Disclosed herein is a liner (103) for a combustor (7) of a turbomachine. The liner (103) comprises a forward end (103F), an aft end (103A) and a side wall (105) having an outer surface (105A) and an inner surface (105B) and extending from the forward end (103F) to the aft end (103A). The side wall (105) comprises a plurality of cooling holes (171), each cooling hole (171) extending through the side wall (105) from the outer surface (105A) to the inner surface (105B) of the side wall (105). At least a portion of the side wall (105) is manufactured monolithically by additive manufacturing.
F23R 3/00 - Chambres de combustion à combustion continue utilisant des combustibles liquides ou gazeux
F23R 3/46 - Chambres de combustion comprenant une disposition annulaire des tubes à flamme à l'intérieur d'une enveloppe annulaire commune ou d'enveloppes individuelles
F23R 3/06 - Disposition des ouvertures le long du tube à flamme
2.
TURBINE WITH A SEALING SYSTEM FOR NOZZLE GUIDE VANES
A turbine includes a sealing system for nozzle guide vanes (2). The sealing system comprises at least two inner platforms (1) and at most one inner platform for each nozzle guide vane. Each inner platform is adapted to be coupled with a hub (3) of the turbine and comprises a main portion (11) faced to at least one nozzle guide vane and a coupling portion (12) adapted to be coupled with a housing (31) of the hub. At least a part of the coupling portion comprises at least two protrusions coupled to respective undercut grooves of the housing, respectively a leading protrusion (1211) coupled with a leading undercut groove (311') and a trailing protrusion (121") coupled with a trailing undercut groove (311"). At least one interspace (122) is present between a leading side and a trailing side of the coupling portion and the leading side and the trailing side of the housing. At least one passage (13) fluidically connects the leading area upstream of the sealing system and the at least one interspace (122, 122a, 122b).
F01D 11/00 - Prévention ou réduction des pertes internes du fluide énergétique, p. ex. entre étages
F01D 17/16 - Organes de commande terminaux disposés sur des parties du stator faisant varier l'aire effective de la section transversale des injecteurs ou tuyères de guidage en obturant les injecteurs
F01D 5/30 - Fixation des aubes au rotorPieds de pales
F01D 11/02 - Prévention ou réduction des pertes internes du fluide énergétique, p. ex. entre étages par obturation non contact, p. ex. du type labyrinthe
F01D 25/24 - Carcasses d'enveloppeÉléments de la carcasse, p. ex. diaphragmes, fixations
3.
A TRANSITION PIECE FOR A POWER-GENERATING TURBOMACHINE, TURBOMACHINE INCLUDING SAME, AND METHOD OF MANUFACTURING
The transition piece (113) comprises an inner duct (201) extending from an upstream end (201F) to a downstream end (201A), and forming a hot gas path (207). The transition piece (113) further comprises an outer duct (205), extending from an upstream end (205F) to a downstream end (205A) and surrounding the inner duct (201). The inner duct (201) and the outer duct (205) form a cooling annulus (113A) therebetween. Cooling holes (209) extend from the cooling annulus (113A) to the hot gas path (207), through a thickness of the inner duct (201). The inner duct (201) is manufactured by additive manufacturing. The downstream end (201A) of the inner duct (201) and the downstream end (205A) of the outer duct (205) are coupled to one another by a flange (211) surrounding the hot gas path (207).
The combustor (7) comprises a casing (101), in which there are housed a burner (107), a liner (103), and a transition piece (113). A sleeve (115) is arranged around the liner (103), between the liner (103) and the casing (101). The sleeve (115) divides a space between the casing (101) and the liner (103) into an inner annular space (117) and an outer annular space (119). The outer annular space (119) surrounds the inner annular space (117).
F23R 3/00 - Chambres de combustion à combustion continue utilisant des combustibles liquides ou gazeux
F02C 3/34 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail avec recyclage d'une partie du fluide de travail, c.-à-d. cycles semi-fermés comportant des produits de combustion dans la partie fermée du cycle
F23R 3/60 - Structures de supportMoyens de fixation ou de montage
A multi-stage thermophotovoltaic generators arrangement (1000) comprising two or more thermophotovoltaic generators (201, 202, 203, 204). Each thermophotovoltaic generator (201, 202, 203, 204) comprises a combustion unit (110), configured to receive a fuel (F) flow and an oxidant (OX) flow and to perform a combustion process so to generate hot exhaust gases (HE), and a generation unit (120), fluidly coupled to the combustion unit (110) and configured to receive the hot exhaust gases from the combustion unit (110) and to discharge cold exhaust gases (CE). The generation unit (120) comprises two emitter layers (231, 232, 331, 332), spaced apart between each other and defining a flow path in which the hot exhaust gases (HE) flow, and two thermophotovoltaic cells layers (241, 242, 341, 342), each thermophotovoltaic cells layers (241, 242, 341, 342) respectively facing one of the two emitter layers (231, 232, 331, 332) and spaced apart from it. The two emitter layers (231, 232, 331, 332) are configured to receive heat energy from the hot exhaust gases (HE) and to transform heat energy into radiant energy emitted by the two emitter layers (231, 232, 331, 332) and the two thermophotovoltaic cells layers (241, 242, 341, 342) are configured to convert the radiant energy incident on the thermophotovoltaic cells layers (241, 242, 341, 342) into electrical energy. The two or more thermophotovoltaic generators (201, 202, 203, 204) are arranged in series and fluidly coupled, so that the cold exhaust gases (CE) discharged by the upstream thermophotovoltaic generator (201, 202, 203) are received by the downstream thermophotovoltaic generator (202, 203, 204) as oxidant (OX) flow.
Disclosed herein is a burner (107) for a power-generating turbomachine. The burner (107) comprises a center-body (135) with an oxidant duct (159) extending along burner axis (B-B) and having at least one oxidant outlet port (161). The burner (107) further includes an intermediate annular wall (137), extending coaxially around the center-body (135). A first annular oxidant flow path (139) is formed between the center-body (135) and the intermediate annular wall (137). At least one fuel passage (141) extends through the intermediate annular wall (137) and having at least one fuel port (143). An outer annular wall (145) surrounds the intermediate annular (137) wall and a second annular oxidant flow path (149) is formed between the intermediate annular wall (137) and the outer annular wall (145).
The amine reclaimer device comprises a stationary outer shell extending along a longitudinal, preferably horizontal axis. A heat exchanger is housed in the stationary outer shell and surrounds the longitudinal axis thereof. The heat exchanger comprises a hot side, adapted to rotate around the longitudinal axis of the stationary outer shell. The reclaimer device further comprises a liquid feed line, adapted to feed a liquid flow centrally to the heat exchanger. The liquid flow contains water, amine and chemical species generated by amine degradation. The reclaimer device further comprises a liquid removal duct, adapted to remove liquid accumulating on the inner surface of the stationary outer shall. The reclaimer device further comprises a vapor removal duct adapted to remove vapor from the stationary outer shell. Also disclosed herein is a carbon capture system including the reclaimer device, and an amine reclaimer method.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
F28D 11/04 - Appareils échangeurs de chaleur utilisant des canalisations mobiles le mouvement étant rotatif, p. ex. effectué par un tambour ou un cylindre effectué par un tube ou un faisceau de tubes
8.
ULTRASONIC DEGASIFICATION FOR CARBON CAPTURE SOLVENTS
A post-combustion carbon capture system is configured to remove carbon dioxide from a post-combustion feed stream. The post-combustion carbon capture system includes an absorption tower that is configured to produce clean gas with a reduced carbon dioxide concentration and loaded solvent from the post-combustion feed stream. The post-combustion carbon capture system further includes a stripper tower downstream from the absorption tower, and an ultrasonic degasification module configured to remove oxygen from the loaded solvent. In another embodiment, the ultrasonic degasification module is incorporated into a biogas processing system and configured to remove oxygen from a carbon dioxide-loaded solvent.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
9.
MODULAR POWER GENERATION ISLAND FOR NUCLEAR REACTORS
A modular power generation island (100) for nuclear reactors is disclosed. The modular power generation island (100) is configured to circulate a heat transfer fluid in heat exchange relationship, by means of one or more primary heat exchangers (220), with a source of thermal energy (200) to heat the heat transfer fluid in one or more primary heat exchangers (220), wherein the modular power generation island (100) comprises a fluidic interconnection interface (11, 12), a plurality of thermodynamic machines (19, 20, 21, 22), at least one supporting frame (160) and a mechanical coupling system, the fluidic interconnection interface (11, 12) comprising at least one inlet fluidic connection (11) for the heat transfer fluid from the primary heat exchanger (220) and at least one outlet fluidic connection (12) for the heat transfer fluid to the primary heat exchanger (220), the plurality of thermodynamic machines (19, 20, 21, 22) being fluidically coupled with one another along a circuit according to a thermodynamic cycle configured to thermodynamically transform the heat transfer fluid to convert heat into power load and subsequently direct it to primary heat exchanger (220), the plurality of thermodynamic machines (19, 20, 21, 22) being arranged on the structural frame (160) and the mechanical coupling system being configured to structurally couple the modular power generation island (100) with a supporting structure adjacent to the source of thermal energy (200). A kit of components of the modular power generation island (100) and a method for thermodynamically transforming heat from one or more sources of thermal energy (200) are also disclosed.
F01K 7/32 - Ensembles fonctionnels de machines à vapeur caractérisés par l'emploi de types particuliers de machines motricesEnsembles fonctionnels ou machines motrices caractérisés par un circuit de vapeur, un cycle de fonctionnement ou des phases particuliersDispositifs de commande spécialement adaptés à ces systèmes, cycles ou phasesUtilisation de la vapeur soutirée ou de la vapeur d'évacuation pour le réchauffage de l'eau d'alimentation les machines motrices utilisant la vapeur à la pression critique ou hypercritique
F01K 25/10 - Ensembles fonctionnels ou machines motrices caractérisés par l'emploi de fluides énergétiques particuliers non prévus ailleursEnsembles fonctionnant selon un cycle fermé, non prévus ailleurs utilisant des vapeurs particulières ces vapeurs étant froides, p. ex. ammoniac, gaz carbonique, éther
F01K 27/00 - Ensembles fonctionnels transformant la chaleur ou l'énergie d'un fluide en énergie mécanique, non prévus ailleurs
F01K 13/00 - Dispositions générales ou processus généraux de fonctionnement des installations complètes d'ensembles fonctionnels de machines à vapeur
10.
MODULAR POWER GENERATION ISLAND FOR INTERCONNECTION WITH A SOURCE OF THERMAL ENERGY
A modular power generation island (100) for interconnection with one or more sources of thermal energy, such as a nuclear reactor, in particular a small nuclear reactor or a plurality of small modular nuclear reactors, is disclosed. The modular power generation island (100) is configured to circulate a heat transfer fluid in heat exchange relationship, by means of one or more primary heat exchangers (220), with the one or more sources of thermal energy (210) to heat the heat transfer fluid in one or more primary heat exchangers (220), wherein the modular power generation island (100) comprises a fluidic interconnection interface (11, 12), a plurality of thermodynamic machines (13, 14, 15, 16, 17, 18, 19, 20, 21, 22), at least one supporting frame (160) and a mechanical coupling system, the fluidic interconnection interface (11, 12) comprising at least one inlet fluidic connection (11) for the heat transfer fluid from the one or more primary heat exchangers (220) and at least one outlet fluidic connection (12) for the heat transfer fluid to the one or more primary heat exchangers (220), the plurality of thermodynamic machines (13, 14, 15, 16, 17, 18, 19, 20, 21, 22) being fluidically coupled with one another along a circuit according to a thermodynamic cycle configured to thermodynamically transform the heat transfer fluid to convert heat into power load and subsequently direct it to the one or more primary heat exchangers (220), the thermodynamic machines (13, 14, 15, 16, 17, 18, 19, 20, 21, 22) being arranged on the structural frame (160) and the mechanical coupling system being configured to structurally couple the modular power generation island (100) with a supporting structure adjacent to the source of thermal energy (200). A kit of components of the modular power generation island (100) and a method for thermodynamically transforming heat from one or more sources of thermal energy (200) are also disclosed.
F01K 7/32 - Ensembles fonctionnels de machines à vapeur caractérisés par l'emploi de types particuliers de machines motricesEnsembles fonctionnels ou machines motrices caractérisés par un circuit de vapeur, un cycle de fonctionnement ou des phases particuliersDispositifs de commande spécialement adaptés à ces systèmes, cycles ou phasesUtilisation de la vapeur soutirée ou de la vapeur d'évacuation pour le réchauffage de l'eau d'alimentation les machines motrices utilisant la vapeur à la pression critique ou hypercritique
F01K 25/10 - Ensembles fonctionnels ou machines motrices caractérisés par l'emploi de fluides énergétiques particuliers non prévus ailleursEnsembles fonctionnant selon un cycle fermé, non prévus ailleurs utilisant des vapeurs particulières ces vapeurs étant froides, p. ex. ammoniac, gaz carbonique, éther
F01K 27/00 - Ensembles fonctionnels transformant la chaleur ou l'énergie d'un fluide en énergie mécanique, non prévus ailleurs
F01K 13/00 - Dispositions générales ou processus généraux de fonctionnement des installations complètes d'ensembles fonctionnels de machines à vapeur
11.
A METHOD FOR SHORT-TERM FORECASTING OF A GLOBAL HORIZONTAL IRRADIANCE VALUE AND ASSOCIATED TRAINING METHOD
The present disclosure relates to a computer-implemented method (200) of training a predictive model (10) for short-term forecasting of a Global Horizontal Irradiance, GHI, value at a reference location (21), the method (200) comprising: i) obtaining (201) a satellite image (S1-Sn) of cloud coverage over a ground area comprising said reference location (21); ii) performing (202) image processing of said satellite image (S1-Sn) to obtain a corresponding image of the cloud thickness over said ground area; iii) generating (203) a sun path image (P) by composing said image of the cloud thickness with a solar vector defining a path between said reference location (21) and a sun position at an acquisition time of said satellite image (S1-Sn), wherein said sun path image (P) is representative of a cloud occlusion of the sun along said solar vector; iv) providing (204) said image of the cloud thickness to a first feature extraction pipeline of said predictive model (10) to provide a first set of extracted features; v) providing (205) said sun path image (P) to a second feature extraction pipeline of said predictive model (10) to provide a second set of extracted features; vi) combining (206) said first set of extracted features with the second set of extracted features to generate a concatenated set of extracted features; and vii) inputting (207) said concatenated set of extracted features into a classification layer of the predictive model (10) for training on a relationship between said satellite image (S1-Sn) and said GHI value.
G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
G06V 10/70 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique
A computer-implemented method includes performing a root cause analysis associated with one or more alerts generated in association with an asset. Performing the root cause analysis includes identifying a target risk associated with the asset based on the one or more alerts and generating recommendation data associated with mitigating or preventing the target risk. The computer-implemented method includes providing one or more notifications including the one or more alerts, the target risk, and the recommendation data.
E21B 44/00 - Systèmes de commande automatique spécialement adaptés aux opérations de forage, c.-à-d. systèmes à fonctionnement autonome ayant pour rôle d'exécuter ou de modifier une opération de forage sans l'intervention d'un opérateur humain, p. ex. systèmes de forage commandés par ordinateurSystèmes spécialement adaptés à la surveillance de plusieurs variables ou conditions de forage
13.
A METHOD OF CONTROLLING THE CONDITIONING OF A FUEL FEED TO A POWER GENERATING SYSTEM COMPRISING A GAS TURBINE, AND A RELATED GAS TURBINE AUXILIARY SYSTEM FOR FEED CONDITIONING
A power generating system is disclosed. The power generating system includes a gas turbine and an auxiliary system for feed conditioning, utilizing hydrogen-containing substances. The auxiliary system comprises feed inlet lines with valves, feed decomposition reactors that produce a hydrogen-rich gas mixture, and outlet lines connecting the reactors to the gas turbine through a inlet line with a valve. A control system adjusts the operation of the valves and reactors based on the gas turbine's parameters. Additional features include feed by-pass lines, separation means for dividing high-value and low-value gas mixtures, and a heat recovery system to utilize exhaust gas heat. The system can also include a blending apparatus for mixing gas mixtures and storage apparatus for gases. Methods for controlling the system's operation involve determining gas mixture amounts and compositions based on various parameters and controlling valve operations accordingly.
F02C 3/22 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion le combustible ou l'oxydant étant gazeux aux température et pression normales
F02C 7/22 - Systèmes d'alimentation en combustible
F02C 7/224 - Chauffage du combustible avant son arrivée au brûleur
F02C 9/40 - Commande de l'alimentation en combustible spécialement adaptée à l'utilisation d'un combustible particulier ou de plusieurs combustibles
14.
SEAL LEAK GAS RECOVERY SYSTEM USING AN EJECTOR AND METHOD
The system comprises a rotary turbomachine, including dry gas seals. A seal leak gas collecting line fluidly connects the at dry gas seals to the seal leak gas inlet of the ejector. A seal leak gas discharging line fluidly couples the dry gas seals with a seal leak gas discharge at a discharge pressure, lower than the seal leak gas pressure. A leak discharge control valve along the seal leak gas discharging line is adapted to divert at least part of the seal leak gas in the seal leak gas discharging line. Also, a method for recovering seal gas leaking from a dry gas seal arrangement is disclosed.
F01D 11/04 - Prévention ou réduction des pertes internes du fluide énergétique, p. ex. entre étages par obturation non contact, p. ex. du type labyrinthe utilisant un fluide d'obturation, p. ex. de la vapeur
F04D 17/10 - Pompes centrifuges pour la compression ou l'épuisement
An online rotor thrust adjustment system is disclosed. The online rotor thrust adjustment system comprises at least an axial thrust balance flow net between a compressor and an expander of a gas turbine, the axial thrust balance flow net feeding high pressure gas from the compressor to an axial thrust balance piston cavity; wherein an open loop flow regulator is arranged along the axial thrust balance flow net.
F01D 25/16 - Aménagement des paliersSupport ou montage des paliers dans les stators
F01D 3/04 - "Machines" ou machines motrices avec équilibrage des poussées axiales effectué par le fluide énergétique la poussée axiale étant équilibrée par la poussée d'un piston d'équilibrage ou d'un organe analogue
F02C 6/08 - Ensembles fonctionnels de turbines à gaz délivrant un fluide de travail chauffé ou pressurisé à d'autres appareils, p. ex. sans sortie de puissance mécanique délivrant des gaz comprimés le gaz étant prélevés sur le compresseur de la turbine à gaz
F02C 9/18 - Commande du débit du fluide de travail par prélèvement, par bipasse ou par action sur des raccordements variables du fluide de travail entre des turbines ou des compresseurs ou entre leurs étages
16.
A SINGLE COMBINED CONDENSER FOR A PLURALITY OF STEAM TURBINES
A single combined condenser (10) and a respective condensing system configured to collect steam from a plurality of steam turbines (11, 12, 13) is disclosed, each steam turbine (11, 12, 13) driving a respective compressor train (21, 22, 23), and to cool and condense said steam by heat exchange with a cooling fluid, wherein the single combined condenser (10) and respective condensing system are configured to operate the cooling fluid at a duty corresponding to the sum of the maximum duty due to all the steam coming from the plurality of steam turbines (11, 12, 13), as a function of the 10 combination of the flow rate, enthalpy, pressure and temperature of the steam coming from each steam turbine (11, 12, 13). A method of designing and dimensioning the single combined condenser (10) and respective condensing system is also disclosed.
F01K 11/02 - Ensembles fonctionnels de machines à vapeur caractérisés par des machines motrices faisant corps avec les chaudières ou les condenseurs les machines motrices étant des turbines
17.
A MIXING SYSTEM FOR CONTROLLING THE MIXING OF A FIRST GAS STREAM WITH A SECOND GAS STREAM
The present disclosure relates to a mixing system (M1, M3, M4, M5) for controlling the mixing of a first gas stream with a second gas stream, said mixing system (M1, M3, M4, M5) comprising: a mixing line (23) for supplying a mixed stream of fuel for an engine at a predefined concentration range, said mixing line (23) being configured to mix said first gas stream with said second gas stream so as to obtain the mixed stream of fuel; a first feed line (11) being coupled to said mixing line (23) for supplying said first gas stream to said mixing line (23), said first gas stream comprising a first type of fuel gas; a second feed line (12) coupled to said mixing line (23) for supplying said second gas stream to said mixing line (23), said second gas stream comprising a second type of fuel gas that is different from the first type of fuel gas, the second type of fuel gas being selected from group of fuel gases which when mixed with the first type of fuel gas to form the mixed stream of fuel at the predefined concentration range of the second type of fuel gas, the heat content and/or energy content of the resulting mixed stream of fuel has a singularity across said predefined concentration range; and a damping system including a pressure drop system (13) at said first feed line (11), said pressure drop system (13) being configured to adjust a first parameter of the first gas stream, wherein said first parameter is a pressure, said pressure drop system (13) being configured to maintain a differential pressure value across the pressure drop system (13) at a reference pressure drop value to reduce pulsation associated with the mixed stream during mixing of the first gas stream with the second gas stream.
F02C 3/20 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion
F02C 3/22 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion le combustible ou l'oxydant étant gazeux aux température et pression normales
F02C 7/22 - Systèmes d'alimentation en combustible
F02D 41/00 - Commande électrique de l'alimentation en mélange combustible ou en ses constituants
F02M 21/02 - Appareils pour alimenter les moteurs en combustibles non liquides, p. ex. en combustibles gazeux stockés sous forme liquide en combustibles gazeux
F23K 5/00 - Alimentation en d'autres combustibles ou distribution d'autres combustibles pour les appareils à combustion
18.
A MIXING SYSTEM FOR CONTROLLING THE MIXING OF A FIRST GAS STREAM WITH A SECOND GAS STREAM
The present disclosure relates to a mixing system (M1, M2, M3, M4, M5, M6) for controlling the mixing of a first gas stream with a second gas stream, said mixing system (M1, M2, M3, M4, M5, M6) comprising: a mixing line (23) for supplying a mixed stream of fuel for an engine at a predefined concentration range, said mixing line (23) being configured to mix said first gas stream with said second gas stream so as to obtain the mixed stream of fuel; a first feed line (11) being coupled to said mixing line (23) for supplying said first gas stream to said mixing line (23), said first gas stream comprising a first type of fuel gas; a second feed line (12) coupled to said mixing line (23) for supplying said second gas stream to said mixing line (23), said second gas stream comprising a second type of fuel gas that is different from the first type of fuel gas, the second type of fuel gas being selected from group of fuel gases which when mixed with the first type of fuel gas to form the mixed stream of fuel at the predefined concentration range of the second type of fuel gas, the heat content and/or energy content of the resulting mixed stream of fuel has a singularity across said predefined concentration range; a damping system including one or more of: (i) at least one gas control system (14, 33, 34) configured to adjust, in response to receiving at least one control signal, at least one gas stream parameter of the first gas stream and/or the second gas stream, said gas stream parameter comprising a flow or a pressure, and (ii) at least one pressure drop system (13) on the first feed line (11) being configured to adjust a first parameter of the first gas stream, wherein said first parameter is a pressure, said pressure drop system (13) being configured to maintain a differential pressure value across the pressure drop system (13) at a reference pressure drop value, to reduce pulsation associated with the mixed stream during mixing of the first gas stream with the second gas stream.
F02C 3/20 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion
F02C 3/22 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion le combustible ou l'oxydant étant gazeux aux température et pression normales
F02C 7/22 - Systèmes d'alimentation en combustible
F02D 41/00 - Commande électrique de l'alimentation en mélange combustible ou en ses constituants
F02M 21/02 - Appareils pour alimenter les moteurs en combustibles non liquides, p. ex. en combustibles gazeux stockés sous forme liquide en combustibles gazeux
F23K 5/00 - Alimentation en d'autres combustibles ou distribution d'autres combustibles pour les appareils à combustion
19.
A MIXING SYSTEM FOR CONTROLLING THE MIXING OF A FIRST GAS STREAM WITH A SECOND GAS STREAM
The present disclosure relates to a mixing system (M2, M6) for controlling the mixing of a first gas stream with a second gas stream, said mixing system (M2, M6) comprising: a mixing line (23) for supplying a mixed stream of fuel for an engine at a predefined concentration range, said mixing line (23) being configured to mix said first gas stream with said second gas stream so as to obtain the mixed stream of fuel; a first feed line (11) being coupled to said mixing line (23) for supplying said first gas stream to said mixing line (23), said first gas stream comprising a first type of fuel gas; a second feed line (12) coupled to said mixing line (23) for supplying said second gas stream to said mixing line (23), said second gas stream comprising a second type of fuel gas that is different from the first type of fuel gas, the second type of fuel gas being selected from group of fuel gases which when mixed with the first type of fuel gas to form the mixed stream of fuel at the predefined concentration range of the second type of fuel gas, the heat content and/or energy content of the resulting mixed stream of fuel has a singularity across said predefined concentration range; and a damping system including: a flow control system (33) at said first feed line being configured to adjust the flow rate of the first gas stream so as to reach a reference composition value of said mixed stream, and a pressure control system (34) at said second feed line being configured to adjust the pressure of the second gas stream, so as to maintain the pressure at a reference pressure value.
F02C 3/20 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion
F02C 3/22 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion le combustible ou l'oxydant étant gazeux aux température et pression normales
F02C 7/22 - Systèmes d'alimentation en combustible
F02D 41/00 - Commande électrique de l'alimentation en mélange combustible ou en ses constituants
F02M 21/02 - Appareils pour alimenter les moteurs en combustibles non liquides, p. ex. en combustibles gazeux stockés sous forme liquide en combustibles gazeux
F23K 5/00 - Alimentation en d'autres combustibles ou distribution d'autres combustibles pour les appareils à combustion
20.
A REFRIGERATION SYSTEM ADAPTED TO OPERATE IN MULTIPLE MODES DEPENDING ON AMBIENT CONDITIONS
The refrigeration system comprises compressor section and, downstream of the compressor section, an after-cooler, adapted to condense a flow of compressed refrigerant delivered by the compressor section. The system further comprises an evaporation section, including a heat exchanger arrangement, adapted to absorb heat from a consumer by heat exchange with the refrigerant. The evaporation section comprises a cold refrigerant inlet, fluidly coupled with the after-cooler, and a hot refrigerant outlet, adapted to be fluidly coupled with a suction side of the compressor section. A bypass connection fluidly couples the hot refrigerant outlet of the evaporation section with the after-cooler.
The innovative electric discharge machining method allows to produce particles of smaller size and to assist the material in floating within the dielectric fluid and reaching the machine filtering system more efficiently through an electrical discharge machining system (1000); machining comprises application of electricity to a workpiece (1040) through an electrode (1050) and generation of metal particles (1090) by micro-fusion of the workpiece (1040) due to electric sparks; the workpiece (1040) is made of metal; the electrode (1050) is at a distance from the workpiece (1040); the workpiece (1040) to be machined is immersed in a liquid (1080) contained in a tub (1010) during machining; the liquid (1080) is essentially made by a dielectric material. Graphene particles (1095) are added to the liquid (1080) before starting machining and the liquid (1080) is circulated outside the tub (1010) during machining so that agglomerates comprising graphene particles (1095) and metal particles (1090) are filtered out of the circulated liquid, and graphene particles (1095) are also supplemented to the liquid (1080) during machining.
A method and system to operate an energy conversion system are disclosed. The system comprises a gas turbine, an electric machine unit connected to the turbine and the grid, and a gearbox between them. The electric machine unit can function as a generator to drive the gas turbine or convert the turbine's mechanical energy into electricity for the grid. The method involves operating the electric machine unit to deliver active and reactive power to the grid, gradually reducing the gas turbine's output, removing protections to inject power into the grid, and activating synchronous-condenser mode. In this mode, the electric machine unit is dragged by the grid and absorbs active power to provide reactive power on demand, while the combined inertia of the gas turbine, gearbox, and electric machine unit provide grid stability. A control logic unit is also included to execute this method.
An inspection system (100) for a gas turbine component (131), wherein the gas turbine component (131) has at least one hole (101) having a free section, 5 wherein the inspection system comprises according to some components: a lighting device (103) configured to be located outside the gas turbine component (131) and to light the at least one hole (101); an optical camera device (102) configured to be located inside the gas turbine component (131) and to receive light from the lighting device (103) through the at least one hole (101); an 10 electronic processing unit (104) coupled at least to optical camera device (102) and configured to calculate an area of the free section of the at least one hole (101) based on an image captured by the optical camera device (102), whereby the gas turbine component (131) is interposed between the lighting device (103) and the optical camera device (102) and shelters the optical camera device (102) 15 from ambient light. According to alternative embodiments the positions of the lighting device and the optical camera device with respect to the gas turbine component can be exchanged.
F01D 21/00 - Arrêt des "machines" ou machines motrices, p. ex. dispositifs d'urgenceDispositifs de régulation, de commande ou de sécurité non prévus ailleurs
G01B 11/00 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques
G01N 21/88 - Recherche de la présence de criques, de défauts ou de souillures
G01N 21/954 - Inspection de la surface intérieure de corps creux, p. ex. d'alésages
G02B 23/24 - Instruments pour regarder l'intérieur de corps creux, p. ex. endoscopes à fibres
An inspection system (100) for a gas turbine component (131), wherein the gas turbine component (131) has at least one hole (101) having a free section, wherein the inspection system comprises according to some components: a lighting device (103) configured to be located outside the gas turbine component (131) and to light the at least one hole (101); an optical camera device (102) configured to be located inside the gas turbine component (131) and to receive light from the lighting device (103) through the at least one hole (101); an electronic processing unit (104) coupled at least to optical camera device (102) and configured to calculate an area of the free section of the at least one hole (101) based on an image captured by the optical camera device (102), whereby the gas turbine component (131) is interposed between the lighting device (103) and the optical camera device (102) and shelters the optical camera device (102) from ambient light. According to alternative embodiments the positions of the lighting device and the optical camera device with respect to the gas turbine component can be exchanged.
F01D 21/00 - Arrêt des "machines" ou machines motrices, p. ex. dispositifs d'urgenceDispositifs de régulation, de commande ou de sécurité non prévus ailleurs
G01B 11/00 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques
G01N 21/88 - Recherche de la présence de criques, de défauts ou de souillures
G01N 21/954 - Inspection de la surface intérieure de corps creux, p. ex. d'alésages
G02B 23/24 - Instruments pour regarder l'intérieur de corps creux, p. ex. endoscopes à fibres
A multi-burner cluster (15) for turbomachines comprising a holder (31) having a cylindrical body (31.1), which houses a plurality of burners (33). Each burner has at least a first fuel inlet duct (37). The multi-burner cluster further comprises a first peripheral fuel distribution line (35) which extends peripherally around the cylindrical body and at least partially surrounds the burners (33). The first peripheral fuel distribution line (35) is fluidly coupled with a first fuel inlet port (17) formed in the holder (33), and with the first fuel inlet ducts (37) of at least some of said burners (33).
Method for minimizing electrical runout of a machinery having a rotary shaft and two or more bearings, the method comprising the steps of making (100) a groove at at least one portion of an external surface of the rotary shaft near at least one bearing, applying (200) a coating layer in the groove using a thermal spray deposition process and finishing the coating layer by turning or grinding. The coating layer comprises or consists of a Fe or Ni or Co based alloy or a cermet.
An expander generator machine for hydrogen application has a machine inlet and a machine outlet and comprises an impeller which expands hydrogen and which is directly connected to an electric generator and at least one magnetic bearing cooled by a flow of hydrogen taken from the machine inlet. The expander generator machine is located inside a casing and preferably the hydrogen flows through suitable paths inside the casing to cool the at least one magnetic bearing. Advantageously, the electric generator is also cooled by a flow of hydrogen taken from the machine inlet.
H02K 7/18 - Association structurelle de génératrices électriques à des moteurs mécaniques d'entraînement, p. ex. à des turbines
H02K 7/09 - Association structurelle avec des paliers avec des paliers magnétiques
H02K 9/12 - Dispositions de refroidissement ou de ventilation par un agent de refroidissement gazeux circulant en circuit fermé, dont une partie est à l'extérieur de l'enveloppe de la machine dans lesquels l'agent de refroidissement circule librement à l'intérieur de l'enveloppe
28.
SYSTEM AND METHOD FOR STORING LIQUIDS HAVING LOW LATENT HEAT OF VAPORIZATION
Disclosed herein is a storage system for storing low latent heat of vaporization gases comprises a primary storage tank for storing a liquid having a latent heat of vaporization of less than or equal to 1000 joules per gram, and a secondary storage tank comprising a porous sorbent for reversibly storing a boil-off gas released from the primary storage tank.
The innovative method serves for managing a compressor (10) to be shut down in an emergency situation; the compressor (10) is driven (30) in rotation by a driver (20), for example an electric motor; a valve (40) is fluidly coupled between an inlet (11) and an outlet (12) of the compressor (10); the method comprise the steps of: a) detecting the emergency situation, b) opening the valve (40), and c) keeping the valve (40) opened until rotation of the compressor (10) is over; in this way, excessive axial load on active magnetic bearings (32) of the compressor (10) is avoided. The emergency situation may be for example an unexpected and unwanted de-energization of the electric motor (10). Before opening the valve (40) a period of time is waited; in this way, the rotation speed of the compressor (10) reduces somehow before opening the valve (40).
Disclosed herein is a storage system for storing low latent heat of vaporization gases comprises a primary storage tank for storing a liquid having a latent heat of vaporization of less than or equal to 1000 joules per gram, and a secondary storage tank comprising a porous sorbent for reversibly storing a boil-off gas released from the primary storage tank.
2222 to pass through the holes and at least one thermographic camera adapted to acquire a thermographic image at the outlet of the holes. In addition, the system comprises a background panel to allow a better definition of the images captured by the thermographic camera.
The method includes a step of compressing a gaseous oxygen-containing carbon dioxide stream and increasing the temperature thereof through compression, and a step of feeding the compressed and heated oxygen-containing carbon dioxide stream through an oxygen removal package and remove oxygen therefrom, such that the temperature achieved by compression is used for promoting an oxygen removal reaction in the oxygen removal package. The carbon dioxide stream, wherefrom oxygen has been removed, is then cooled for further processing. Further disclosed is a system for performing the above outlined method.
A waste heat-driven water purification system for purifying impurity-infused water includes: an energy generation (EG) unit configured to generate energy by combustion of a fuel and oxidant and having an EG heat transfer fluid conveying a stream of a waste heat; a vapor absorption chiller (VAC) unit being driven by the stream of waste heat to produce cold water in a closed loop; and a water purification unit. The water purification unit includes: a gas hydrate-former vessel configured to form gas hydrates from the impurity-infused water and a hydrate-forming gas by cooling the impurity-infused water and the hydrate-forming gas using the cold water in the closed loop; and a gas hydrate-dissociator vessel to receive the gas hydrates and to dissociate the gas hydrates into purified water and the hydrate-forming gas by heating the gas hydrates using heat from the stream of waste heat.
B01D 3/00 - Distillation ou procédés d'échange apparentés dans lesquels des liquides sont en contact avec des milieux gazeux, p. ex. extraction
B01D 3/34 - Distillation ou procédés d'échange apparentés dans lesquels des liquides sont en contact avec des milieux gazeux, p. ex. extraction avec une ou plusieurs substances auxiliaires
C02F 1/04 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par chauffage par distillation ou évaporation
C02F 1/16 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par chauffage par distillation ou évaporation utilisant la chaleur perdue provenant d'autres procédés
C02F 1/22 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par congélation
C02F 1/26 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par extraction
C02F 103/08 - Eau de mer, p. ex. pour le dessalement
The liquefaction system comprises a high-temperature refrigerant circuit and a low-temperature refrigerant circuit. The system further comprises a first high-temperature heat exchanger, wherein the feed gas is in heat exchange with a first stream of vaporizing first refrigerant and is cooled thereby, and a second high-temperature heat exchanger, wherein compressed first refrigerant of the first refrigerant circuit and compressed second refrigerant of the second refrigerant circuit are in heat exchange with a second stream of vaporizing first refrigerant and are cooled thereby. A low-temperature heat exchanger is further provided, wherein cooled feed gas from the first high-temperature heat exchanger and cooled second refrigerant from the second high-temperature heat exchanger are further cooled and liquefied in heat exchange with a flow of vaporizing second refrigerant.
F25J 1/00 - Procédés ou appareils de liquéfaction ou de solidification des gaz ou des mélanges gazeux
F25J 1/02 - Procédés ou appareils de liquéfaction ou de solidification des gaz ou des mélanges gazeux nécessitant l'emploi d'une réfrigération, p. ex. de l'hélium, de l'hydrogène
The method comprises a preliminary step of placing a disk and a shroud coaxial to one another, wherein one of said disk and said shroud comprises a plurality of blades projecting towards the other of said disk and said shroud, each blade having a base and a tip; wherein the other of said disk and said shroud comprises a plurality of grooves in an outer surface thereof facing opposite the blades; wherein each groove has side surfaces and a bottom; and wherein the shroud and the disk are placed in contact with one another along the blades, with each groove of said plurality of grooves extending along the respective one of said plurality of blades. Next, each blade is welded to the other of said disk and said shroud along the respective groove by a wobbling laser beam applied from the exterior of the impeller and moved along the groove
A waste heat-driven water purification system for purifying impurity-infused water includes: an energy generation (EG) unit configured to generate energy by combustion of a fuel and oxidant and having an EG heat transfer fluid conveying a stream of a waste heat; a vapor absorption chiller (VAC) unit being driven by the stream of waste heat to produce cold water in a closed loop; and a water purification unit. The water purification unit includes: a gas hydrate-former vessel configured to form gas hydrates from the impurity-infused water and a hydrate-forming gas by cooling the impurity-infused water and the hydrate-forming gas using the cold water in the closed loop; and a gas hydrate-dissociator vessel to receive the gas hydrates and to dissociate the gas hydrates into purified water and the hydrate-forming gas by heating the gas hydrates using heat from the stream of waste heat.
C02F 1/68 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par addition de substances spécifiées, pour améliorer l'eau potable, p. ex. par addition d'oligo-éléments
C02F 103/08 - Eau de mer, p. ex. pour le dessalement
A system for purifying impurity-infused water includes a CO2 input tubular, a CO2 output tubular, a CO2 hydrate-former vessel configured to form CO2 hydrates using the CO2 from the CO2 input tubular and the impurity-infused water. The system also includes a CO2 hydrate-dissociator vessel configured receive CO2 hydrates from the CO2 hydrate-former vessel and to dissociate the CO2 hydrates into purified water and dissociated CO2 by heating the CO2 hydrates. The system further includes a CO2 compressor configured to receive the dissociated CO2 from the CO2 hydrate-dissociator vessel, compress the dissociated CO2, and discharge compressed CO2 into the CO2 output tubular. The CO2 hydrate-former vessel includes an impurity solution output for discharging an impurity solution having impurities removed from the impurity-infused water by the formation of the CO2 hydrates. The CO2 hydrate-dissociator vessel includes a heating device configured to heat the CO2 hydrates to dissociate them.
The method comprises a flue gas desulfurizing step using an ammonia-based desulfurizing scrubber to remove sulfur oxides from the flue gas A further step comprises processing the desulfurized flue gas through an ammonia-utilizing carbon dioxide capture unit, to remove carbon dioxide therefrom. The desulfurizing step comprises recycling desulfurized flue gas as an oxidant towards the desulfurizing scrubber. Also disclosed herein is a system for flue gas desulfurization and carbon dioxide removal.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
A suction strainer (1, U, 1", 1"') for removing solids from a fluid flowing into a turbomachine (M), said suction strainer (1, 1 ', 1", 1 "') comprising a body comprising: a plurality of coaxial sections (Sl-Sn) with respect of a central axis (C) of the body, comprising an inner section (SI) and one or more outer sections (S2-Sn) each of which surrounds said inner section (SI); and a plurality of walls (Ll-Ln) comprising an inner wall (El) and one or more outer walls (L2-Ln), wherein the inner wall (El) is arranged within the inner section (S 1) so as to surround at least a portion of said central axis (C) of the body and wherein each of said one or more outer walls (L2-Ln) are arranged within each of said one or more outer sections (S2-Sn) so as to surround at least another portion of said central axis (C) of the body, each of said plurality of walls (Ll-Ln) being connected with at least one neighbouring wall of said plurality of walls (Ll-Ln) through at least one connecting means (12, 13 ) of said body so that said body can be integrally formed as a single unit, wherein each of said plurality of walls (Ll-Ln) comprises a plurality of spaced fluid inlet openings (11) such that during operation the fluid is drawn through the openings into an inlet of said turbomachine (M).
B01D 29/01 - Filtres à éléments filtrants stationnaires pendant la filtration, p. ex. filtres à aspiration ou à pression, non couverts par les groupes Leurs éléments filtrants avec des éléments filtrants plats
B01D 35/02 - Filtres adaptés à des endroits particuliers, p. ex. conduites, pompes, robinets
B01D 46/10 - Séparateurs de particules utilisant des plaques, des feuilles ou des tampons filtrants à surface plane, p. ex. appareils de précipitation de poussières
B33Y 80/00 - Produits obtenus par fabrication additive
41.
A PLANT FOR PRODUCING CARBON DIOXIDE FROM A FLUE GAS, AND METHOD
The plant (1; 301; 401) comprises a heat exchanger (37; 337; 437) adapted to receive compressed flue gas containing carbon dioxide, and condense at least part of the carbon dioxide contained therein. A a carbon dioxide removal unit (39;39; 439) of the plant is adapted to remove liquefied carbon dioxide from the flue gas exiting the heat exchanger (37;337; 437). A carbon dioxide outlet duct (61; 391; 479) extends through the heat exchanger (37; 337; 437). The plant further includes a distillation section (6; 306; 406). The distillation section includes a distillation column (201; 360, 501), a reboiler (203; 363; 505) at the bottom of the distillation column (201; 360; 501) and an overhead condenser (205; 361; 503) at the top of the distillation column (201; 360; 501). Also disclosed herein is a method for removing carbon dioxide form a flue gas.
F25J 3/02 - Procédés ou appareils pour séparer les constituants des mélanges gazeux impliquant l'emploi d'une liquéfaction ou d'une solidification par rectification, c.-à-d. par échange continuel de chaleur et de matière entre un courant de vapeur et un courant de liquide
42.
A METHOD TO ESTABLISH A THERMALLY COMPLIANT PROTECTION FROM ENVIRONMENTAL ATTACK ON MACHINERY CONNECTIONS AND A THERMALLY COMPLIANT PROTECTION LINER COUPLING SYSTEM
The present disclosure concerns a method for establishing a heat-expansion compliant protection against environmental damage on a surface of a material susceptible to environmental attack and connecting a first surface of a material non-susceptible to environmental attack, i.e. a material resistant to and/or protected from and/or not-exposed to environmental attack and a second surface of the same or a different material non-susceptible to environmental attack, i.e. a material resistant to and/or protected from and/or not-exposed to environmental attack, in particular a connection opening through a machinery casing, the method comprising the following steps: - covering the surface of material susceptible to environmental attack with a protective liner of a resistant material, - rigidly coupling and sealing a first end of the protective liner to one of the surfaces of material non-susceptible to environmental attack, - rigidly or non-rigidly coupling the second end of the protective liner with the other surface of material non-susceptible to environmental attack. The disclosure also concerns a thermally compliant protection liner coupling system, configured to establish a heat-expansion compliant protection against environmental damage on a surface (1) of a material susceptible to environmental attack and connecting a first surface (2) of a material non-susceptible to environmental attack and a second surface (4, 4') of the same or a different material non-susceptible to environmental attack, in particular a connection opening through a machinery casing, the system comprising a protective liner (10) of a resistant material, a rigid coupling and seal (14, 14') at a first end (11) of the protective liner (10), configured to rigidly couple said first end (11) with the first surface (2) of material (3) non-susceptible to environmental attack, and a rigid or non-rigid coupling at a second end (12) or portion (13) of the protective liner (10), the rigid or non-rigid coupling being configured to rigidly or non-rigidly couple said second end (12) or portion (13) of the protective liner (10) with the second surface (4, 4') of material non-susceptible to environmental attack.
F16L 58/18 - Protection des tuyaux ou des accessoires pour tuyaux contre la corrosion ou l'entartrage spécialement conçue pour les raccords de tuyaux
F16L 41/08 - Raccordements des tuyaux aux parois ou à d'autres tuyaux, dans lesquels l'axe du tuyau est perpendiculaire au plan de la paroi ou à l'axe de l'autre tuyau
222-lean flue gas. An ammonia stripper (37) is adapted to receive wash water, containing ammonia, from the water wash column and remove ammonia therefrom. A stripper overhead condenser (47) is fluidly coupled with the ammonia stripper and adapted to receive water vapor from the ammonia stripper and return condensed water (61) to the ammonia stripper. The stripper overhead condenser comprises a cold side, wherein a stream of liquid solvent from the regenerator circulates in heat exchange with the condensing water vapor. Also disclosed is a method for condensing water and knocking down non-condensables in from an ammonia stripper of an ammonia-based carbon capture system.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
44.
A MEASURING DEVICE FOR MEASURING A PHYSICAL QUANTITY IN AN ADDITIVE MANUFACTURING MACHINE, AND AN ADDITIVE MANUFACTURING MACHINE
The measuring device includes a connection body, adapted to connect the device to a wall of the build chamber of the additive manufacturing machine. The measuring device further includes a robotic arm supported on the connection body. A probe is supported by the robotic arm and adapted to detect a physical quantity inside the build chamber. The robotic arm has at least a first degree of freedom and a second degree of freedom according to which the probe is movable; The first degree of freedom and second degree of freedom are rotational degrees of freedom 10 around a first rotation axis and a second rotation axis.
B25J 9/04 - Manipulateurs à commande programmée caractérisés par le mouvement des bras, p. ex. du type à coordonnées cartésiennes par rotation d'au moins un bras en excluant le mouvement de la tête elle-même, p. ex. du type à coordonnées cylindriques ou polaires
B25J 9/10 - Manipulateurs à commande programmée caractérisés par des moyens pour régler la position des éléments manipulateurs
B29C 64/371 - Conditionnement de l’environnement en utilisant un environnement autre que l’air, p. ex. un gaz inerte
The subject-matter disclosed herein relates to the use of a composition comprising or consisting of Carbon Dioxide and Sulphur Dioxide as working fluid for a supercritical and/or transcritical power cycle wherein said supercritical/transcritical power cycle is performed in an energy generation system whose at least one component configured to be in contact with the working fluid during the supercritical/transcritical power cycle consist of or comprises an alloy comprising Cobalt. The subject-matter disclosed herein also relates to a turbomachinery component configured to be in contact with said composition during a supercritical and/or transcritical power cycle and to an energy generation system configured to perform a supercritical and/or transcritical power cycle which comprises said turbomachinery component.
C09K 5/04 - Substances qui subissent un changement d'état physique lors de leur utilisation le changement d'état se faisant par passage de l'état liquide à l'état vapeur ou vice versa
F01K 25/10 - Ensembles fonctionnels ou machines motrices caractérisés par l'emploi de fluides énergétiques particuliers non prévus ailleursEnsembles fonctionnant selon un cycle fermé, non prévus ailleurs utilisant des vapeurs particulières ces vapeurs étant froides, p. ex. ammoniac, gaz carbonique, éther
46.
SYSTEM FOR IMPROVING THE OPERATION OF A TURBOMACHINE
A turbomachine is disclosed, designed for compressing gases such as air, carbon dioxide, hydrogen, and methane, comprises an axially rotating impeller with multiple outlets for pressurizing the gas flow-path. An inlet assembly is in gas-flow communication with the impeller, consisting of an inlet for gas entry, a flow-path duct guiding the fluid towards the impeller, and inlet guide vanes directing the flow into the impeller. Additionally, a scroll collects the gas flow towards outlet process piping, complemented by diffuser guide vanes at the impeller's outlet, guiding the fluid into the scroll. The turbomachine comprises also a control unit, mechanically linked to both the inlet and diffuser guide vanes. This unit is equipped with an actuator to adjust the vanes' angular positions, allowing for optimized flow control and improve operational efficiency.
The system comprises a plurality of membrane filtration units in series. Each membrane filtration unit comprises a filtration membrane separating a concentrate side from a permeate side of the respective membrane filtration unit. Each membrane filtration unit further comprises a concentrate discharge duct, fluidly coupled to the respective concentrate side, to remove a concentrate therefrom, and a permeate discharge duct, fluidly coupled to the respective permeate side, to remove permeate therefrom. A first fluid inlet for each membrane filtration unit is fluidly coupled to the concentrate side of the membrane filtration unit. Moreover, each membrane filtration unit, except the most downstream one, further comprises a second fluid inlet, fluidly coupled to the permeate side of the membrane filtration unit.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
C02F 1/44 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par dialyse, osmose ou osmose inverse
49.
HIGH PRESSURE INTEGRATED EXPANDER AND MOTOR-COMPRESSOR UNIT
The expander and motor-compressor unit (100, 200) comprises an electric motor (10) with a stator part (11) and a rotary part (12), a compressor impeller (20) mechanically coupled to a first end the rotary part (12) of the electric motor (10) through a rotating shaft (15) and configured to compress a process gas, an expander impeller (30) mechanically coupled to a second end of the rotary part (12) of the electric motor (10) through the rotating shaft (15) and configured to expand the process gas and a casing (50) comprising a first inner wall (51) and a second inner wall (52). The first and second inner walls (51, 52) form a main chamber (60) in which the electric motor (10) is located and two secondary chambers (61, 62) in which the compressor impeller (20) and the expander impeller (30) are located respectively. The expander and motor-compressor unit (100, 200) further comprise a depressurizing element (170, 270) fluidly coupled to the main chamber (60) and configured to reduce the pressure inside the main chamber (60). The depressurizing element (170, 270) is further fluidly coupled to the compressor impeller (20) and to the expander impeller (30) so that the depressurizing element (170, 270) is configured to receive process gas from the expander impeller (30), to extract process gas from the main chamber (60) to be mixed with the received process gas and to discharge the mixed process gas to the compressor impeller (20).
The present disclosure concerns a rotary machine (10) for increasing the energy of a gas stream, in particular a reactant gas stream (S, S', S", …, Sn), characterised in that the rotary machine (10) comprises one or more stages (11), each stage (11) comprising a. a first rotor (12) comprising a plurality of rotor blades configured to convert the mechanical energy of the rotary machine (10) into kinetic energy of the gas stream (S, S', S", …, Sn) by increasing the pressure, temperature and velocity of the gas stream (S, S', S", …, Sn), b. a second rotor (13) comprising a plurality of rotor blades configured to convert the mechanical energy of the rotary machine (10) and the kinetic energy of the gas stream (S, S', S", …, Sn) into internal energy of the gas stream by reducing the pressure of the gas stream (S, S', S", …, Sn), provided downstream the first rotor (12), the first rotor (12) and the second rotor (13) of each stage (11) being fixed to a shaft (15) or part of a same radial extension (151) of the shaft (15). The disclosure also concerns a method for increasing the energy of a gas stream, in particular a reactant gas stream, the method comprising: a. providing a stream (S) of a gas to the rotary machine (10) defined above, b. providing energy to the gas stream (S, S', S", …, Sn) by alternatively i. increasing pressure, temperature and velocity of the gas stream (S, S', S", …, Sn) by means of the rotor blades of the first rotor (12), and ii. reducing pressure of the gas stream (S, S', S", …, Sn), converting the stage rothalpy to increase the temperature of the gas stream (S, S', S", …, Sn) by means of the rotor blades of the second rotor (13).
B01J 19/18 - Réacteurs fixes avec éléments internes mobiles
B01J 4/00 - Dispositifs d'alimentationDispositifs de commande d'alimentation ou d'évacuation
F04D 17/02 - Pompes à flux radial spécialement adaptées aux fluides compressibles, p. ex. pompes centrifugesPompes hélicocentrifuges spécialement adaptées aux fluides compressibles ayant des étages non centrifuges, p. ex. centripètes
B01J 19/00 - Procédés chimiques, physiques ou physico-chimiques en généralAppareils appropriés
F04D 17/04 - Pompes à flux radial spécialement adaptées aux fluides compressibles, p. ex. pompes centrifugesPompes hélicocentrifuges spécialement adaptées aux fluides compressibles ayant des étages non centrifuges, p. ex. centripètes du type à flux transversal
B01J 3/02 - Dispositifs d'alimentation ou d'évacuation appropriés
B01J 15/00 - Procédés chimiques généraux faisant réagir des milieux gazeux avec des solides non particulaires, p. ex. des matériaux en feuillesAppareillage spécialement adapté à cet effet
F04D 17/10 - Pompes centrifuges pour la compression ou l'épuisement
The innovative method serves for safe start-up operation of a gas turbine (100) and is aimed at reducing, or even eliminating, risks deriving from uncombusted fuel, particularly if the fuel is a highly reactive fuel, in a gas turbine during its "start-up" period, particularly in case of "hot-restart". As known, a gas turbine (100) comprises a compressor section (110) and a combustor section (120) and an expander section (130) and an exhaust section (140). According to the innovative method, during a start-up period of the gas turbine (100) a purging gas is flowed in at least a portion of the combustor section (120) and/or in at least a portion of the expander section (130) and/or in at least a portion of the exhaust section (140). In particular, the purging gas is flown during the ignition phase.
F02C 3/22 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion le combustible ou l'oxydant étant gazeux aux température et pression normales
F02C 3/30 - Addition d'eau, de vapeur ou d'autres fluides aux composants combustibles ou au fluide de travail avant l'échappement de la turbine
An innovative compressor plant (1000) includes a compressor system (100) and a control unit (200); the compressor system (100) comprises: a compressor (10), an electric motor (20) driving in rotation the compressor (10), an anti-surge valve (30) fluidly coupling an inlet and an outlet of the compressor (10), and a measuring arrangement (40); the control unit (200) is configured to perform nonlinear model predictive control of the anti-surge valve (30) based on measurements carried out by the measuring arrangement (40); the model is based on a plurality of state variables corresponding to physical quantities of the compressor system (100) and is supplemented by a first virtual valve (300) and/or a second virtual valve (400), the opening level of the virtual valves being supplemental state variables of the model.
F04D 27/00 - Commande, p. ex. régulation, des pompes, des installations ou des systèmes de pompage spécialement adaptés aux fluides compressibles
F02C 9/18 - Commande du débit du fluide de travail par prélèvement, par bipasse ou par action sur des raccordements variables du fluide de travail entre des turbines ou des compresseurs ou entre leurs étages
The present disclosure concerns a waste heat recovery system designed to circulate a heat transfer fluid in a heat exchange relationship with a waste heat stream. The system includes a closed circuit with a waste heat recovery unit, a high pressure duct, a rotative compressor-expander assembly, an power generator, a low pressure duct, and a heat exchanger. The rotative compressor-expander assembly comprises a case containing a first and second shaft, a compression section, and an expansion section. The compression and expansion sections are designed to compress and expand a finite volume of the heat transfer fluid respectively, facilitating the conversion of heat 10 into useful work.
F01K 25/10 - Ensembles fonctionnels ou machines motrices caractérisés par l'emploi de fluides énergétiques particuliers non prévus ailleursEnsembles fonctionnant selon un cycle fermé, non prévus ailleurs utilisant des vapeurs particulières ces vapeurs étant froides, p. ex. ammoniac, gaz carbonique, éther
F01K 7/32 - Ensembles fonctionnels de machines à vapeur caractérisés par l'emploi de types particuliers de machines motricesEnsembles fonctionnels ou machines motrices caractérisés par un circuit de vapeur, un cycle de fonctionnement ou des phases particuliersDispositifs de commande spécialement adaptés à ces systèmes, cycles ou phasesUtilisation de la vapeur soutirée ou de la vapeur d'évacuation pour le réchauffage de l'eau d'alimentation les machines motrices utilisant la vapeur à la pression critique ou hypercritique
F01K 25/06 - Ensembles fonctionnels ou machines motrices caractérisés par l'emploi de fluides énergétiques particuliers non prévus ailleursEnsembles fonctionnant selon un cycle fermé, non prévus ailleurs utilisant un mélange de fluides différents
54.
A METHOD FOR OPTIMIZING THE OPERATION OF A THERMODYNAMIC SYSTEM OF A LIQUEFIED NATURAL GAS PLANT
The present disclosure relates to a computer-implemented method (100) at a processing unit (11, 203) for determining one or more optimization parameters in order to optimize the operation of a thermodynamic system (1) of a liquefied natural gas, LNG, plant. The present disclosure also relates to server (200) for providing cloud computing services that is remotely located with respect to a thermodynamic system (1) and which comprises a processing unit (203) for determining one or more optimization parameters in order to optimize the operation of a thermodynamic system (1) of the LNG plant.
The modular green ammonia plant comprises a nitrogen production module having an air inlet and a nitrogen outlet, and a hydrogen production module having a water inlet and a hydrogen outlet. The modular green ammonia plant further comprises an ammonia synthesis module comprising an ammonia synthesis reactor having an inlet adapted to receive pressurized syngas containing nitrogen and hydrogen, and an ammonia-rich gas outlet.
The compressor is used for processing a CO2 flow; a first compressor stage has a first row of blades with a first number of blades and a second compressor stage, downstream the first compressor stage, has a second row of blades with a second number of blades; the number of blades of the first compressor stage is less than the number of blades of the second compressor stage; there is an annular gap between the first row of blades and the second row of blades; the first compression stage is designed so to assure that the CO2 flow is in supercritical condition, preferably close to CO2 critical point, at its outlet, and so that the second compressor stage process CO2 in supercritical condition.
F04D 17/02 - Pompes à flux radial spécialement adaptées aux fluides compressibles, p. ex. pompes centrifugesPompes hélicocentrifuges spécialement adaptées aux fluides compressibles ayant des étages non centrifuges, p. ex. centripètes
A low carbon emission compression station is disclosed. The compression sta¬tion is connected to a gas handling system and to an electric grid and comprises at least one electric motor driven compressor. Additionally, the compression station is con¬nected to auxiliary energy sources and energy storage devices, comprises a supervision system, and is configured to operate in dual mode, i.e. is configured to: use power from the electric grid to compress the gas in the gas handling system and/or store energy in excess into said energy storage devices; and/or exploit auxiliary energy sources and/or stored energy to compress the gas in the gas handling system and/or also to deliver energy in excess to the electric grid.
F04D 25/06 - Ensembles comprenant des pompes et leurs moyens d'entraînement la pompe étant entraînée par l'électricité
F02C 6/06 - Ensembles fonctionnels de turbines à gaz délivrant un fluide de travail chauffé ou pressurisé à d'autres appareils, p. ex. sans sortie de puissance mécanique délivrant des gaz comprimés
F17D 1/07 - Aménagements pour propulser les gaz ou les vapeurs par compression
F17D 3/01 - Dispositions pour la surveillance ou la commande des opérations de fonctionnement pour commander, signaler ou surveiller le transfert d'un produit
58.
CARBON DIOXIDE SEPARATION PLANT USING CARBON DIOXIDE AS REFRIGERANT IN A REFRIGERATION CIRCUIT, AND METHOD
F25J 3/06 - Procédés ou appareils pour séparer les constituants des mélanges gazeux impliquant l'emploi d'une liquéfaction ou d'une solidification par condensation partielle
B01D 53/00 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols
59.
PERISCOPIC OPTICAL PROBES FOR TURBOMACHINES AND METHODS FOR MONITORING TURBOMACHINES
An optical device (1000) is disclosed for mapping and monitoring a thermal status of rotating components (600) of a turbomachine; the device comprises: a tubular element (100) having an internal cavity that extends from a first end to a second end of the tubular element (100) and that embodies an optical path (500), a cooler (200) located in the tubular element (100) and configured to cool the internal cavity of the tubular element (100) through a plurality of channels located in the cavity of the tubular element (100); an optical arrangement, with periscopic approach, located in the tubular element (100) and configured to produce the optical path (500) in said tubular element (100).
G01J 5/0806 - Éléments de focalisation ou collimateurs, p. ex. lentilles ou miroirs concaves
G02B 23/24 - Instruments pour regarder l'intérieur de corps creux, p. ex. endoscopes à fibres
F01D 21/00 - Arrêt des "machines" ou machines motrices, p. ex. dispositifs d'urgenceDispositifs de régulation, de commande ou de sécurité non prévus ailleurs
A compression system comprising a centrifugal dual impeller configured to rotate around a rotating axis, the centrifugal dual impeller comprising a hub, a plurality of first blades having a blade root mechanically coupled to the hub and defining a plurality of first flow paths, a shroud mechanically coupled to a blade tip of the plurality of first blades, and a plurality of second blades having a blade root mechanically coupled to the shroud and defining a plurality of second flow paths. The plurality of first flow paths is configured to compress a first fluid flow and the plurality of second flow paths is configured to compress a second fluid flow, which may be the same fluid of the first fluid flow or a different fluid. The compression system further comprises a stator potion comprising a first volute developing around the rotating axis, the first volute being fluidly coupled to the plurality of first flow paths and configured to receive the first fluid flow discharged by the plurality of first flow paths, and a second volute developing around the rotating axis, the second volute being fluidly coupled to the plurality of second flow paths and configured to receive the second fluid flow discharged by the plurality of second flow paths.
A system for producing energy and methane includes a waste-to-energy unit configured to produce energy and a flue gas by combusting waste and an oxidizing agent having oxygen and a carbon dioxide (CO2) separation unit configured to separate CO2 from the flue gas to provide separated CO2. The system also includes a bio-methanation unit configured to generate methane (CH4), heat, and water using the separated CO2 received from the CO2 separation unit and received hydrogen (H2) gas. The system further includes an electrolyzer coupled to a source of water (H2O) and an electric power source supplying electricity and configured to split the H2O to generate the oxygen used in the oxidizing agent and the H2 gas used in the bio-methanation unit.
C07C 1/12 - Préparation d'hydrocarbures à partir d'un ou plusieurs composés, aucun d'eux n'étant un hydrocarbure à partir d'oxydes de carbone à partir d'anhydride carbonique avec de l'hydrogène
F01D 15/10 - Adaptations pour la commande des générateurs électriques ou combinaisons avec ceux-ci
H02K 7/18 - Association structurelle de génératrices électriques à des moteurs mécaniques d'entraînement, p. ex. à des turbines
63.
TRAILER DOWNLOAD SYSTEM FOR GAS REFUELING STATIONS, PARTICULARLY FOR HYDROGEN, AND OPERATING METHOD THEREOF
A trailer download system designed for increasing the pressure of a gas, especially hydrogen gas. The system comprises a gas compressing unit with an input connecting pipe for attachment to a trailer and an output connecting pipe for connection to a refueling station. The compressing unit features multiple compressing stages, each equipped with a compressor, a gas inlet for gas entry, and a gas outlet for the release of compressed gas. The stages are arranged in series. The system is distribution assembly, comprising a distribution pipeline that fluid-dynamically connects the input and output pipes with the inlets of each compressing stage. This connection is selectable to distribute gas from the trailer to one or more compressing stages, varying the gas pressure as needed before it enters the refueling station. The operation of this system involves a computer-implemented method.
F17C 5/06 - Procédés ou appareils pour remplir des récipients sous pression de gaz liquéfiés, solidifiés ou comprimés pour le remplissage avec des gaz comprimés
F17C 13/00 - Détails des récipients ou bien du remplissage ou du vidage des récipients
64.
INTEGRAL AND FULLY ENCLOSED RECIPROCATING ENGINE-COMPRESSOR ASSEMBLY
An integral and fully enclosed reciprocating engine-compressor assembly is disclosed. The assembly comprises - one or more compressor enclosed spaces (10) configured to receive the gas to be compressed, hold the gas during compression and release the gas after compression; - one or more compressor pistons (15) configured to move in alternating motion within the compressor enclosed spaces (10); - one or more engine enclosed spaces (20) configured to receive a compressed 10 motion gas, hold the motion gas during expansion of the motion gas and release the motion gas after expansion; - one or more engine pistons (25) configured to move in alternating motion within the engine enclosed spaces (20); - the engine pistons (25) being integral with the compressor pistons (15). In particular, the gas to be compressed is the same as the motion gas and the one or more compressor enclosed spaces (10) and the one or more engine enclosed spaces (20) are configured as an integral and fully enclosed space.
F04B 9/125 - "Machines" ou pompes à piston caractérisées par les moyens entraînants ou entraînés liés à leurs organes de travail les moyens étant à fluide le fluide étant compressible, p. ex. de la vapeur ou de l'air avec une seule chambre de pompage le mouvement alternatif de l'organe de pompage étant obtenu par un moteur à double effet à fluide compressible
F04B 9/133 - "Machines" ou pompes à piston caractérisées par les moyens entraînants ou entraînés liés à leurs organes de travail les moyens étant à fluide le fluide étant compressible, p. ex. de la vapeur ou de l'air avec plusieurs chambres de pompage avec deux organes de pompage liés mécaniquement le mouvement alternatif des organes de pompage étant obtenu par un moteur à double effet à fluide compressible
F04B 53/16 - Carcasses d'enveloppeCylindresChemises de cylindre ou culassesConnexions des tubulures pour fluide
F04B 9/123 - "Machines" ou pompes à piston caractérisées par les moyens entraînants ou entraînés liés à leurs organes de travail les moyens étant à fluide le fluide étant compressible, p. ex. de la vapeur ou de l'air avec une seule chambre de pompage
F04B 9/129 - "Machines" ou pompes à piston caractérisées par les moyens entraînants ou entraînés liés à leurs organes de travail les moyens étant à fluide le fluide étant compressible, p. ex. de la vapeur ou de l'air avec plusieurs chambres de pompage
F04B 25/02 - Pompes multiétagées spécialement adaptées aux fluides compressibles du type à piston étagé
65.
COMPRESSION SYSTEM WITH GAS LEAK RECOVERY AND FUEL CELLS, AND METHOD
A compression system comprising a compressor, the compressor comprising a sealing arrangement including at least one gas seal. A gas leakage recovery line is adapted to recover process gas leakages from the at least one gas seal. A fuel cell arrangement is fluidly coupled to the gas leakage recovery line. The fuel cell arrangement is adapted to process gas leakages and generate electric power therefrom.
H01M 8/04089 - Dispositions pour la commande des paramètres des réactifs, p. ex. de la pression ou de la concentration des réactifs gazeux
F04B 53/14 - Pistons, tiges de piston ou liaisons piston-tige
H01M 8/04007 - Dispositions auxiliaires, p. ex. pour la commande de la pression ou pour la circulation des fluides relatives à l’échange de chaleur
H01M 8/04111 - Dispositions pour la commande des paramètres des réactifs, p. ex. de la pression ou de la concentration des réactifs gazeux utilisant un assemblage turbine compresseur
H01M 8/0612 - Combinaison d’éléments à combustible avec des moyens de production de réactifs ou pour le traitement de résidus avec des moyens de production des réactifs gazeux à partir de matériaux contenant du carbone
66.
LOW EMISSION COMPRESSION STATION WITHOUT DEDICATED POWER GENERATION ISLAND
A low emission compression station comprising one or more compressors, each compressor being coupled with an electric machine, the electric machine being coupled with at least one mechanical drive gas turbine and/or at least one fuel cell, wherein the electric machine and/or the mechanical drive gas turbines and/or the fuel cells are sized to comply with both process needs and electric loads and are controlled by a supervision system. In case electric machines are coupled with mechanical drive gas turbines, hybrid gas turbines can be used.
The power generation system comprises a fuel cell unit adapted to generate electric power using a hydrocarbon-containing gas. A water-gas shift reactor is adapted to receive flue gas from the fuel cell unit and convert carbon monoxide contained in the flue gas into carbon dioxide and hydrogen. A cryogenic carbon dioxide capture unit is adapted to receive flue gas from the water-gas shift reactor and remove carbon dioxide therefrom. A recycle line recycles carbon dioxide-depleted flue gas to the fuel cell unit.
C01B 3/12 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés inorganiques comportant un hydrogène lié électropositivement, p. ex. de l'eau, des acides, des bases, de l'ammoniac, avec des agents réducteurs inorganiques par réaction de la vapeur d'eau avec l'oxyde de carbone
B01D 53/00 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols
C01B 3/50 - Séparation de l'hydrogène ou des gaz contenant de l'hydrogène à partir de mélanges gazeux, p. ex. purification
H01M 8/04089 - Dispositions pour la commande des paramètres des réactifs, p. ex. de la pression ou de la concentration des réactifs gazeux
H01M 8/0612 - Combinaison d’éléments à combustible avec des moyens de production de réactifs ou pour le traitement de résidus avec des moyens de production des réactifs gazeux à partir de matériaux contenant du carbone
H01M 8/0668 - Élimination du monoxyde de carbone ou du dioxyde de carbone
68.
SYSTEM AND METHOD FOR INSTALLATION OF A CORRUGATED SCREEN PACKING ASSEMBLY
An absorption column includes an outer wall, a floor connected to the outer wall and a ceiling connected to the outer wall, a support ring disposed on an inner surface of the outer wall, and a corrugated screen packing module supported on the support ring. The corrugated screen packing module includes a corrugated screen layer including a plurality of corrugated structures, each of the corrugated structures being configured and dimensioned to pass through an access opening having a first area A1. The first area A1 is smaller than a second area A2 defined by the inner surface of the outer wall in a plane perpendicular to a longitudinal axis of the absorption column.
B01D 3/16 - Colonnes de fractionnement dans lesquelles la vapeur barbote à travers le liquide
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
B01J 19/32 - Éléments de remplissage en forme de grille ou d'éléments composés de plusieurs pièces pour constituer une unité ou un module dans l'appareil de transfert de chaleur ou de matière
An additive manufactured product produced from a Nickel-based super-alloy powder is disclosed. The powder has a size between 15 and 105 µm and comprises at least the following components, by weight: 0,05-0,14% C, 15,0-22,5% Cr, 1.5-2,5% Mo, 3.5-4,6% Al, 9,0-11,0% Co, 0,01-2,2% Ta, 1,5-3,5% Ti, 2,0-4,0% W, the rest being Ni, wherein the additive manufactured product has secondary and tertiary γ' precipitation content up to 35% volume in the grain interior and the presence of M23C6 carbides at grain boundaries as well as the primary γ' precipitation. Additive manufactured turbomachinery components obtained by the super-alloy are also disclosed, the components being able to withstand high temperature and thermo-mechanical stresses.
B33Y 70/00 - Matériaux spécialement adaptés à la fabrication additive
B22F 5/00 - Fabrication de pièces ou d'objets à partir de poudres métalliques caractérisée par la forme particulière du produit à réaliser
B22F 5/04 - Fabrication de pièces ou d'objets à partir de poudres métalliques caractérisée par la forme particulière du produit à réaliser d'aubes de turbines
B22F 10/28 - Fusion sur lit de poudre, p. ex. fusion sélective par laser [FSL] ou fusion par faisceau d’électrons [EBM]
B33Y 80/00 - Produits obtenus par fabrication additive
C22C 1/04 - Fabrication des alliages non ferreux par métallurgie des poudres
C22C 1/047 - Fabrication des alliages non ferreux par métallurgie des poudres comprenant des composés intermétalliques
C22C 32/00 - Alliages non ferreux contenant entre 5 et 50% en poids d'oxydes, de carbures, de borures, de nitrures, de siliciures ou d'autres composés métalliques, p. ex. oxynitrures, sulfures, qu'ils soient soient ajoutés comme tels ou formés in situ
C22C 1/059 - Fabrication d'alliages comprenant moins de 5% en poids de phases de renforcement dispersées
70.
SEALING SYSTEM WITH EXTRA PRESSURE PROTECTION, MACHINE AND METHOD
The sealing system for a rotary shaft of a machine is configured to separate a first zone surrounding a first portion of the rotary shaft and a second zone surrounding a second portion of the rotary shaft. The sealing system comprises a sealing member, located between the first portion of the rotary shaft and the second portion of the rotary shaft, and a support member, which supports the sealing member. The support member is configured to perform a movement at least in an axial direction due to a pressure difference between the first zone and the second zone, and to close a gap, defined between the sealing system, in particular between the sealing member, and the rotary shaft, when the pressure difference is higher than a predetermined value.
F16J 15/36 - Joints d'étanchéité entre deux surfaces mobiles l'une par rapport à l'autre par bague glissante pressée contre la face plus ou moins radiale d'une des deux parties reliée par un diaphragme à l'autre partie
71.
SYSTEM AND METHOD OF PHASE SEPARATION FOR ABSORPTION COLUMN
A system includes an absorption column configured to receive a lean solvent and an input gas with a feed gas or a feed vapor therein and induce co-current flow of the lean solvent and the input gas therethrough to form a mixture of a rich solvent with the feed gas or the feed vapor absorbed therein and the input gas with the feed gas or the feed vapor at least partially removed, and a post-absorption column processing assembly disposed downstream of the absorption column. The post-absorption column processing assembly includes a vessel configured to receive a single stream of the mixture from the absorption column and separate the mixture into gas and liquid, a first stream with a predominantly liquid phase of the mixture from the absorption column and separate gas therefrom, or a second stream of a predominantly gaseous phase of the mixture and separate the liquid therefrom.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
72.
INTEGRALLY GEARED TURBOMACHINERY SYSTEM WITH INTEGRATED DRIVER
An integrally geared turbomachinery system (200) comprising a wheel gear (290) configured to rotate around a rotating axis (R) and at least one shaft (210, 220) mechanically coupled to the wheel gear (90) and to at least one impeller (211, 212, 221, 222) and is configured to rotate around an axis (X, Y). The system (200) further comprises an epicyclic gear (80) mechanically coupled to the wheel gear (290) and a torque motor (270) mechanically coupled to the epicyclic gear (80) and enclosed in the epicyclic gear (80): the torque motor (270) is configured to transmit motion to the epicyclic gear (80) and the epicyclic gear (80) is configured to transmit motion to the wheel gear (290), so that no external drivers are required.
A system includes an absorption column configured to receive a lean solvent and an input gas with a feed gas or a feed vapor therein and induce co-current flow of the lean solvent and the input gas therethrough to form a mixture of a rich solvent with the feed gas or the feed vapor absorbed therein and the input gas with the feed gas or the feed vapor at least partially removed, and a post-absorption column processing assembly disposed downstream of the absorption column. The post-absorption column processing assembly includes a vessel configured to receive a single stream of the mixture from the absorption column and separate the mixture into gas and liquid, a first stream with a predominantly liquid phase of the mixture from the absorption column and separate gas therefrom, or a second stream of a predominantly gaseous phase of the mixture and separate the liquid therefrom.
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
74.
DETERMINING ANOMALIES ON SURFACES OF OR ASSOCIATED TO INDUSTRIAL MACHINES OR COMPONENTS
The innovative method (5000) serves for determining an anomalous condition on a surface (10) of / associated to an industrial machine (100); the method comprises the steps of: b) providing (5100) a set of sentence embedding features of a natural language sentence expressing a concept relating to a presence of a predetermined anomaly on a surface, c) receiving (5200) an image of the surface (10) and/or of surroundings of the surface, d) encoding (5300) the image thereby generating a set of image embedding features, e) determining (5400) a similarity value of a similarity score, wherein the similarity score corresponds to a level of similarity between the set of image embedding features and the set of sentence embedding features, f) comparing (5500) the determined similarity value with a predetermined similarity threshold, and g) transmitting (5600) a result, the result being positive if the determined similarity value is higher than the predetermined similarity threshold.
An absorption column includes an outer wall, a floor connected to the outer wall and a ceiling connected to the outer wall, a support ring disposed on an inner surface of the outer wall, and a corrugated screen packing module supported on the support ring. The corrugated screen packing module includes a corrugated screen layer including a plurality of corrugated structures, each of the corrugated structures being configured and dimensioned to pass through an access opening having a first area A1. The first area A1 is smaller than a second area A2 defined by the inner surface of the outer wall in a plane perpendicular to a longitudinal axis of the absorption column.
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01J 19/30 - Éléments de remplissage non agglomérés ou en forme, p. ex. anneaux de Raschig ou éléments de Berl en forme de selle, destinés à être versés dans l'appareil de transfert de chaleur ou de matière
77.
A MULTISTAGE CENTRIFUGAL COMPRESSOR WITH FORWARD SWEPT, BACK SWEPT OR UN-SWEPT IMPELLER BLADES, IN COMBINATION
The centrifugal compressor comprises a plurality of compressor stages, each including an impeller. To reduce the number of stages or to reduce the compressor speed required to achieve a desired pressure ratio, the impellers include at least two of the following: a set consisting of at least one forward swept impeller; a set consisting of at least one back swept impeller; and a set consisting of at least one un-swept impeller.
The present disclosure relates to a system for cooling natural gas and specifically concerns but is not limited to a system for cooling natural gas down to its liquefaction, through heat exchange in a multi-stream heat exchanger with a mixed refrigerant. The system comprises a closed thermodynamic refrigeration cycle, wherein the mixed refrigerant is cooled through cyclic thermodynamic transformations, including compression, cooling, condensation, expansion and vaporization steps, the compression being a two stage compression. The multi-stream heat exchanger is provided with: - a hot passage of the natural gas; - a cold passage of the mixed refrigerant; and - a plurality of hot passages for pre-cooling corresponding streams of mixed refrigerant from different compression stages, each stream being connected to a respective expansion device and separator, the expansion device being configured to expand and at least partially flash the mixed refrigerant and subsequently cool the mixed refrigerant, the separator being configured to separate the mixed refrigerant into a liquid fraction and a vapor fraction, which are finally routed to the mixed refrigerant cold passage.
The present disclosure concerns a turbomachine for cracking a gas. Embodiments disclosed herein specifically concern a turbomachine comprising one or more compressors to compress the gas and consequently increase its temperature up to the cracking temperature of the gas, wherein at least one of the compressors is coupled through a planetary gear type system with an integrally geared rotating system, which is driven by a driving rotating machine. An expander can be advantageously connected downstream of the compressors and is configured to recover energy from the compressed gas, the expander being preferably additionally coupled with the integrally geared rotating system. The compressors can also be combined with one or more catalytic sections, one or more wave rotors and one or more separating apparatuses downstream of the compressors and/or the wave rotors and/or the expander, to separate the products of the cracking reaction.
The present disclosure relates to a system for cooling natural gas, in particular down to its liquefaction, through heat exchange in a multi-stream heat exchanger with a mixed refrigerant that, after having absorbed heat from the natural gas is cooled in a closed thermodynamic refrigeration cycle, wherein a cooling effect is produced through cyclic thermodynamic transformations, including compression, cooling, condensation, expansion and vaporization steps, the compression being a three stage compression. In particular, the multi-stream heat exchanger is provided with: - a hot passage of the natural gas; - a cold passage of the mixed refrigerant; and - a plurality of hot passages for pre-cooling of corresponding streams of mixed refrigerant from different compression stages, and a respective expansion device and separator, the expansion device being configured to expand and at least partially flash and subsequently cool the mixed refrigerant, the separator being configured to separate the mixed refrigerant into a liquid fraction and a vapor fraction, which are routed to the mixed refrigerant cold passage.
A method for controlling a compression system is disclosed, specifically designed for a compression train. The compression train includes a variable speed driver unit for mechanical drive applications, a variable speed compressor with an impeller for gas compression, and an inlet guide vanes unit with an actuator. The method involves determining the initial operating state of the compressor based on operating variables, such as rotating speed, positioning angle of the inlet guide vanes, and process mass gas flow rate. The method allows minimizing an operating function of the compression train, based on constraints, to adjust the speed of the driver unit and the position of the inlet guide vanes to achieve an optimized operating state.
The present disclosure concerns a wave rotor system as a device for cracking a gas. The wave rotor system comprises one or more wave rotors (10), arranged in series or in parallel, each wave rotor being composed of a rotating body comprising a plurality of channels (12) arranged cylindrically around a rotating axis (11) of the rotating body, each one of the extremities of the channels (12) being closed by a respective plate, the plate comprising ports for the passage of a fluid from respective inlet conduits to the channels or from the channels to respective outlet conduits, wherein the wave rotor system is integrated with a catalytic section and optionally with one or more compressors.
B01J 19/18 - Réacteurs fixes avec éléments internes mobiles
B01J 19/32 - Éléments de remplissage en forme de grille ou d'éléments composés de plusieurs pièces pour constituer une unité ou un module dans l'appareil de transfert de chaleur ou de matière
A turbo-compressor system is disclosed, comprising a multi-shaft gas turbine for power generation. The gas turbine includes a gas generator creating an exhaust gas flow, a power turbine or low-pressure turbine, and an internal coupling shaft linking these elements. The gas turbine's operation is defined by flow rate and pressure differential. The system also comprises a rotary compressor with rotating blades for gas compression, connected to the power turbine via a main coupling shaft. The turbo-compressor system features inlet guide vanes at the compressor's entrance and variable area turbine nozzles between the gas generator and power turbine, to enable the adjustment of both the compressed and exhaust gas flows. The system's design allows for the control of the gas turbine's operating point through the coordinated manipulation of the inlet guide vanes and variable area turbine nozzles.
F02C 9/20 - Commande du débit du fluide de travail par étranglementCommande du débit du fluide de travail par réglage des aubes
F01D 17/14 - Organes de commande terminaux disposés sur des parties du stator faisant varier l'aire effective de la section transversale des injecteurs ou tuyères de guidage
84.
PROVIDING EXPLANATIONS OF ANOMALIES IN INDUSTRIAL MACHINES OR PLANTS THROUGH LANGUAGE SENTENCES
The computer-implemented method (2000) serves for providing explanatory information regarding anomalies in an industrial machine or plant in the form of natural language sentences; the method comprises the steps of: a) receiving (2100) a plurality of time series sequences deriving from a corresponding plurality of sensors of said industrial machine or plant, b) encoding (2200) said plurality of time series sequences thereby generating a corresponding plurality of time series embedding features, c) mapping (2300) said plurality of time series embedding features thereby generating a plurality of sentence embedding features, d) decoding (2400) said plurality of sentence embedding features thereby generating a natural language sentence, and e) transmitting (2500) said natural language sentence.
A nozzle sector for a sectorized annular stator of a gas turbine, comprising an inner platform and an outer platform, said inner platform and said outer platform being substantially concentric with respect to turbine rotational axis and spaced apart from each other by at least an airfoils, wherein each one of said inner platform and said outer platform has a platform leading edge, a platform trailing edge and a first and a second platform sidewall edge, each one of said sidewall edges being extending from said platform leading edge to said platform trailing edge of the respective platform, wherein each one of said first and said second sidewall edges has a leading portion, a trailing portion, and an intermediate portion comprised between said leading portion and said trailing portion.
A steam turbine generator unit is disclosed. The steam turbine generator unit comprises a lower deck, an upper deck, and a steam turbine generator. The steam turbine generator is installed on the lower deck and on the upper deck. The steam turbine generator unit also comprises at least three joint members, to be intended placed over at least two parallel beams. Also disclosed is a method for installing a steam turbine generator unit.
A filterless gas intake system is disclosed. The system comprises a gas passage configured to receive an intake gas flow, the gas passage including an inlet opening, an outlet opening and a lateral wall and one or more separation elements (10), arranged within the gas passage and extending along a direction from one side of the lateral wall to the opposite side, the separation element (10) comprising: a body (11) with at least one concave surface (12) of an electrically conductive material, connected to an earth grounding (13), a leading edge (14), facing the inlet opening of the gas passage and a trailing edge (15) facing the outlet opening of the gas passage; and at least one electrode (16) arranged in front of the at least one concave surface (12) and connected to an electrostatic generator.
B03C 3/08 - Installations alimentées en électricité de l'extérieur du type par voie sèche caractérisées par la présence d'électrodes planes fixes, les surfaces planes étant parallèles au courant de gaz
B03C 3/36 - Parties constitutives ou accessoires, ou leur fonctionnement commandant le débit de gaz ou de vapeurs
B03C 3/47 - Électrodes collectrices planes, p. ex. en forme d'assiettes, de disques, de grilles
A method for performing a start-up of an offshore plant. The offshore plant comprises a power grid, wherein the power grid comprises a power generation source for generating the energy, a load driven by the power generation source and connected to the power grid, a battery energy storage system connected to the power grid and to the load, and a switching and detecting device connected to the power grid. The method comprises the steps of: detecting by the switching and detecting device, a power outage between the load and power grid; and injecting by the battery energy storage system, the energy to the power generation source to start it up, so as to restore the energy conditions on the power grid prior to the power outage. The injecting step provides the re-energization of a busbar connected to the battery energy storage system and a generator connected to a gas turbine.
H02J 9/08 - Circuits pour alimentation de puissance de secours ou de réserve, p. ex. pour éclairage de secours dans lesquels le système de distribution est déconnecté de la source normale et connecté à une source de réserve avec commutation automatique demandant le démarrage d'une machine motrice
H02J 3/00 - Circuits pour réseaux principaux ou de distribution, à courant alternatif
H02J 3/24 - Dispositions pour empêcher ou réduire les oscillations de puissance dans les réseaux
H02J 3/32 - Dispositions pour l'équilibrage de charge dans un réseau par emmagasinage d'énergie utilisant des batteries avec moyens de conversion
H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs
89.
SEALING SYSTEM FOR PERMANENT MAGNET MOTOR/GENERATOR
An electric machine comprising a rotary magnetic assembly, preferably comprising permanent magnets; a stationary magnetic assembly, preferably comprising electromagnets; a rotary hub having a cylindrical shape and a tube-shaped recess for housing the rotary magnetic assembly; a sleeve positioned around the tube-shaped recess so to surround it, and mechanically coupled to the rotary hub. The sleeve has a first end region and a second end region which are sealed to the rotary hub so to fluidly isolate the tube-shaped recess. The rotary hub comprises at least one inner channel which is fluidly coupled to the tube-shaped recess.
H02K 7/00 - Dispositions pour la mise en œuvre d'énergie mécanique associées structurellement aux machines dynamo-électriques, p. ex. association structurelle avec des moteurs mécaniques d'entraînement ou des machines dynamo-électriques auxiliaires
H02K 5/20 - Enveloppes ou enceintes caractérisées par leur configuration, leur forme ou leur construction avec des canaux ou des conduits pour la circulation d'un agent de refroidissement
H02K 7/09 - Association structurelle avec des paliers avec des paliers magnétiques
90.
FIRING APPARATUS AND FIRING METHOD FOR HIGH REACTIVE FUEL GASES
A firing apparatus to control the firing of one or more burners of a gas turbine is disclosed. The firing apparatus comprises a shutoff module, for selectively allowing the passage of the fuel from a fuel source, and an adjustment module, which is capable of adjusting the fuel to be delivered to a nozzle manifold of the gas turbine during the firing phase. Also disclosed are methods of firing the gas turbine.
The compression train (13) for a dehydrogenation plant (1) comprises a driver (36) and a single centrifugal compressor (35) drivingly coupled to the driver. The centrifugal compressor comprises a single casing and a plurality of compressor sections (39.1, 39.2, 39.3) inside said casing (37). Each compressor section comprises at least one impeller (40.1, 40.2) arranged for rotation in the casing (37). The compressor (35) is adapted to compress a mixture containing propane, propylene and hydrogen, having a molecular weight between 20 and 35 g/mol, from a suction pressure between about 0.2 barA and about 1.5 barA to a delivery pressure between about 11 barA and about 20 barA, with a volumetric flowrate comprised between about 120,000 m3/h and about 950,000 m3/h.
F04D 1/08 - Pompes multiétagées les étages étant concentriques
F04D 7/02 - Pompes adaptées à la manipulation de liquides particuliers, p. ex. par choix de matériaux spéciaux pour les pompes ou pièces de pompe du type centrifuge
F04D 29/28 - Rotors spécialement adaptés aux fluides compressibles pour pompes centrifuges ou hélicocentrifuges
F04D 29/58 - RefroidissementChauffageRéduction du transfert de chaleur
92.
A RADIAL TURBOMACHINE WITH IMPROVED IMPELLER EYE SEAL
Disclosed herein is a radial turbomachine including a casing and a rotor arranged for rotation in the casing. The rotor includes at least one impeller with a hub, a shroud, and a plurality of blades between the hub and the shroud. An eye seal is stationarily housed in the casing and surrounds an impeller eye. The impeller eye includes a stepped external surface facing the eye seal. The stepped external surface includes a plurality of cylindrical surface portions. The eye seal in turn includes a plurality of annular fins. Each annular fin projects radially inwardly towards a corresponding surface portion of the impeller eye and ends with a annular fin tip at a clearance distance from the respective cylindrical surface portion of the impeller eye. The annular fins include an end projection at the fin tip, the end projection extending in an axial direction.
The integrally geared compressor includes a bull gear supported for rotation in a gear casing, a first pinion shaft, and a second pinion shaft. A first compressor unit is mounted in an overhung fashion at a first end of the first pinion shaft, and a second compressor unit is mounted in an overhung fashion at a second end of the first pinion shaft, or at a first end, or at a second end of the second pinion shaft. A third compressor unit is mounted in an overhung fashion at one of the first end and the second end of the second pinion shaft. The second compressor unit and the third compressor unit are centrifugal compressor units. The first compressor unit comprises an axial compressor section and a centrifugal compressor section combined to one another.
F04D 17/02 - Pompes à flux radial spécialement adaptées aux fluides compressibles, p. ex. pompes centrifugesPompes hélicocentrifuges spécialement adaptées aux fluides compressibles ayant des étages non centrifuges, p. ex. centripètes
Integrally geared turbomachinery system (200) comprising a wheel gear (90) configured to rotate around a rotating axis (R) and at least a couple of pinion shafts (10, 20) mechanically coupled to the wheel gear (90). A first pinion shaft (10) is configured to be mechanically coupled to the wheel gear (90) and to rotate around a first axis (X) parallel to the rotating axis (R) at a first rotating speed and a second pinion shaft (20) is configured to be mechanically coupled to the first pinion shaft (10) and to rotate around a second axis (Y) at a second rotating speed; the first axis (X) and the second axis (Y) are non-parallel.
F16H 1/22 - Transmissions à engrenages pour transmettre un mouvement rotatif sans engrenages à mouvement orbital comportant plus de deux organes engrenés avec plusieurs arbres d’entraînement ou entraînésTransmissions à engrenages pour transmettre un mouvement rotatif sans engrenages à mouvement orbital comportant plus de deux organes engrenés avec dispositions pour répartir le couple entre plusieurs arbres intermédiaires
A chilled ammonia carbon capture system, using a first working fluid, preferably ammonia, and a heat pump system, using a second working fluid, preferably water, the refrigeration system and the heat pump system being coupled through a vaporizer wherein the heat of the working fluid of the refrigeration system is used to evaporate the working fluid of the heat pump system, so that the waste heat from the chilled ammonia carbon capture system is used to obtain high temperature and high pressure steam. Steam extraction is configured to be utilized in the reboilers of the chilled ammonia carbon capture unit, in such a way that steam refurbishment and additional equipment for the production of high temperature and high pressure steam are not required.
F25B 6/02 - Machines, installations ou systèmes à compression, avec plusieurs circuits de condenseurs disposés en parallèle
F25B 7/00 - Machines, installations ou systèmes à compression fonctionnant en cascade, c.-à-d. avec plusieurs circuits, l'évaporateur d'un circuit refroidissant le condenseur du circuit suivant
F25B 27/02 - Machines, installations ou systèmes utilisant des sources d'énergie particulières utilisant la chaleur perdue, p. ex. chaleur dégagée par des moteurs à combustion interne
F25B 29/00 - Systèmes de chauffage et de refroidissement combinés, p. ex. fonctionnant alternativement ou simultanément
F25B 30/02 - Pompes à chaleur du type à compression
B01D 53/34 - Épuration chimique ou biologique des gaz résiduaires
B01D 51/00 - Prétraitement auxiliaire des gaz ou des vapeurs à épurer des particules dispersées
The gas turbine system comprises a combustor adapted to combust a fuel and an oxidant and generate pressurized hot combustion gas and a turbine fluidly coupled to the combustor and rotated by expansion of the pressurized hot combustion gas from the combustor. A heat exchanger is fluidly coupled to the turbine and adapted to cool expanded combustion gas exhausted from the turbine. A main oxidant supply line is adapted to supply oxidant to the combustor through the heat exchanger. The oxidant streaming through the heat exchanger is in heat exchange relationship with combustion gas exhausted from the turbine. A fuel supply line supplies fuel to the combustor. A secondary oxidant supply line is adapted to supply oxidant in the fuel supply line upstream of a fuel control valve. Also disclosed is a method of operating the system.
F02C 3/34 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail avec recyclage d'une partie du fluide de travail, c.-à-d. cycles semi-fermés comportant des produits de combustion dans la partie fermée du cycle
F02C 3/20 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion
F02C 3/22 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion le combustible ou l'oxydant étant gazeux aux température et pression normales
F02C 6/18 - Utilisation de la chaleur perdue dans les ensembles fonctionnels de turbines à gaz à l'extérieur des ensembles eux-mêmes, p. ex. ensembles fonctionnels de chauffage à turbine à gaz
F02C 7/08 - Chauffage de l'air d'alimentation avant la combustion, p. ex. par les gaz d'échappement
F02C 7/10 - Chauffage de l'air d'alimentation avant la combustion, p. ex. par les gaz d'échappement au moyen d'échangeurs de récupération de chaleur
F02C 7/22 - Systèmes d'alimentation en combustible
F02C 7/232 - Soupapes pour combustibleSystèmes ou soupapes de drainage
F02C 7/236 - Systèmes d'alimentation en combustible comprenant au moins deux pompes
F23R 3/28 - Chambres de combustion à combustion continue utilisant des combustibles liquides ou gazeux caractérisées par l'alimentation en combustible
97.
Dual purpose integrated gear for hybrid train application
A hybrid train system comprising at least one gas turbine to drive a load, and an electric machine unit, also connected to the load. A clutch is installed between the gas turbine and the load. Also, an integrated reduction gear unit is interposed between the load and the electric machine unit, to adapt to different operating speeds.
F01D 15/10 - Adaptations pour la commande des générateurs électriques ou combinaisons avec ceux-ci
F02C 3/107 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail ayant une turbine entraînant un compresseur avec plusieurs rotors raccordés par transmission de puissance
98.
FAST RAMPING-UP SYSTEM FOR POWER GENERATION, AND METHOD
Disclosed herein is a power generation system to supply an electric load. The system includes a first power generation unit and a second power generation unit. Both power generation units include a mechanical power generating machine and an electric generator, drivingly coupled to the mechanical power generating machine to convert mechanical power into electric power. The system further includes an energy storage arrangement adapted to store energy in form of a pressurized, liquefied or solidified fluid. An expander unit of the system includes an expander and an electric generator, which is drivingly coupled to the expander to convert mechanical power generated by the expander into electric power. The expander is adapted to receive pressurized fluid from the energy storage arrangement and generate mechanical power by expansion thereof during a transient phase, in case of sudden increase of the power demand from the electric load.
F02C 6/16 - Ensembles fonctionnels de turbines à gaz comportant des moyens pour emmagasiner l'énergie, p. ex. pour faire face à des pointes de charge pour emmagasiner de l'air comprimé
F01D 15/10 - Adaptations pour la commande des générateurs électriques ou combinaisons avec ceux-ci
F01D 19/00 - Démarrage des "machines" ou machines motricesDispositifs de régulation, de commande ou de sécurité en rapport avec les organes de démarrage
F02C 6/18 - Utilisation de la chaleur perdue dans les ensembles fonctionnels de turbines à gaz à l'extérieur des ensembles eux-mêmes, p. ex. ensembles fonctionnels de chauffage à turbine à gaz
H02J 9/06 - Circuits pour alimentation de puissance de secours ou de réserve, p. ex. pour éclairage de secours dans lesquels le système de distribution est déconnecté de la source normale et connecté à une source de réserve avec commutation automatique
H02J 9/08 - Circuits pour alimentation de puissance de secours ou de réserve, p. ex. pour éclairage de secours dans lesquels le système de distribution est déconnecté de la source normale et connecté à une source de réserve avec commutation automatique demandant le démarrage d'une machine motrice
A compression unit for ammonia comprising a multi-stage compressor, including a first set of compressor stages adapted to compress a syngas containing hydrogen and nitrogen; and a second set of compressor stages adapted to compress a refrigerant of a refrigerant circuit. Described herein is also an ammonia production system including the ammonia compression unit and a method.
F04B 25/00 - Pompes multiétagées spécialement adaptées aux fluides compressibles
F25B 1/10 - Machines, installations ou systèmes à compression à cycle irréversible à compression multi-étagée
F25B 9/00 - Machines, installations ou systèmes à compression dans lesquels le fluide frigorigène est l'air ou un autre gaz à point d'ébullition peu élevé
100.
CENTRIFUGAL COMPRESSOR WITH ENERGY RECOVERY FROM A RECYCLE LINE
A centrifugal compressor is described comprising an anti-surge return line is disclosed, wherein a radial expansion impeller is arranged downstream a compressor discharge and one or more flow regulators are arranged between the compressor discharge and the radial expansion impeller, and wherein the radial expansion impeller discharge is connected with the anti-surge return line. A method for controlling surge in a compressor is also described, the method comprising a step of directing at least a portion or volume of the continuous flow of fluid from the compressor to a radial expansion impeller and to a return line.