de la poudre ou du liquide
B01J 2/02 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par division du produit liquide en gouttelettes, p. ex. par pulvérisation, et solidification des gouttelettes
The present disclosure relates to a process and an apparatus for producing powder particles by atomization of a feed material in the form of an elongated member such as a wire, a rod or a filled tube. The feed material is introduced in a plasma torch. A forward portion of the feed material is moved from the plasma torch into an atomization nozzle of the plasma torch. A forward end of the feed material is surface melted by exposure to one or more plasma jets formed in the atomization nozzle. The one or more plasma jets being includes an annular plasma jet, a plurality of converging plasma jets, or a combination of an annular plasma jet with a plurality of converging plasma jets. Powder particles obtained using the process and apparatus are also described.
B22F 9/14 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques en utilisant des décharges électriques
H05H 1/42 - Torches à plasma utilisant un arc avec des dispositions pour l'introduction de matériaux dans le plasma, p. ex. de la poudre ou du liquide
B01J 2/02 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par division du produit liquide en gouttelettes, p. ex. par pulvérisation, et solidification des gouttelettes
[Problem] To provide a method for producing a boron nitride nanomaterial, the method making it possible to more reliably remove boron from a boron nitride composition that includes boron, the boron nitride composition being produced using, e.g., thermal plasma vapor deposition. [Solution] This method for producing a boron nitride nanomaterial comprises: a nanomaterial generation step for generating a boron nitride nanomaterial in which boron grains are encapsulated in boron nitride fullerene; an oxidation treatment step for forming boron oxide on at least the surface layer of the boron grains by exposing the boron nitride nanomaterial to an oxidizing environment; and a mechanical shock application step for applying mechanical shock to remove the boron grains in the boron nitride nanomaterial that has undergone the oxidation treatment step, the boron nitride nanomaterial being immersed in a solvent that dissolves boron oxide.
C08L 101/00 - Compositions contenant des composés macromoléculaires non spécifiés
26.
MANUFACTURING METHOD OF BORON NITRIDE NANOMATERIAL AND BORON NITRIDE NANOMATERIAL, MANUFACTURING METHOD OF COMPOSITE MATERIAL AND COMPOSITE MATERIAL, AND METHOD OF PURIFYING BORON NITRIDE NANOMATERIAL
Provided is a method of manufacturing a boron nitride nanomaterial, in which boron can be removed more certainly from a boron nitride composition comprising boron that is manufactured using, for example, the thermal plasma vapor growth method. One aspect of the method of manufacturing a boron nitride nanomaterial comprises: a nanomaterial producing step of producing a boron nitride nanomaterial in which a boron grain(s) is included in a boron nitride fullerene; an oxidation treatment step of forming boron oxide on at least a surface layer of the boron grain(s) by exposing the boron nitride nanomaterial to an oxidizing environment; and a mechanical shock imparting step of applying a mechanical shock for removing the boron grain(s) from the boron nitride nanomaterial that has undergone the oxidation treatment step, while the boron nitride nanomaterial is immersed in a solvent that dissolves the boron oxide.
Provided are: a BNNT material in which BNNT is dispersed and bundling is minimized, and a BNNT composite material using the same; and a method for producing a BNNT material. This boron nitride nanotube material (10) is characterized by including boron nitride nanotubes (1), and boron nitride fullerene hollow particles (7), wherein the boron nitride fullerene hollow particles (7) are dispersed between the boron nitride nanotubes (1).
C08K 7/22 - Particules expansibles, poreuses ou creuses
C08L 27/12 - Compositions contenant des homopolymères ou des copolymères de composés possédant un ou plusieurs radicaux aliphatiques non saturés, chacun ne contenant qu'une seule liaison double carbone-carbone et l'un au moins étant terminé par un halogèneCompositions contenant des dérivés de tels polymères non modifiées par un post-traitement chimique contenant du fluor
C08L 101/00 - Compositions contenant des composés macromoléculaires non spécifiés
C08L 101/04 - Compositions contenant des composés macromoléculaires non spécifiés caractérisées par la présence de groupes déterminés contenant des atomes d'halogènes
C22C 32/00 - Alliages non ferreux contenant entre 5 et 50% en poids d'oxydes, de carbures, de borures, de nitrures, de siliciures ou d'autres composés métalliques, p. ex. oxynitrures, sulfures, qu'ils soient soient ajoutés comme tels ou formés in situ
C22C 47/00 - Fabrication d'alliages contenant des fibres ou des filaments métalliques ou non métalliques
28.
Nanoparticles comprising a core covered with a passivation layer, process for manufacture and uses thereof
There is provided a method of manufacturing nanoparticles comprising the steps of feeding a core precursor into a plasma torch in a plasma reactor, thereby producing a vapor of silicon or alloy thereof; and allowing the vapor to migrate to a quenching zone of the plasma reactor, thereby cooling the vapor and allowing condensation of the vapor into a nanoparticle core made of the silicon or alloy thereof, wherein the quenching gas comprises a passivating gas precursor that reacts with the surface of the core in the quenching zone produce a passivation layer covering the core, thereby producing said nanoparticles. The present invention also relates to nanoparticles comprising a core covered with a passivation layer, the core being made of silicon or an alloy thereof, as well as their use, in particular in the manufacture of anodes.
B32B 5/30 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par la présence de plusieurs couches qui comportent des fibres, filaments, grains ou poudre, ou qui sont sous forme de mousse ou essentiellement poreuses une des couches comprenant des grains ou de la poudre
B22F 1/16 - Particules métalliques revêtues d'un non-métal
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
B22F 9/04 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau solide, p. ex. par broyage, meulage ou écrasement à la meule
B22F 9/12 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un produit gazeux
B22F 9/30 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par un procédé chimique avec décomposition de mélanges métalliques, p. ex. par pyrolyse
01 - Produits chimiques destinés à l'industrie, aux sciences ainsi qu'à l'agriculture
06 - Métaux communs et minerais; objets en métal
37 - Services de construction; extraction minière; installation et réparation
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Engineered spherical tungsten carbide, tungsten, tantalum, molybdenum, silicon, titanium, aluminum, nickel alloys and silica powders for use in industry and science; nano metallic powders and plasma powder spherodization for use in research and development, industry and science; Ceramic powders used in research and development, in manufacturing, in industry and science; plasma treated ceramic powders for use in research and development, in manufacturing, in industry and science; ceramic nano powders for use in research and development, in manufacturing, in industry and science Metallic engineered spherical powders for use in manufacturing, in industry and science; plasma treated metallic powders for use in manufacturing, in industry and science; metallic nanopowders for use in manufacturing, in industry and science Maintenance of atomization systems, electronic induction systems and electromagnetic systems for manufacturing engineered spherical tungsten carbide, tungsten, tantalum, molybdenum, silicon, titanium, aluminum, nickel alloys and silica powders for use in industry and science, metallic and ceramic engineered spherical powders for use in manufacturing, in industry and science, plasma treated metallic and ceramic powders for use in manufacturing, in industry and science, metallic and ceramic nanopowders for use in manufacturing, in industry and science and for manufacturing engineered nano metallic powders and plasma powder spherodization and structural parts therefor Product research and development in the fields of engineered spherical tungsten carbide, tungsten, tantalum, molybdenum, silicon, titanium, aluminum, nickel alloys and silica powders for use in industry and science, nano metallic powders and plasma powder spherodization, metallic and ceramic engineered spherical powders for use in manufacturing, in industry and science, plasma treated metallic and ceramic powders for use in manufacturing, in industry and science, metallic and ceramic nanopowders for use in manufacturing, in industry and science
01 - Produits chimiques destinés à l'industrie, aux sciences ainsi qu'à l'agriculture
06 - Métaux communs et minerais; objets en métal
37 - Services de construction; extraction minière; installation et réparation
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Engineered spherical tungsten carbide, silicon and silica powders for use in industry and science; spherical plasma powder; ceramic engineered spherical powders for use in manufacturing, in industry and science; plasma treated ceramic powders for use in manufacturing, in industry and science; ceramic nanopowders for use in manufacturing, in industry and science. Metallic engineered spherical powders for use in manufacturing, in industry and science; plasma treated metallic powders for use in manufacturing, in industry and science; metallic nanopowders for use in manufacturing, in industry and science; engineered spherical tungsten, tantalum, molybdenum, titanium, aluminum, Nickel alloys powders for use in industry and science; nano metallic powders. Maintenance of atomisation systems, electronic induction systems and electromagnetic systems for manufacturing engineered spherical tungsten carbide, tungsten, tantalum, molybdenum, silicon, titanium, aluminum, Nickel alloys and silica powders for use in industry and science; Maintenance of atomisation systems, electronic induction systems and electromagnetic systems for manufacturing metallic and ceramic engineered spherical powders for use in manufacturing, in industry and science, plasma treated metallic and ceramic powders for use in manufacturing, in industry and science, metallic and ceramic nanopowders for use in manufacturing, in industry and science and for manufacturing engineered nano metallic powders and plasma powder spherodization and structural parts therefor. Research and development in the fields of engineered spherical tungsten carbide, tungsten, tantalum, molybdenum, silicon, titanium, aluminum, Nickel alloys and silica powders for use in industry and science, nano metallic powders and plasma powder spherodization, metallic and ceramic engineered spherical powders for use in manufacturing, in industry and science, plasma treated metallic and ceramic powders for use in manufacturing, in industry and science; Research and development in the fields of engineered metallic and ceramic nanopowders for use in manufacturing, in industry and science.
01 - Produits chimiques destinés à l'industrie, aux sciences ainsi qu'à l'agriculture
06 - Métaux communs et minerais; objets en métal
37 - Services de construction; extraction minière; installation et réparation
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
(1) Engineered spherical tungsten carbide, tungsten, tantalum, molybdenum, silicon, titanium, aluminum, Nickel alloys and silica powders for use in industry and science; nano metallic powders and plasma powder spherodization.
(2) Metallic and ceramic engineered spherical powders for use in manufacturing, in industry and science; plasma treated metallic and ceramic powders for use in manufacturing, in industry and science; metallic and ceramic nanopowders for use in manufacturing, in industry and science. (1) Maintenance of atomisation systems, electronic induction systems and electromagnetic systems for manufacturing engineered spherical tungsten carbide, tungsten, tantalum, molybdenum, silicon, titanium, aluminum, Nickel alloys and silica powders for use in industry and science, metallic and ceramic engineered spherical powders for use in manufacturing, in industry and science, plasma treated metallic and ceramic powders for use in manufacturing, in industry and science, metallic and ceramic nanopowders for use in manufacturing, in industry and science and for manufacturing engineered nano metallic powders and plasma powder spherodization and structural parts therefor.
(2) Research and development in the fields of engineered spherical tungsten carbide, tungsten, tantalum, molybdenum, silicon, titanium, aluminum, Nickel alloys and silica powders for use in industry and science, nano metallic powders and plasma powder spherodization, metallic and ceramic engineered spherical powders for use in manufacturing, in industry and science, plasma treated metallic and ceramic powders for use in manufacturing, in industry and science, metallic and ceramic nanopowders for use in manufacturing, in industry and science.
32.
METALLIC POWDERS FOR USE AS ELECTRODE MATERIAL IN MULTILAYER CERAMIC CAPACITORS AND METHOD OF MANUFACTURING AND OF USING SAME
The present disclosure generally relates to metallic powders for use in multilayer ceramic capacitors, to multilayer ceramic capacitors containing same and to methods of manufacturing such powders and capacitors. The disclosure addresses the problem of having better controlled smaller particle size distribution, with minimal contaminant contents which can be implemented at an industrial scale.
B22F 9/12 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un produit gazeux
The present disclosure generally relates to metallic powders for use in multilayer ceramic capacitors, to multilayer ceramic capacitors containing same and to methods of manufacturing such powders and capacitors. The disclosure addresses the problem of having better controlled smaller particle size distribution, with minimal contaminant contents which can be implemented at an industrial scale.
B22F 9/04 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau solide, p. ex. par broyage, meulage ou écrasement à la meule
B22F 9/08 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau liquide par coulée, p. ex. à travers de petits orifices ou dans l'eau, par atomisation ou pulvérisation
The present disclosure generally relates to metallic powders for use in multilayer ceramic capacitors, to multilayer ceramic capacitors containing same and to methods of manufacturing such powders and capacitors. The disclosure addresses the problem of having better controlled smaller particle size distribution, with minimal contaminant contents which can be implemented at an industrial scale.
B22F 9/04 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau solide, p. ex. par broyage, meulage ou écrasement à la meule
B22F 9/08 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau liquide par coulée, p. ex. à travers de petits orifices ou dans l'eau, par atomisation ou pulvérisation
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property 111111 1011E1 11E110111 11111 11111 11010111010 11111 1101 0 Ill 1 101111E1110 1111E1111 Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2019/148277 Al 08 August 2019 (08.08.2019) WIPO I PC T (51) International Patent Classification: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, H0IG 4/008 (2006.01) HO1G 4/30 (2006.01) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, B22F 9/12 (2006.01) HO1G 4/12 (2006.01) SC, SD, SE, SG. SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (21) International Application Number: PCT/CA2019/050115 (84) Designated States (unless otherwise indicated .1?)r every kind of regional protection available): ARIPO (BW, GIL (22) International Filing Date: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, 30 January 2019 (30.01.2019) UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (25) Filing Language: English TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FL FR GB, GR, HR HU, IE, IS, IT, LT, LU, LV, (26) Publication Language: English MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (30) Priority Data: TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, 62/623.708 30 January 2018 (30.01.2018) US KM, ML, MR, NE, SN, TD, TG). (71) Applicant: TEKNA PLASMA SYSTEMS INC. Published: [CA/CA]; 2935 Boul. Industriel, Sherbrooke, Québec J1L ¨ with internati 2T9 (CA). onal search report (Art. 21(3)) ¨ in black and white; the international application as filed (72) Inventors: GUO, Jiayin; 2638 me Alfred-Desrochers, contained color or greyscale and is available for download Sherbooke, Québec J1K 0A3 (CA). BOUCHARD, Eric; from INTENTSCOPE 2213-3535, Avenue Papirteau, Montreal, Québec 1-12K 4J9 (CA). DOLBEC, Richard; 27, rue de L'Ancre, Varennes, Québec J3X 2A6 (CA). = (74) Agent: SMART & BIGGAR; 1000 De La Gauchetiere Street West, Suite 3300, Montreal, Québec H3B 4W5 (CA). (81) Designated States (unless otherwise indicated for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, fR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, = (54) Title: METALLIC POWDERS FOR USE AS ELECTRODE MATERIAL IN MULTELAYER CERAMIC CAPACITORS AND __ METHOD OF MANUFACTURING AND OF USING SAME Evaporating metal with doping agent 22 Cooling vapors to recombine metal and doping agent 24 cc 71. FIG. 1 = (57) Abstract: The present disclosure generally relates to metallic powders for use in multilayer ceramic capacitors, to multilayer = ceramic capacitors containing same and to methods of manufacturing such powders and capacitors. The disclosure addresses the problem esi of haying better controlled smaller particle size distribution, with minimal contaminant contents which cart be implemented at an V industrial scale. Date Recue/Date Received 2021-02-11
B22F 1/052 - Poudres métalliques caractérisées par la dimension ou la surface spécifique des particules caractérisées par un mélange de particules de dimensions différentes ou par la distribution granulométrique des particules
B22F 9/12 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un produit gazeux
36.
NANOPARTICLES COMPRISING A CORE COVERED WITH A PASSIVATION LAYER, PROCESS FOR MANUFACTURE AND USES THEREOF
There is provided a method of manufacturing nanoparticles comprising the steps of feeding a core precursor into a plasma torch in a plasma reactor, thereby producing a vapor of silicon or alloy thereof; and allowing the vapor to migrate to a quenching zone of the plasma reactor, thereby cooling the vapor and allowing condensation of the vapor into a nanoparticle core made of the silicon or alloy thereof, wherein the quenching gas comprises a passivating gas precursor that reacts with the surface of the core in the quenching zone produce a passivation layer covering the core, thereby producing said nanoparticles. The present invention also relates to nanoparticles comprising a core covered with a passivation layer, the core being made of silicon or an alloy thereof, as well as their use, in particular in the manufacture of anodes.
B22F 9/14 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques en utilisant des décharges électriques
There is provided a method of manufacturing nanoparticles comprising the steps of feeding a core precursor into a plasma torch in a plasma reactor, thereby producing a vapor of silicon or alloy thereof; and allowing the vapor to migrate to a quenching zone of the plasma reactor, thereby cooling the vapor and allowing condensation of the vapor into a nanoparticle core made of the silicon or alloy thereof, wherein the quenching gas comprises a passivating gas precursor that reacts with the surface of the core in the quenching zone produce a passivation layer covering the core, thereby producing said nanoparticles. The present invention also relates to nanoparticles comprising a core covered with a passivation layer, the core being made of silicon or an alloy thereof, as well as their use, in particular in the manufacture of anodes.
B22F 1/02 - Traitement particulier des poudres métalliques, p.ex. en vue de faciliter leur mise en œuvre, d'améliorer leurs propriétés; Poudres métalliques en soi, p.ex. mélanges de particules de compositions différentes comportant un enrobage des particules
B22F 9/16 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par un procédé chimique
The present disclosure relates to a process and an apparatus for producing powder particles by atomization of a feed material in the form of an elongated member such as a wire, a rod or a filled tube. The feed material is introduced in a plasma torch. A forward portion of the feed material is moved from the plasma torch into an atomization nozzle of the plasma torch. A forward end of the feed material is surface melted by exposure to one or more plasma jets formed in the atomization nozzle. The one or more plasma jets being includes an annular plasma jet, a plurality of converging plasma jets, or a combination of an annular plasma jet with a plurality of converging plasma jets. Powder particles obtained using the process and apparatus are also described.
B22F 9/14 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques en utilisant des décharges électriques
B01J 2/02 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par division du produit liquide en gouttelettes, p. ex. par pulvérisation, et solidification des gouttelettes
The present disclosure relates to a process and an apparatus for producing powder particles by atomization of a feed material in the form of an elongated member such as a wire, a rod or a filled tube. The feed material is introduced in a plasma torch. A forward portion of the feed material is moved from the plasma torch into an atomization nozzle of the plasma torch. A forward end of the feed material is surface melted by exposure to one or more plasma jets formed in the atomization nozzle. The one or more plasma jets being includes an annular plasma jet, a plurality of converging plasma jets, or a combination of an annular plasma jet with a plurality of converging plasma jets. Powder particles obtained using the process and apparatus are also described.
B22F 9/14 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques en utilisant des décharges électriques
B01J 2/02 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par division du produit liquide en gouttelettes, p. ex. par pulvérisation, et solidification des gouttelettes
B33Y 70/00 - Matériaux spécialement adaptés à la fabrication additive
40.
INDUCTION PLASMA TORCH WITH HIGHER PLASMA ENERGY DENSITY
An induction plasma torch comprises a tubular torch body, a tubular insert, a plasma confinement tube and an annular channel. The tubular torch body has upstream and downstream sections defining respective inner surfaces. The tubular insert is mounted to the inner surface of the downstream section of the tubular torch body. The plasma confinement tube is disposed in the tubular torch body, coaxial therewith. The plasma confinement tube has a tubular wall having a thickness tapering off in an axial direction of plasma flow. The annular channel is defined between, on one hand, the inner surface of the upstream section of the tubular torch body and an inner surface of the insert and, on the other hand, an outer surface of the tubular wall of the plasma confinement tube. The cooling channel carries a fluid for cooling the plasma confinement tube.
An induction plasma torch comprises a tubular torch body, a tubular insert, a plasma confinement tube and an annular channel. The tubular torch body has upstream and downstream sections defining respective inner surfaces. The tubular insert is mounted to the inner surface of the downstream section of the tubular torch body. The plasma confinement tube is disposed in the tubular torch body, coaxial therewith. The plasma confinement tube has a tubular wall having a thickness tapering off in an axial direction of plasma flow. The annular channel is defined between, on one hand, the inner surface of the upstream section of the tubular torch body and an inner surface of the insert and, on the other hand, an outer surface of the tubular wall of the plasma confinement tube. The cooling channel carries a fluid for cooling the plasma confinement tube.
An induction plasma torch comprises a tubular torch body, a tubular insert, a plasma confinement tube and an annular channel. The tubular torch body has upstream and downstream sections defining respective inner surfaces. The tubular insert is mounted to the inner surface of the downstream section of the tubular torch body. The plasma confinement tube is disposed in the tubular torch body, coaxial therewith. The plasma confinement tube has a tubular wall having a thickness tapering off in an axial direction of plasma flow. The annular channel is defined between, on one hand, the inner surface of the upstream section of the tubular torch body and an inner surface of the insert and, on the other hand, an outer surface of the tubular wall of the plasma confinement tube. The cooling channel carries a fluid for cooling the plasma confinement tube.
An induction plasma torch comprises a tubular torch body, a plasma confinement tube disposed in the tubular torch body coaxial therewith, a gas distributor head disposed at one end of the plasma confinement tube and structured to supply at least one gaseous substance into the plasma confinement tube; an inductive coupling member embedded within the tubular torch body for applying energy to the gaseous substance to produce and sustain plasma in the plasma confinement tube, and an electrically conductive capacitive shield on an inner surface of the tubular torch body. The capacitive shield is segmented into axial strips interconnected at one end. Axial grooves are machined in the inner surface of the tubular torch body, the axial grooves being interposed between the axial strips.
The present disclosure relates to a process and an apparatus for producing powder particles by atomization of a feed material in the form of an elongated member such as a wire, a rod or a filled tube. The feed material is introduced in a plasma torch. A forward portion of the feed material is moved from the plasma torch into an atomization nozzle of the plasma torch. A forward end of the feed material is surface melted by exposure to one or more plasma jets formed in the atomization nozzle. The one or more plasma jets being includes an annular plasma jet, a plurality of converging plasma jets, or a combination of an annular plasma jet with a plurality of converging plasma jets. Powder particles obtained using the process and apparatus are also described.
B22F 9/14 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques en utilisant des décharges électriques
H05H 1/42 - Torches à plasma utilisant un arc avec des dispositions pour l'introduction de matériaux dans le plasma, p. ex. de la poudre ou du liquide
B01J 2/02 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par division du produit liquide en gouttelettes, p. ex. par pulvérisation, et solidification des gouttelettes
The present disclosure relates to a process and an apparatus for producing powder particles by atomization of a feed material in the form of an elongated member such as a wire, a rod or a filled tube. The feed material is introduced in and pre-heated by a pre-heating device which can be a plasma torch. A forward portion of the feed material is fed through a cooled elongated structure from the pre-heating device into an atomization nozzle of the plasma torch. A forward end of the feed material is surface melted by exposure to one or more plasma jets formed in the atomization nozzle. The one or more plasma jets can be an annular plasma jet, a plurality of converging plasma jets, or a combination of an annular plasma jet with a plurality of converging plasma jets. Powder particles obtained using the process and apparatus are also described.
B01J 2/04 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par division du produit liquide en gouttelettes, p. ex. par pulvérisation, et solidification des gouttelettes en milieu gazeux
B22F 9/08 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau liquide par coulée, p. ex. à travers de petits orifices ou dans l'eau, par atomisation ou pulvérisation
46.
PROCESS AND APPARATUS FOR PRODUCING POWDER PARTICLES BY ATOMIZATION OF A FEED MATERIAL IN THE FORM OF AN ELONGATED MEMBER
The present disclosure relates to a process and an apparatus for producing powder particles by atomization of a feed material in the form of an elongated member such as a wire, a rod or a filled tube. The feed material is introduced in a plasma torch. A forward portion of the feed material is moved from the plasma torch into an atomization nozzle of the plasma torch. A forward end of the feed material is surface melted by exposure to one or more plasma jets formed in the atomization nozzle. The one or more plasma jets being includes an annular plasma jet, a plurality of converging plasma jets, or a combination of an annular plasma jet with a plurality of converging plasma jets. Powder particles obtained using the process and apparatus are also described.
B01J 2/04 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par division du produit liquide en gouttelettes, p. ex. par pulvérisation, et solidification des gouttelettes en milieu gazeux
47.
PROCESS AND APPARATUS FOR PRODUCING POWDER PARTICLES BY ATOMIZATION OF A FEED MATERIAL IN THE FORM OF AN ELONGATED MEMBER
The present disclosure relates to a process and an apparatus for producing powder particles by atomization of a feed material in the form of an elongated member such as a wire, a rod or a filled tube. The feed material is introduced in a plasma torch. A forward portion of the feed material is moved from the plasma torch into an atomization nozzle of the plasma torch. A forward end of the feed material is surface melted by exposure to one or more plasma jets formed in the atomization nozzle. The one or more plasma jets being includes an annular plasma jet, a plurality of converging plasma jets, or a combination of an annular plasma jet with a plurality of converging plasma jets. Powder particles obtained using the process and apparatus are also described.
B22F 9/14 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques en utilisant des décharges électriques
B33Y 70/00 - Matériaux spécialement adaptés à la fabrication additive
B29C 64/141 - Procédés de fabrication additive n’utilisant que des matériaux solides
B29C 64/30 - Opérations ou équipements auxiliaires
B01J 2/04 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par division du produit liquide en gouttelettes, p. ex. par pulvérisation, et solidification des gouttelettes en milieu gazeux
C04B 35/626 - Préparation ou traitement des poudres individuellement ou par fournées
The present disclosure relates to a process and an apparatus for producing powder particles by atomization of a feed material in the form of an elongated member such as a wire, a rod or a filled tube. The feed material is introduced in a plasma torch. A forward portion of the feed material is moved from the plasma torch into an atomization nozzle of the plasma torch. A forward end of the feed material is surface melted by exposure to one or more plasma jets formed in the atomization nozzle. The one or more plasma jets being includes an annular plasma jet, a plurality of converging plasma jets, or a combination of an annular plasma jet with a plurality of converging plasma jets. Powder particles obtained using the process and apparatus are also described.
B01J 2/02 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par division du produit liquide en gouttelettes, p. ex. par pulvérisation, et solidification des gouttelettes
49.
PROCESS AND APPARATUS FOR PRODUCING POWDER PARTICLES BY ATOMIZATION OF A FEED MATERIAL IN THE FORM OF AN ELONGATED MEMBER
The present disclosure relates to a process and an apparatus for producing powder particles by atomization of a solid wire material, which is provided in the form of a roll of solid wire material. The apparatus includes a feeding mechanism configured to progressively uncoil the roll of the solid wire material and linearly feed the uncoiled solid wire material toward an atomization zone. The apparatus includes a channel, where the feeding mechanism is configured to continuously feed the solid wire material into the atomization zone through the channel along a feed path. The channel is sized to match a transverse dimension of the solid wire material so that the channel becomes substantially closed for creating a gas-tight seal while allowing the solid wire material to linearly advance therethrough. Powder particles obtained using the process and apparatus are also described.
B22F 9/08 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau liquide par coulée, p. ex. à travers de petits orifices ou dans l'eau, par atomisation ou pulvérisation
B01J 2/04 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par division du produit liquide en gouttelettes, p. ex. par pulvérisation, et solidification des gouttelettes en milieu gazeux
B28B 1/54 - Fabrication d'objets façonnés à partir du matériau spécialement adaptée à la fabrication d'objets à partir de matériaux fondus, p. ex. laitier
50.
PROCESS AND APPARATUS FOR PRODUCING POWDER PARTICLES BY ATOMIZATION OF A FEED MATERIAL IN THE FORM OF AN ELONGATED MEMBER
The present disclosure relates to a process and an apparatus for producing powder particles by atomization of a feed material in the form of an elongated member such as a wire, a rod or a filled tube. The feed material is introduced in and pre-heated by a pre-heating device which can be a plasma torch. A forward portion of the feed material is moved in a channel from the pre- heating device into an atomization nozzle of the plasma torch. A forward end of the feed material is surface melted by exposure to one or more plasma jets formed in the atomization nozzle. The one or more plasma jets being includes an annular plasma jet, a plurality of converging plasma jets, or a combination of an annular plasma jet with a plurality of converging plasma jets. Powder particles obtained using the process and apparatus are also described.
B22F 9/08 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau liquide par coulée, p. ex. à travers de petits orifices ou dans l'eau, par atomisation ou pulvérisation
B28B 1/54 - Fabrication d'objets façonnés à partir du matériau spécialement adaptée à la fabrication d'objets à partir de matériaux fondus, p. ex. laitier
51.
PROCESS AND APPARATUS FOR PRODUCING POWDER PARTICLES BY ATOMIZATION OF A FEED MATERIAL IN THE FORM OF AN ELONGATED MEMBER
The present disclosure relates to a process and an apparatus for producing powder particles by atomization of a feed material in the form of an elongated member such as a wire, a rod or a filled tube. The feed material is introduced in a plasma torch. A forward portion of the feed material is moved from the plasma torch into an atomization nozzle of the plasma torch. A forward end of the feed material is surface melted by exposure to one or more plasma jets formed in the atomization nozzle. The one or more plasma jets being includes an annular plasma jet, a plurality of converging plasma jets, or a combination of an annular plasma jet with a plurality of converging plasma jets. Powder particles obtained using the process and apparatus are also described.
B01J 2/04 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par division du produit liquide en gouttelettes, p. ex. par pulvérisation, et solidification des gouttelettes en milieu gazeux
52.
POWDER FLOW MONITOR AND METHOD FOR IN-FLIGHT MEASUREMENT OF A FLOW OF POWDER
The present disclosure relates a powder flow monitor having a powder transport tube, a sensor of a flow of powder in the powder transport tube, and an oscillator configured to impart a cleaning vibration to the powder transport tube. A method of in-flight monitoring of a flow of powder using the powder flow monitor, and uses thereof, are also provided.
G01F 15/12 - Dispositions pour le nettoyageFiltres
B65G 53/66 - Utilisation de dispositifs indicateurs ou de commande, p. ex. pour commander la pression du gaz, pour régler le pourcentage matériaux-gaz, pour signaler ou éviter l'embouteillage des matériaux
G01F 1/74 - Dispositifs pour la mesure du débit d'un matériau fluide ou du débit d'un matériau solide fluent en suspension dans un autre fluide
G01N 15/06 - Recherche de la concentration des suspensions de particules
A plasma confinement tube for use in an induction plasma torch is disclosed. The plasma confinement tube defines a geometrical axis and an outer surface. The plasma confinement tube includes a capacitive shield comprising a film of conductive material applied to the outer surface of the plasma confinement tube and segmented into axial strips. The axial strips are interconnected at one end. Axial grooves are machined in the outer surface of the plasma confinement tube, and interposed between the axial strips. The conductive film may have a thickness smaller than a skin-depth calculated for a frequency of operation of the induction plasma torch and an electrical conductivity of the conductive material of the film.
An induction plasma torch comprises a tubular torch body, a plasma confinement tube disposed in the tubular torch body coaxial therewith, a gas distributor head disposed at one end of the plasma confinement tube and structured to supply at least one gaseous substance into the plasma confinement tube; an inductive coupling member for applying energy to the gaseous substance to produce and sustain plasma in the plasma confinement tube, and a capacitive shield including a film of conductive material applied to the outer surface of the plasma confinement tube or the inner surface of the tubular torch body. The film of conductive material is segmented into axial strips interconnected at one end. The film of conductive material has a thickness smaller than a skin-depth calculated for a frequency of a current supplied to the inductive coupling member and an electrical conductivity of the conductive material of the film. Aaxial grooves can be machined in the outer surface of the plasma confinement tube or the inner surface of the tubular torch body, the axial grooves being interposed between the axial strips.
An induction plasma torch comprises a tubular torch body, a plasma confinement tube disposed in the tubular torch body coaxial therewith, a gas distributor head disposed at one end of the plasma confinement tube and structured to supply at least one gaseous substance into the plasma confinement tube; an inductive coupling member for applying energy to the gaseous substance to produce and sustain plasma in the plasma confinement tube, and a capacitive shield including a film of conductive material applied to the outer surface of the plasma confinement tube or the inner surface of the tubular torch body. The film of conductive material is segmented into axial strips interconnected at one end. The film of conductive material has a thickness smaller than a skin-depth calculated for a frequency of a current supplied to the inductive coupling member and an electrical conductivity of the conductive material of the film. Aaxial grooves can be machined in the outer surface of the plasma confinement tube or the inner surface of the tubular torch body, the axial grooves being interposed between the axial strips.
A plasma reactor comprises a torch body comprising a plasma torch for generating plasma, a reactor section in fluid communication with the torch body for receiving the plasma from the plasma torch, and a quench section in fluid communication with the reactor section. The quench section comprises an inner wall defining a quench chamber, the inner wall has a serrated configuration, and the quench chamber has an upstream end adjacent the reactor section and an opposite downstream end. The plasma reactor also comprises at least one heating element in thermal communication with the reactor section, wherein the at least one heating element provides for selectively modulating a temperature within the reactor section.
A titanium metal production apparatus is provided with (a) a first flow channel that supplies magnesium in a state of gas, (b) a second flow channel that supplies titanium tetrachloride in a state of gas, (c) a gas mixing section in which the magnesium and titanium tetrachloride in a state of gas are mixed and the temperature is controlled to be 1600°C or more, (d) a titanium metal deposition section in which particles for deposition are arranged so as to be movable, the temperature is in the range of 715 to 1500°C, and the absolute pressure is 50 kPa to 500 kPa, and (e) a mixed gas discharge section which is in communication with the titanium metal deposition section.
C22B 5/04 - Procédés généraux de réduction appliqués aux métaux par voie sèche par l'aluminium, d'autres métaux ou le silicium
F27D 11/06 - Chauffage par induction, c.-à-d. dans lequel le matériau à chauffer ou son contenant, ou bien les éléments incorporés dans celui-ci, constitue le secondaire d'un transformateur
58.
DEVICE FOR PRODUCING TITANIUM METAL, AND METHOD FOR PRODUCING TITANIUM METAL
A device for producing titanium metal comprises (a) a first heating unit that heats and gasifies magnesium and a first channel that feeds the gaseous magnesium, (b) a second heating unit that heats and gasifies titanium tetrachloride so as to have a temperature of at least 1600ºC and a second channel that feeds the gaseous titanium tetrachloride, (c) a venturi section at which the second channel communicates with an entrance channel, the first channel merges into a throat and as a result the magnesium and the titanium tetrachloride combine in the throat and a mixed gas is formed in the exit channel, and in which the temperature of the throat and the exit channel is regulated to be at least 1600ºC, (d) a titanium metal deposition unit that communicates with the exit channel and has a substrate for deposition with a temperature in the range of 715-1500ºC, and (e) a mixed gas discharge channel that communicates with the titanium metal deposition unit.
C22B 5/04 - Procédés généraux de réduction appliqués aux métaux par voie sèche par l'aluminium, d'autres métaux ou le silicium
F27D 11/06 - Chauffage par induction, c.-à-d. dans lequel le matériau à chauffer ou son contenant, ou bien les éléments incorporés dans celui-ci, constitue le secondaire d'un transformateur
59.
METAL TITANIUM PRODUCTION DEVICE AND METAL TITANIUM PRODUCTION METHOD
A metal titanium production device comprising: (a) a magnesium evaporation unit in which solid magnesium is evaporated and a first flow path which is communicated with the evaporation unit and through which gaseous magnesium is supplied; (b) a second flow path through which gaseous titanium tetrachloride is supplied; (c) a gas mixing unit which is communicated with the first flow path and the second flow path and in which the gaseous magnesium is mixed with titanium tetrachloride, the absolute pressure is adjusted to 50 to 500 kPa and the temperature is adjusted to 1600˚C or higher; (d) a metal titanium precipitation unit which is communicated with the gas mixing unit and in which a precipitation substrate having at least partially a temperature of 715 to 1500˚C is placed and the absolute pressure is adjusted to 50 to 500 kPa; and (e) a mixed gas discharge unit which is communicated with the metal titanium precipitation unit.
Disclosed is a process for producing a metal ball, which comprises the steps of: providing a predetermined mass of a raw material piece; making a plasma flame by a high-frequency energy generated from a plasma working gas and a high-frequency induction coil and increasing the nitrogen concentration in a plasma generation space to 2 vol% or more; introducing the raw material piece into the plasma flame to melt the raw material piece and spheroidizing the molten product; and solidifying the molten and speroidized raw material. Nitrogen can be introduced into the metal ball through the speroidizing step and the solidifying step.
B22D 25/02 - Coulée particulière caractérisée par la nature du produit par sa formeCoulée particulière caractérisée par la nature du produit d'œuvres d'art
B22D 23/00 - Procédés de coulée non prévus dans les groupes
B22F 1/00 - Poudres métalliquesTraitement des poudres métalliques, p. ex. en vue de faciliter leur mise en œuvre ou d'améliorer leurs propriétés
B22F 9/04 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau solide, p. ex. par broyage, meulage ou écrasement à la meule
Disclosed is a method for producing titanium metal, which comprises: (a) a step in which a mixed gas is formed by supplying titanium tetrachloride and magnesium into a mixing space that is held at an absolute pressure of 50-500 kPa and at a temperature not less than 1700˚C; (b) a step in which the mixed gas is introduced into a deposition space; (c) a step in which titanium metal is deposited and grown on a substrate for deposition; and (d) a step in which the mixed gas after the step (c) is discharged. In this connection, the deposition space has an absolute pressure of 50-500 kPa, the substrate for deposition is arranged in the deposition space, and at least a part of the substrate for deposition is held within the temperature range of 715-1500˚C.
A process and apparatus for producing nanopowders and materials processing is described herein. A plasma reactor comprising a torch body comprising a plasma torch for generating a plasma; a reactor section in fluid communication with the torch body for receiving a plasma discharge and further being in fluid communication with a quench section; and at least one heating element in thermal communication with the reactor section and wherein the at least one heating element provides for selectively modulating the temperature within the reactor section is described herein.
B01J 2/04 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par division du produit liquide en gouttelettes, p. ex. par pulvérisation, et solidification des gouttelettes en milieu gazeux
B01J 19/08 - Procédés utilisant l'application directe de l'énergie ondulatoire ou électrique, ou un rayonnement particulaireAppareils à cet usage
B01J 19/24 - Réacteurs fixes sans élément interne mobile
B22F 9/08 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau liquide par coulée, p. ex. à travers de petits orifices ou dans l'eau, par atomisation ou pulvérisation
A process and apparatus for producing nanopowders and materials processing is described herein. A plasma reactor comprising a torch body comprising a plasma torch for generating a plasma; a reactor section in fluid communication with the torch body for receiving a plasma discharge and further being in fluid communication with a quench section; and at least one heating element in thermal communication with the reactor section and wherein the at least one heating element provides for selectively modulating the temperature within the reactor section is described herein.
B01J 2/04 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par division du produit liquide en gouttelettes, p. ex. par pulvérisation, et solidification des gouttelettes en milieu gazeux
B01J 19/08 - Procédés utilisant l'application directe de l'énergie ondulatoire ou électrique, ou un rayonnement particulaireAppareils à cet usage
B01J 19/24 - Réacteurs fixes sans élément interne mobile
B22F 9/08 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau liquide par coulée, p. ex. à travers de petits orifices ou dans l'eau, par atomisation ou pulvérisation
The present application relates to a method and an apparatus for in a high frequency welding (HFW) or electrical resistance welding (ERW) line to perform in-line seam heat treatment of an established welded joint on a pipe (1) made from roll- formed plate material, the welded joint being heated inductively from the exterior side of the pipe (1) downstream of a welding location. The method provides for selective heating (7) of the welded joint from the interior of the pipe (1) downstream of the welding location at least one heating zone, such heating from the interior, when operative, being performed simultaneously and in addition to the external heating (4, 5, 6). The apparatus comprises in addition to exterior heating means (4, 5, 6) downstream of a welding location also induction heating means (7) located inside the pipe (1) for selective operation to heat the welded joint from the interior of the pipe (1) downstream of the welding location at least one heating zone, said operation when selected being additional and simultaneous with operation of the external heating means (4, 5, 6).
B21C 37/08 - Fabrication de tubes à joints soudés ou brasés
C21D 9/50 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour joints de soudure
The invention relates to aspects of electric welding of aluminium or aluminium alloy in a magnetic field, wherein the aluminium or aluminium alloy (21; 22) adjacent to a weld joint (18) under formation has an oxide layer (21 '; 22'), and wherein the free end (1 ') of a welding wire (1) is supplied with a surrounding shielding gas. An alternating current, for example selected in the range of 500 Hz - 500 kHz is used as welding current. Furthermore, a welding wire is used that essentially consists of aluminium or aluminium alloy provided with an oxide-inhibiting coating (23'), for example of copper, which forms the outer covering or sheath of the welding wire and/or that as said shielding gas there is used a shielding gas with oxygen incorporated therein, or that the shielding gas is supplied with oxygen during the welding process. The volume amount of oxygen in relation to the shielding gas is in the range of 0.1-5%. When the welding process is carried out in a magnetic field, the minimum frequency of the welding current is selected as a function of the strength of the magnetic field. The invention also indicates a method of producing the welding wire and necessary material conditions for a usable welding gun.
B23K 35/02 - Baguettes, électrodes, matériaux ou environnements utilisés pour le brasage, le soudage ou le découpage caractérisés par des propriétés mécaniques, p. ex. par la forme
B23K 35/08 - Baguettes, électrodes, matériaux ou environnements utilisés pour le brasage, le soudage ou le découpage caractérisés par des propriétés mécaniques, p. ex. par la forme spécialement conçus pour servir d'électrodes de section non circulaireBaguettes, électrodes, matériaux ou environnements utilisés pour le brasage, le soudage ou le découpage caractérisés par des propriétés mécaniques, p. ex. par la forme spécialement conçus pour servir d'électrodes avec des agencements particuliers, p. ex. à l'intérieur à plusieurs âmesBaguettes, électrodes, matériaux ou environnements utilisés pour le brasage, le soudage ou le découpage caractérisés par des propriétés mécaniques, p. ex. par la forme spécialement conçus pour servir d'électrodes de section non circulaireBaguettes, électrodes, matériaux ou environnements utilisés pour le brasage, le soudage ou le découpage caractérisés par des propriétés mécaniques, p. ex. par la forme spécialement conçus pour servir d'électrodes avec des agencements particuliers, p. ex. à l'intérieur multiples
B23K 9/29 - Dispositifs de support adaptés pour servir de moyens de protection
66.
Plasma surface treatment using dielectric barrier discharges
A process for the in-flight surface treatment of powders using a Dielectric Barrier Discharge Torch operating at atmospheric pressures or soft vacuum conditions is described herein. The process comprising feeding a powder material into the Dielectric Barrier Discharge Torch yielding powder particles exhibiting a reduced powder agglomeration feature; in-flight modifying the surface properties of the particles; and collecting coated powder particles. An apparatus for surface treating micro- and nanoparticles comprising a Dielectric Barrier Discharge Torch operating at atmospheric pressure or soft vacuum conditions is also described herein.
B05D 5/00 - Procédés pour appliquer des liquides ou d'autres matériaux fluides aux surfaces pour obtenir des effets, finis ou des structures de surface particuliers
H05H 1/02 - Dispositions pour confiner le plasma au moyen de champs électriques ou magnétiquesDispositions pour chauffer le plasma
C23C 16/00 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD]
H01J 7/24 - Dispositifs de réfrigérationDispositifs de chauffageMoyens de circulation de gaz ou vapeurs à l'intérieur de l'espace de décharge
H05B 31/20 - Dispositions mécaniques pour l'avancement des électrodes
67.
PLASMA SURFACE TREATMENT USING DIELECTRIC BARRIER DISCHARGES
A process for the in-flight surface treatment of powders using a Dielectric Barrier Discharge Torch operating at atmospheric pressures or soft vacuum conditions is described herein. The process comprising feeding a powder material into the Dielectric Barrier Discharge Torch yielding powder particles exhibiting a reduced powder agglomeration feature; in-flight modifying the surface properties of the particles; and collecting coated powder particles. An apparatus for surface treating micro- and nanoparticles comprising a Dielectric Barrier Discharge Torch operating at atmospheric pressure or soft vacuum conditions is also described herein.
C23C 4/12 - Revêtement par pulvérisation du matériau de revêtement à l'état fondu, p. ex. par pulvérisation à l'aide d'une flamme, d'un plasma ou d'une décharge électrique caractérisé par le procédé de pulvérisation
B05C 19/00 - Appareillages spécialement adaptés pour appliquer des matériaux en particules à des surfaces
B05D 1/10 - Application de matériaux en particules
C09D 5/46 - Compositions de revêtement, p. ex. peintures, vernis ou vernis-laques, caractérisées par leur nature physique ou par les effets produitsApprêts en pâte pour pulvérisation par flammeCompositions de revêtement, p. ex. peintures, vernis ou vernis-laques, caractérisées par leur nature physique ou par les effets produitsApprêts en pâte pour revêtement électrostatique ou pour revêtement par agglomération par effet tourbillon
68.
METHOD FOR PRODUCING METAL NANOPOWDERS BY DECOMPOSITION OF METAL CARBONYL USING AN INDUCTION PLASMA TORCH
A process for synthesizing metal nanopowders by introducing metal carbonyl into an induction plasma torch. By taking advantage of the much lower dissolution temperature of carbonyl as opposed to the high melting temperature of conventional metal powder feeds less torch power is required. Moreover, in contrast to current powder production techniques utilizing electrode based plasma torches, the induction plasma torch does not introduce contaminants into the nanopowder.
B22F 9/30 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par un procédé chimique avec décomposition de mélanges métalliques, p. ex. par pyrolyse
B22F 9/06 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau liquide
B22F 9/12 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un produit gazeux
A process for synthesizing metal nanopowders by introducing metal carbonyl into an induction plasma torch. By taking advantage of the much lower dissolution temperature of carbonyl as opposed to the high melting temperature of conventional metal powder feeds less torch power is required. Moreover, in contrast to current powder production techniques utilizing electrode based plasma torches, the induction plasma torch does not introduce contaminants into the nanopowder.
B22F 9/30 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par un procédé chimique avec décomposition de mélanges métalliques, p. ex. par pyrolyse
B22F 9/06 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau liquide
B22F 9/12 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un produit gazeux
A process and apparatus for preparing a nanopowder are presented. The process comprises feeding a reactant material into a plasma reactor in which is generated a plasma flow having a temperature sufficiently high to vaporize the material; transporting the vapor with the plasma flow into a quenching zone; injecting a preheated quench gas into the plasma flow in the quenching zone to form a renewable gaseous condensation front; and forming a nanopowder at the interface between the renewable controlled temperature gaseous condensation front and the plasma flow.
B01J 8/02 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés avec des particules immobiles, p. ex. dans des lits fixes
H05H 1/42 - Torches à plasma utilisant un arc avec des dispositions pour l'introduction de matériaux dans le plasma, p. ex. de la poudre ou du liquide
B22F 9/12 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un produit gazeux
A process and apparatus for preparing a nanopowder are presented. The process comprises feeding a reactant material into a plasma reactor in which is generated a plasma flow having a temperature sufficiently high to vaporize the material; transporting the vapour by means of the plasma flow into a quenching zone; injecting a preheated quench gas into the plasma flow in the quenching zone to form a renewable gaseous condensation front; and forming a nanopowder at the interface between the renewable controlled temperature gaseous condensation front and the plasma flow.
B01J 2/04 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par division du produit liquide en gouttelettes, p. ex. par pulvérisation, et solidification des gouttelettes en milieu gazeux
B22F 9/08 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau liquide par coulée, p. ex. à travers de petits orifices ou dans l'eau, par atomisation ou pulvérisation
The invention concerns a process for the spheroidisation, densification and purification of powders through the combined action of plasma processing, and ultra-sound treatment of the plasma-processed powder. The ultra-sound treatment allows for the separation of the nanosized condensed powder, referred to as ‘soot’, from the plasma melted and partially vaporized powder. The process can also be used for the synthesis of nanopowders through the partial vaporization of the feed material, followed by the rapid condensation of the formed vapour cloud giving rise to the formation of a fine aerosol of nanopowder. In the latter case, the ultra-sound treatment step serves for the separation of the formed nanopowder form the partially vaporized feed material.
B22F 9/14 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques en utilisant des décharges électriques
A process and apparatus for synthesizing a nanopowder is presented. In particular, a process for the synthesis of nanopowders of various materials such as metals, alloys, ceramics and composites by induction plasma technology, using organometallic compounds, chlorides, bromides, fluorides, iodides, nitrites, nitrates, oxalates and carbonates as precursors is disclosed. The process comprises feeding a reactant material into a plasma torch in which is generated a plasma flow having a temperature sufficiently high to yield a superheated vapor of the material; transporting said vapor by means of the plasma flow into a quenching zone; injecting a cold quench gas into the plasma flow in the quenching zone to form a renewable gaseous cold front; and forming a nanopowder at the interface between the renewable gaseous cold front and the plasma flow.
A process and apparatus for synthesizing a nanopowder is presented. In particular, a process for the synthesis of nanopowders of various materials such as metals, alloys, ceramics and composites by induction plasma technology, using organometallic compounds, chlorides, bromides, fluorides, iodides, nitrites, nitrates, oxalates and carbonates as precursors is disclosed. The process comprises feeding a reactant material into a plasma torch in which is generated a plasma flow having a temperature sufficiently high to yield a superheated vapour of the material; transporting said vapour by means of the plasma flow into a quenching zone; injecting a cold quench gas into the plasma flow in the quenching zone to form a renewable gaseous cold front; and forming a nanopowder at the interface between the renewable gaseous cold front and the plasma flow.
B01J 2/04 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par division du produit liquide en gouttelettes, p. ex. par pulvérisation, et solidification des gouttelettes en milieu gazeux
B22F 9/00 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet
B22F 9/08 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau liquide par coulée, p. ex. à travers de petits orifices ou dans l'eau, par atomisation ou pulvérisation
C01B 13/30 - Évacuation et refroidissement de la suspension contenant l'oxyde
B22F 9/22 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par un procédé chimique avec réduction de mélanges métalliques à partir de mélanges métalliques solides utilisant des réducteurs gazeux
76.
PROCESS FOR THE SYNTHESIS, SEPARATION AND PURIFICATION OF POWDER MATERIALS
The invention concerns a process for the spheroidisation, densification and purification of powders through the combined action of plasma processing, and ultra-sound treatment of the plasma-processed powder. The ultra-sound treatment allows for the separation of the nanosized condensed powder, referred to as 'soot', from the plasma melted and partially vaporized powder. The process can also be used for the synthesis of nanopowders through the partial vaporization of the feed material, followed by the rapid condensation of the formed vapour cloud giving rise to the formation of a fine aerosol of nanopowder. In the latter case, the ultrasound treatment step serves for the separation of the formed nanopowder form the partially vaporized feed material.
B01J 2/04 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par division du produit liquide en gouttelettes, p. ex. par pulvérisation, et solidification des gouttelettes en milieu gazeux