A spinning electromotive assembly comprises a rotor, which is rotatably supported by a stator and comprises motor coils. A control unit is operable to synchronously reverse the polarity of the motor coils. An optical sensor arrangement is connected to the stator and operable to detect ultraviolet or ultraviolet and/or visible radiation of partial discharges induced in the motor coils when the polarity is reversed.
H02K 11/20 - Association structurelle de machines dynamo-électriques à des organes électriques ou à des dispositifs de blindage, de surveillance ou de protection pour la mesure, la surveillance, les tests, la protection ou la coupure
H02K 11/33 - Circuits d’entraînement, p. ex. circuits électroniques de puissance
H02P 29/032 - Prévention d’un endommagement du moteur, p. ex. détermination de limites individuelles de courant pour différentes conditions de fonctionnement
2.
OPTOFLUIDIC SENSOR, WATER-CONDUCTING HOUSEHOLD APPLIANCE AND METHOD FOR DETERMINING A CONCENTRATION
An optofluidic sensor operable to determine a concentration of a detergent component in a fluid includes a waveguide structure with an input optically coupled to a light source and a sensing region that is exposed to the fluid. A detection unit is optically coupled to an output of the waveguide structure and is configured to generate a detection signal based on an amount of light received from the output. A processing unit is configured to determine, from the detection signal received from the detection unit, the concentration of the detergent component in the fluid. The amount of light received from the output depends on a number of particles of the detergent component adsorbed on a surface of the waveguide structure within the sensing region.
D06F 105/42 - Alimentation en détergent ou en additifs
G01N 15/00 - Recherche de caractéristiques de particulesRecherche de la perméabilité, du volume des pores ou de l'aire superficielle effective de matériaux poreux
3.
INTEGRATED ILLUMINATION MODULE, MONITORING ARRANGEMENT AND METHOD OF OPERATING A MONITORING ARRANGEMENT
An integrated illumination module for in-cabin monitoring, comprises a substrate and an active area comprising an array of pixels, wherein at least some pixels of the array are arranged in segments configured to provide illumination to a zone of a cabin, respectively. A driver circuit comprises an input to receive an occupancy signal indicative of an in-cabin presence and the driver circuit is operable to selectively drive pixels and adjust illumination to a zone of the cabin depending on the received occupancy signal, respectively.
H05B 47/115 - Commande de la source lumineuse en réponse à des paramètres détectés en détectant la présence ou le mouvement d'objets ou d'êtres vivants
B60Q 3/76 - Agencement des dispositifs d’éclairage pour l’intérieur des véhiculesDispositifs d’éclairage spécialement adaptés à l’intérieur des véhicules caractérisés par leur objet pour l’éclairage ponctuel, p. ex. lampes de lecture
In a first aspect of the disclosure there is provided a multi-spectral optical sensor comprising: a monolithic semiconductor chip defining a plurality of subarrays of optical detector regions, each array comprising the same number and relative spatial arrangement of optical detector regions; a plurality of optical filters; and a plurality of lens elements, wherein each optical filter is positioned between a corresponding lens element and a corresponding subarray of optical detector regions such that light from a scene incident on any one of the lens elements along a direction of incidence propagates through the corresponding optical filter towards a corresponding one of the optical detector regions of the corresponding subarray of optical detector regions, which corresponding one of the optical detector regions depending on the direction of incidence, and wherein the incident light forms an out-of-focus image of the scene at a plane of the optical detector regions.
A multi-spectral optical sensor comprises a plurality of apertures, a plurality of lens arrangements, a plurality of optical filters and a monolithic semiconductor chip defining a plurality of sub-arrays of optical detector regions, each sub-array comprising the same number and relative spatial arrangement of optical detector regions and the optical detector regions of each sub-array being arranged on a predetermined pitch in a direction parallel to a surface of the of the semiconductor chip. The multi-spectral optical sensor is configured so that light from a scene incident on any one of the apertures along any given direction of incidence is transmitted through the corresponding lens arrangement and the corresponding optical filter to the corresponding sub-array of optical detector regions so as to form an out-of-focus image at a plane of the optical detector regions of the corresponding sub-array of optical detector regions.
G01J 3/50 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des détecteurs électriques de radiations
G01J 3/51 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des détecteurs électriques de radiations en utilisant des filtres de couleur
6.
OPTICAL DETECTION METHOD AND LIGHT DETECTION STRUCTURE
The invention relates to an optical detection method based on detection and analysis of light reflected from an illuminated object (500) and/or of light passing through a transmissive object (500), wherein a) an optical sensor (8) detects spectral data (10) from a first spectral range (20) and a second spectral range (30), the second spectral range (30) being different from the first spectral range (20), b) the sensor (8) sends the detected spectral data (10) to a micro control unit (12) which receives and processes the spectral data (10) from the optical sensor (8), and wherein the micro control unit (12) and/or a connected processing unit derives a number of physical properties of the object (500) from said spectral data (10).
G01N 21/25 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes
G01N 21/31 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique
G01J 3/02 - SpectrométrieSpectrophotométrieMonochromateursMesure de la couleur Parties constitutives
G01N 21/3554 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique en utilisant la lumière infrarouge pour la détermination de la teneur en eau
G01N 21/84 - Systèmes spécialement adaptés à des applications particulières
G01N 21/359 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique en utilisant la lumière infrarouge en utilisant la lumière de l'infrarouge proche
7.
MULTISPECTRAL OPTICAL SENSOR AND MANUFACTURING METHOD THEREOF
A multispectral optical sensor comprises a monolithic semiconductor chip (510, 810) defining a plurality of subarrays (512, 812) of optical detector regions (511, 811), each subarray comprising the same number and relative spatial arrangement of optical detector regions (511, 811); a plurality of lens arrangements, each of which is corresponding to one of the plurality of subarrays (512, 812); wherein each lens arrangement comprises an upper lens arrangement having an upper convex lens element (570a, 870a, 970a), and a lower lens arrangement having a lower convex lens element (570b, 870b, 970b) and a bottom glass substrate (571c, 871d, 971c) mounted on the monolithic semiconductor chip (510, 810) through its bottom surface; wherein each lens arrangement further comprises an optical filter (566, 866, 966) provided on top surface of the bottom glass substrate (571c, 871d, 971c), so that incident light from a scene passes through the optical filter (566, 866, 966) and then propagates in the bottom glass substrate (571c, 871d, 971c) along a direction towards a detector region (511, 811) of a subarray (512, 812) corresponding to the optical filter (566, 866, 966).
A membrane assembly (100) includes · a first semiconductor substrate (102) having a back-volume portion (104) · a membrane structure (112) having an anchor portion (114) coupled to the substrate and a membrane portion (116) coupled to the anchor portion and arranged above the back-volume portion, wherein the anchor portion and the membrane portion are arranged in a common plane and · a protective screen (122) arranged on or above the membrane structure. The protective screen is formed from a second semiconductor substrate and comprises a coupling portion (124) coupled to the anchor portion and a damping structure arranged above the membrane portion, wherein the damping structure is formed as a recess (160) in the second semiconductor substrate regarding the coupling portion. The protective screen comprises one or more through holes (138) to couple the membrane with an environment (150) of the membrane assembly. The protective screen is formed from a semiconductor wafer.
Miniaturised Chemical Laboratory A Multi-channel interferometric module (2), comprising a plurality of input waveguides (10) in conjunction with multiple evanescently coupled waveguides (20), which provide a coupling region (16) for the multiple input fields in said input waveguides (10), whereby a fan-in (22) and fan-out section (30) are provided for said input fields to enter and leave said coupling region (16).
G02B 6/12 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques du genre à circuit intégré
G01N 21/00 - Recherche ou analyse des matériaux par l'utilisation de moyens optiques, c.-à-d. en utilisant des ondes submillimétriques, de la lumière infrarouge, visible ou ultraviolette
G02B 6/125 - Courbures, branchements ou intersections
G02B 6/293 - Moyens de couplage optique ayant des bus de données, c.-à-d. plusieurs guides d'ondes interconnectés et assurant un système bidirectionnel par nature en mélangeant et divisant les signaux avec des moyens de sélection de la longueur d'onde
Smoke detector (2), comprising a detector chamber (6), a number of emitters (10) and at least one optical sensor (14), whereby said sensor (14) is built as a multi-spectral optical sensor (38).
G08B 17/107 - Déclenchement par la présence de fumée ou de gaz utilisant un dispositif émetteur et récepteur de lumière pour détecter une diffusion de lumière due à de la fumée
An optical tilt measurement apparatus includes an optical tilt sensor for use in sensing a tilt angle of a flat reflective surface around a pivot axis. The optical tilt sensor includes an optical emitter arrangement for emitting at least three beams of light so that each emitted beam of light is incident on, and reflected from, the flat reflective surface to form a corresponding reflected beam of light. The optical tilt sensor also includes an image sensor having a sensor area for detecting an intensity distribution of each of the reflected beams of light and outputting one or more signals representative of the detected intensity distribution of each of the reflected beams of light. The at least three emitted beams of light are emitted along at least three corresponding different emission paths. Each emission path extends from a corresponding emission point along a different corresponding emission direction.
G01B 11/26 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer des angles ou des cônesDispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour tester l'alignement des axes
G05D 3/12 - Commande de la position ou de la direction utilisant la contre-réaction
12.
OPTICAL SENSOR ELEMENT, MULTI-SPECTRAL OPTICAL SENSOR AND ELECTRONIC DEVICE
An optical sensor element (10) comprises a detection region (105), an optical filter (108), an adhesive layer (107) between the detection region (105) and a first main surface (117) of the optical filter (108), the adhesive layer (107) having a thickness of more than 1 µm and less than 20 µm, and a microlens (109) over a second main surface (118) of the optical filter (108).
An optical sensor element (10) comprises an array of optical detector regions (100) arranged in a detector plane (102), an optical filter (105), being arranged over the array of optical detector regions (100), and an optical imaging element (110) having a field of view (120). The optical imaging element (110) is configured to direct light from different segments (121) of the field of view (120) to different optical detector regions (100), respectively. The optical imaging element (110) is designed so that a variation of a Strehl ratio of the optical imaging element (110) within the field of view (120) of the optical imaging element (110) is less than 100% with respect to a minimum value of the Strehl ratio within the field of view (120) of the optical imaging element (110). The array of optical detector regions (100) is arranged so that a position of a focal surface (118) of the optical imaging element (110) is shifted with respect to a position of the detector plane (102).
G01J 3/02 - SpectrométrieSpectrophotométrieMonochromateursMesure de la couleur Parties constitutives
G01J 3/51 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des détecteurs électriques de radiations en utilisant des filtres de couleur
G02B 13/00 - Objectifs optiques spécialement conçus pour les emplois spécifiés ci-dessous
An optoelectronic device (10) is configured as a self-mixing interferometer and comprises a laser (11), a driver (20) with an output coupled to the laser (11), a signal input (21), a comparator (22) with an input (23) coupled to the signal input (21), a time-to-digital converter (25) with an input (26) coupled to an output (24) of the comparator (22), and a signal evaluation circuit (30) with an input (31) coupled to an output (27) of the time-to-digital converter (25) and with an output (32). The signal evaluation circuit (30) is configured to provide an output signal (SOUT) at the output (32). Moreover, a method for generating an output signal (SOUT) is provided.
G01S 7/4861 - Circuits pour la détection, d'échantillonnage, d'intégration ou de lecture des circuits
G01S 7/487 - Extraction des signaux d'écho désirés
G01S 7/493 - Extraction des signaux d'écho désirés
G01S 17/14 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement utilisant la transmission d'ondes à modulation d'impulsion interrompues dans lesquels une impulsion de tension ou de courant est initiée et terminée en fonction respectivement de l'émission d'impulsions et de la réception d'écho, p. ex. en utilisant des compteurs
G01S 17/58 - Systèmes de détermination de la vitesse ou de la trajectoireSystèmes de détermination du sens d'un mouvement
A sensor device includes a light source configured to emit a primary radiation, a detector having a plurality of detector units, and a sensor film including metallic nanoparticles geometrically between the reflecting optical element and the detector. The sensor film is configured to be exposed to a liquid or gas. The detector is configured to detect a spectral change in the primary radiation caused by the sensor film upon exposure to the liquid or gas. The reflecting optical element is a parabolic mirror. The reflecting optical element is the only reflective optics in a beam path between the light source and the detector. The detector is configured to detect secondary radiation scattered by the metallic nanoparticles. The primary radiation from the light source scattered at the metallic nanoparticles is measured in a transmission configuration.
G01N 21/35 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique en utilisant la lumière infrarouge
An optical module for Raman spectroscopy includes a laser source mounted on a substrate and configured to emit electromagnetic radiation at a target. The optical module also includes a plurality of sensors mounted on the substrate and configured to detect electromagnetic radiation scattered from the target. The optical module further includes a first filter disposed over one or more of the plurality of sensors. The first filter is substantially transparent to a first wavelength band corresponding to a Raman scattering wavelength of a first molecule of the target and opaque to wavelengths outside the first wavelength band.
A61B 5/1455 - Mesure des caractéristiques du sang in vivo, p. ex. de la concentration des gaz dans le sang ou de la valeur du pH du sang en utilisant des capteurs optiques, p. ex. des oxymètres à photométrie spectrale
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
17.
Signal processing circuit and signal processing device
A signal processing circuit includes a first current sensor input, a second current sensor input, a voltage sensor input for receiving a sensor voltage, a first selection unit, a second selection unit, a current analog-digital converter (ADC), a voltage ADC, digital processing block, and a current-voltage converter. The first selection unit includes a first current input coupled to the first current sensor input, and a second current input coupled to the second current sensor input. The second selection unit includes a first voltage input coupled to the voltage sensor input and a second voltage input. The current ADC is coupled to a first current output. The voltage ADC is coupled to a voltage output. The digital processing block is coupled to outputs of the current ADC and the voltage ADC. The current-voltage converter is coupled between a second current output and the second voltage input.
Arial device (12) for moisture measurements in soil (2), comprising at least one spectral soil sensor (20) arranged facing at least partially downward in the regular flying position of said arial device (12) and at least one spectral sun sensor (64) arranged facing at least partially upward in the regular flying position of said arial device (12).
G01N 21/3554 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique en utilisant la lumière infrarouge pour la détermination de la teneur en eau
G01N 21/3563 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique en utilisant la lumière infrarouge pour l'analyse de solidesPréparation des échantillons à cet effet
G01N 21/27 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en utilisant la détection photo-électrique
G01N 21/17 - Systèmes dans lesquels la lumière incidente est modifiée suivant les propriétés du matériau examiné
G01N 21/359 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique en utilisant la lumière infrarouge en utilisant la lumière de l'infrarouge proche
19.
MULTISPECTRAL IMAGE SENSOR ARRANGEMENT, ELECTRONIC DEVICE AND METHOD OF MULTISPECTRAL IMAGING
A multispectral image sensor arrangement comprises a main image sensor (IS), a multispectral image sensor (MS) and a processing unit (PU). The image sensor (IS) is operable to acquire a spatially resolved first image (IM1) of a scene. The multispectral sensor (MS) is operable to acquire a spectrally resolved second image (IM2) of the same scene. The processing unit (PU) is operable to define one or more regions-of-interest, ROIs, in the first image (IM1), define one or more spectral ROIs in the second image (IM2) corresponding to the ROIs in the first image (IM1), determine spectral data from the spectral ROIs of the second image (IM2), and to use the determined spectral data to adjust a spectral representation of the first image (IM1).
A bioimpedance measurement circuit for determining a corrected body impedance with a set of terminals, a control circuit (200), an evaluation circuit (300) and a signal processing circuit (400) is disclosed. The control circuit (200) is configured to control measurement of a body impedance (Zb), where the stimulus current (iin) is applied through a first and a second terminal, and an input voltage (vin) is measured between a third and a fourth terminal, of a first bodypart impedance (Zw), where the stimulus current (iin) is applied through the first and the third terminal, and the input voltage (vin) is measured between the first and the third terminal, and of a second bodypart impedance (Zf), where the stimulus current (iin) is applied through the second and the fourth terminal, and the input voltage (vin) is measured between the second and the fourth terminal. The signal processing circuit (400) is configured to determine an error impedance (Zerr) based on the measured first bodypart impedance (Zw), the measured second bodypart impedance (Zf), a stored first parasitic bodypart impedance (Zwp), a stored second parasitic bodypart impedance (Zf), and a stored input impedance (Zin), and to determine a corrected body impedance (Zbcorr) based on the measured body impedance (Zb) and the error impedance (Zerr).
An optical element (1) is specified herein, comprising: - a transparent body (2) with a flat light incoupling surface (21) configured for coupling electromagnetic radiation (3) into the transparent body and a flat light outcoupling surface (22) configured for coupling the electromagnetic radiation (3) out of the transparent body (2), - a first reflective layer (41) on a region of the light incoupling surface (21), - a second reflective layer (42) on a region of the light outcoupling surface (22), wherein - the light incoupling surface (21) and the light outcoupling surface (22) are parallel to each other, - the first reflective layer (41) comprises an opening (43) through which the electromagnetic radiation (3) is coupled into the transparent body (2), and - the first reflective layer (41) and the second reflective layer (42) are arranged such that a geometric length of an optical path (5) of the electromagnetic radiation (3) inside the transparent body (2) is at least three times larger than a distance (D) between the light incoupling surface (21) and the light outcoupling surface (22). Furthermore a sensor (10) and a display apparatus (100) comprising said optical element (1) are specified herein.
Computer-implemented method for detection of characteristic regions in a time-continuous signal, comprising the steps of • obtaining sampled values of the signal by measuring a signal with a sampling rate (100, 102); • conducting a coarse detection of at least one characteristic regions (106); • for each characteristic region, building a current template (108); • building a matching template (110); • interpolating the signal at least in a characteristic region and the matching template with an interpolating rate, yielding an interpolated signal segment and an interpolated matching template (104, 112); • matching the interpolated template with the interpolated signal segment to identify the position of characteristic regions in the signal (114).
A bioimpedance measurement circuit (10) comprises an electrode arrangement (100) for attaching to a body, an evaluation circuit (300) for determining a real part (I) and an imaginary part (Q) of a bioimpedance (BIOZ) of the body in response to a stimulus current (iin) applied to the body and an input voltage (vin) of the evaluation circuit (300). A signal processing circuit (400) is configured to determine a corrected value of the bioimpedance by calculating a corrected real part (Icorr) of the bioimpedance (BIOZ) in dependence on a derivative (dI) of the real part (I) of the bioimpedance (BIOZ), and a corrected imaginary part (Qcorr) of the bioimpedance (BIOZ) in dependence on the imaginary part (Q) and a second imaginary part (Q3) of the bioimpedance determined by the evaluation circuit (300) at different measurement frequencies (ω3, F).
The invention concerns a method for determining a substance concentration in a sample (2) comprising liquid containing particles, wherein a refractive index of the liquid is dependent on a concentration of the substance dissolved therein and a density of particles in the liquid is substantially constant. The method comprises detecting two different light components that are characterized by a different path length (D1,D2) through the sample (2) and obtain two signals representing light intensity of the scattered light through the sample (2) therefrom. A substance concentration is derived from the first and second intensity signals, in particular from a ratio of the first and second intensity signals.
The invention relates to a method for determining a substance concentration in a sample comprising liquid containing particles, in particular glucose in blood, wherein a refractive index of the liquid is dependent on a concentration of the substance dissolved therein and a density of particles in the liquid is substantially constant. First and second light beams are emitted during two different durations onto the sample containing the liquid during a first duration. The light components scattered by the sample during the respective durations are detected and a respective modulation depth obtained therefrom. From the changes between the first and the second modulation depth, the substance concentration or a change in the substance concentration can be derived.
A61B 5/145 - Mesure des caractéristiques du sang in vivo, p. ex. de la concentration des gaz dans le sang ou de la valeur du pH du sang
A61B 5/1455 - Mesure des caractéristiques du sang in vivo, p. ex. de la concentration des gaz dans le sang ou de la valeur du pH du sang en utilisant des capteurs optiques, p. ex. des oxymètres à photométrie spectrale
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
26.
OPTICAL SENSING ARRANGEMENT, AMBIENT LIGHT SENSOR AND METHOD FOR PROVIDING AN OUTPUT COUNT
In one embodiment an optical sensing arrangement includes a first sensor configured to provide a first sensor signal, a second sensor configured to provide a second sensor signal, an integration unit including a first input which is connected to the first sensor, a second input which is connected to the second sensor, a first output which is configured to provide a first integration signal as a function of the first sensor signal, and a second output which is configured to provide a second integration signal as a function of the second sensor signal, a comparing unit including a first input which is connected to the first output of the integration unit, a second input which is connected to the second output of the integration unit and an output configured to provide a comparison signal as a function of the first and the second integration signal, and a control unit including a first input which is coupled to the output of the comparing unit, wherein the control unit is configured to evaluate pulses of the comparison signal and therefrom provide an output count indicative of a difference between the first and the second sensor signal
A writing utensil including a color sensor operable to generate sensor data A processing unit is configured to receive the sensor data from the color sensor and to output the sensor data. A networking device is configured to receive the sensor data from the processing unit and arranged to transmit the sensor data via a network connection.
An optical arrangement (1) for optoelectronic reflective measurement comprises a light source (10) and an optoelectronic sensor (20). A reflective optical device (30) comprises at least one optical reflector (31) and an illumination plane to be coupled to a target. The light source (10) and the optoelectronic sensor (20) are arranged along an optical axis inside the reflective optical device (30). Light emitted by the light source and reflected by the optical reflector (31) illuminates the illumination plane downstream the optical axis with a homogenous radiance power distribution. Light emitted by the light source is blocked by the optoelectronic sensor (20) from directly reaching the target plane. A field of view of the optoelectronic sensor (20) at least partially overlaps with the illumination plane to be coupled to the target.
G01N 21/3563 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique en utilisant la lumière infrarouge pour l'analyse de solidesPréparation des échantillons à cet effet
G01N 21/359 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique en utilisant la lumière infrarouge en utilisant la lumière de l'infrarouge proche
The invention relates to an analog-to-digital converter, ADC (10), configured to convert an analog input signal (Ain) to a digital output signal (Dout), the ADC (10) comprising: an integrator (Int, Inti, Int2 ) configured to generate an integrated signal (Sint) based on the input signal (Ain) and subtrahend signals; and a quantizer (12) configured to: receive the integrated signal (Sint ) from the integrator ( Int, Inti, Int2 ), generate the digital output signal ( Dout ); and generate a quantization error signal (Sqerr), wherein the ADC (10) is further configured to, in a feedback loop (FBL) : provide the integrated signal (Sint ) and the quantization error signal ( Sqerr ) as the subtrahend signals to the integrator ( Int, Inti, Int2).
A monolithic semiconductor chip defines a plurality of subarrays of optical detector regions, wherein each subarray of optical detector regions includes a corresponding plurality of optical detector regions and wherein each subarray of optical detector regions has the same relative spatial arrangement of optical detector regions as each of the other subarrays of optical detector regions. A multi-spectral optical sensor comprises the monolithic semiconductor chip, a plurality of optical filters, and a plurality of lens elements, wherein each optical filter is aligned between a corresponding lens element and a corresponding subarray of optical detector regions such that light which is incident on any one of the lens elements along a direction of incidence converges through the corresponding optical filter onto a corresponding one of the optical detector regions of the corresponding subarray of optical detector regions, which corresponding one of the optical detector regions depends on the direction of incidence. Such a multi-spectral optical sensor may be used to measure spectral information relating to different parts or sectors of a scene captured by an image sensor or a camera. A multi-spectral optical system and an image sensing system are also disclosed which comprise the multi-spectral optical sensor.
H04N 25/13 - Agencement de matrices de filtres colorés [CFA]Mosaïques de filtres caractérisées par les caractéristiques spectrales des éléments filtrants
H04N 23/71 - Circuits d'évaluation de la variation de luminosité
H04N 23/88 - Chaînes de traitement de la caméraLeurs composants pour le traitement de signaux de couleur pour l'équilibrage des couleurs, p. ex. circuits pour équilibrer le blanc ou commande de la température de couleur
31.
MULTISPECTRAL OPTICAL SENSOR, CAMERA SYSTEM AND PARALLAX COMPENSATION METHOD
A multispectral optical sensor (1) comprises a substrate portion (10) having an array of subarrays (11) of optical detector regions (11a-11i), a plurality of lens elements (13), and a plurality of optical filters (12a-12n). The subarrays (11), the lens elements (13) and the optical filters (12a-12n) form a plurality of spectral channels, with each spectral channel including a lens element (13), an optical filter (12a-12n) and a subarray (11) of optical detector regions (11a-11i). At least three of the plurality of spectral channels are compensation channels that are characterized by having an optical filter (12a) with identical spectral transmission characteristics, comprising a corresponding plurality of optical detector regions (11a- 11i), and each subarray (11) having an identical relative spatial arrangement of the optical detector regions (11a-20 11i).
An optofluidic sensor (1) operable to determine a concentration of a detergent component in a fluid (2) comprises a waveguide structure (10) with an input (11) optically coupled to a light source (20) and a sensing region (13) that is exposed to the fluid (2). A detection unit (30) is optically coupled to an output (12) of the waveguide structure (10) and is configured to generate a detection signal based on an amount of light received from the output (12). A processing unit (40) is configured to determine, from the detection signal received from the detection unit (30), the concentration of the detergent component in the fluid (2). The amount of light received from the output (12) depends on a number of particles (3) of the detergent component adsorbed on a surface of the waveguide structure (10) within the sensing region (13).
G01N 21/41 - RéfringencePropriétés liées à la phase, p. ex. longueur du chemin optique
G01N 21/77 - Systèmes dans lesquels le matériau est soumis à une réaction chimique, le progrès ou le résultat de la réaction étant analysé en observant l'effet sur un réactif chimique
G01N 21/45 - RéfringencePropriétés liées à la phase, p. ex. longueur du chemin optique en utilisant des méthodes interférométriquesRéfringencePropriétés liées à la phase, p. ex. longueur du chemin optique en utilisant les méthodes de Schlieren
G01B 9/00 - Instruments de mesure caractérisés par l'utilisation de techniques optiques
G01N 15/00 - Recherche de caractéristiques de particulesRecherche de la perméabilité, du volume des pores ou de l'aire superficielle effective de matériaux poreux
G01N 21/94 - Recherche de souillures, p. ex. de poussières
33.
SPINNING ELECTROMOTIVE ASSEMBLY AND METHOD OF OPERATING A SPINNING ELECTROMOTIVE ASSEMBLY
A spinning electromotive assembly comprises a rotor (11), which is rotatably supported by a stator (12) and comprises motor coils (13). A control unit is operable to synchronously reverse the polarity of the motor coils (13). An optical sensor arrangement is connected to the stator (12) and operable to detect ultraviolet or ultraviolet and/or visible radiation of partial discharges induced in the motor coils (13) when the polarity is reversed.
H02P 29/024 - Détection d’un défaut, p. ex. court circuit, rotor bloqué, circuit ouvert ou perte de charge
H02P 27/08 - Dispositions ou procédés pour la commande de moteurs à courant alternatif caractérisés par le type de tension d'alimentation utilisant une tension d’alimentation à fréquence variable, p. ex. tension d’alimentation d’onduleurs ou de convertisseurs utilisant des convertisseurs de courant continu en courant alternatif ou des onduleurs avec modulation de largeur d'impulsions
34.
BIOELECTRICAL IMPEDANCE ANALYSIS CIRCUIT, TEST SYSTEM, ANALYSIS SYSTEM AND METHOD OF DETERMINING A BIOELECTRICAL IMPEDANCE
A bioelectrical impedance analysis circuit (BC), comprises input terminals (IN1, IN2, IN3, IN4) and an internal resistor (RINT). A switching network (SWN) is electrically coupled to the input terminals (IN1, IN2, IN3, IN4), a measurement unit (MU) and to the internal resistor (RINT) and addressable according to a switching sequence. The measurement unit (MU) is operable to, in a first switching state of the switching sequence, generate a first output signal as a measure of an external resistance of an external resistor (REXT) to be connected to the input terminals (IN1, IN4), and further operable to, in a second switching state switching sequence, generate a second output signal as a measure of an internal resistance of the internal resistor (RINT).
An optical arrangement (1, 2, 3) for optoelectronic reflective measurement comprises a light source (10) for emitting light, a supporting device (20) having a supporting area (21) for supporting a target object (2), an optical device (30) comprising at least an optical reflector (31), and an optoelectronic sensor (40). The light source (10) and the optical reflector (31) are arranged so that a first light portion of the light is emitted towards the optical reflector (31) and impacts on the optical reflector (31). The optical reflector (31) and the supporting device (20) are arranged so that the first light portion is reflected by the optical reflector (31) onto the supporting area (21).
G01N 21/359 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique en utilisant la lumière infrarouge en utilisant la lumière de l'infrarouge proche
36.
COMPENSATION OF CHROMATIC ABERRATION OF MICROLENS ARRAYS
A multi-spectral optical sensor defines a plurality of spectral channels, wherein each spectral channel comprises a corresponding lens element, a corresponding optical filter and a corresponding optical detector arrangement. The lens element, the optical filter and the optical detector arrangement of each spectral channel are aligned along a corresponding optical axis. The lens element and the optical detector arrangement of each spectral channel define a corresponding optical path extending from the lens element to the optical detector arrangement. The optical filters of two or more of the spectral channels have different transmission spectra. The optical paths of said two or more spectral channels have different optical path lengths. The optical path lengths of said two or more of the spectral channels may be selected so as to at least partially compensate for the chromatic aberration of the lens elements in said two or more spectral channels. A multi-spectral optical emitter arrangement is also described.
A fluid analysis system (1) for determining a concentration of a detergent component in a fluid (2) comprises a light source (10) configured to illuminate the fluid (2) with light (11), the light (11) comprising a first wavelength corresponding to an excitation wavelength of the detergent component. The system (1) further comprises a detection unit (20) positioned and configured to measure an intensity of the resultant fluorescence (12) generated by the detergent component, and a processing unit (30) configured to determine the concentration based on the measured intensity by means of fluorescence spectroscopy.
G01N 21/3577 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique en utilisant la lumière infrarouge pour l'analyse de liquides, p. ex. l'eau polluée
G01N 21/359 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique en utilisant la lumière infrarouge en utilisant la lumière de l'infrarouge proche
G01N 21/53 - Dispersion, c.-à-d. réflexion diffuse dans un corps ou dans un fluide dans un courant de fluide, p. ex. dans la fumée
An integrated illumination module for in-cabin monitoring, comprises a substrate (SB) and an active area (AR) comprising an array of pixels, wherein at least some pixels of the array are arranged in segments configured to provide illumination to a zone of a cabin, respectively. A driver circuit comprises an input to receive an occupancy signal indicative of an in-cabin presence and the driver circuit is operable to selectively drive pixels and adjust illumination to a zone of the cabin (A1, A2, A3) depending on the received occupancy signal, respectively.
H05B 47/115 - Commande de la source lumineuse en réponse à des paramètres détectés en détectant la présence ou le mouvement d'objets ou d'êtres vivants
39.
INTEGRATED TRANSCEIVER MODULE AND LIGHTING AND MONITORING ARRANGEMENT
An integrated transceiver module for forward lighting, dynamic signaling and sensing comprises a substrate (SB) and an active area (AR) further comprising an array of pixels. A transceiver circuit (TC) is operable to selectively drive pixels in a first mode of operation or in a second mode of operation. In the first mode of operation, the transceiver circuit (TC) is operable to drive pixels with a forward bias so as to emit light. In the second mode of operation, the transceiver circuit (TC) is operable to drive pixels with a reverse bias so as to detect light.
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G01S 17/10 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement utilisant la transmission d'ondes à modulation d'impulsion interrompues
G01S 17/931 - Systèmes lidar, spécialement adaptés pour des applications spécifiques pour prévenir les collisions de véhicules terrestres
A photodetector device comprises an array of light detector elements (10). A Fabry-Perot filter is arranged in front of the array of light detector elements (10) and having an angle-dependent transmission spectrum. A transfer element arranged to direct the incoming light through the Fabry-Perot filter, so that the angle-dependent transmission spectrum is shifted to form a target spectrum over a light detection surface of a corresponding light detector element (11) of the array of light detector elements (10), respectively.
G01J 3/50 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des détecteurs électriques de radiations
G01J 3/26 - Production du spectreMonochromateurs en utilisant une réflexion multiple, p. ex. interféromètre de Fabry-Perot, filtre à interférences variables
G01J 3/51 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des détecteurs électriques de radiations en utilisant des filtres de couleur
A multi-spectral optical sensor comprises a plurality of apertures, a plurality of lens arrangements, a plurality of optical filters and a monolithic semiconductor chip defining a plurality of sub-arrays of optical detector regions, each sub-array comprising the same number and relative spatial arrangement of optical detector regions and the optical detector regions of each sub-array being arranged on a predetermined pitch in a direction parallel to a surface of the of the semiconductor chip. The multi-spectral optical sensor is configured so that light from a scene incident on any one of the apertures along any given direction of incidence is transmitted through the corresponding lens arrangement and the corresponding optical filter to the corresponding sub-array of optical detector regions so as to form an out-of-focus image at a plane of the optical detector regions of the corresponding sub-array of optical detector regions such that a ratio of a full-width half maximum (FWHM) of an optical intensity distribution of the out-of-focus image to the predetermined pitch of the optical detector regions in the direction parallel to the surface of the semiconductor chip is greater than or equal to 2.0 and less than or equal to 4.0.
G01J 3/50 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des détecteurs électriques de radiations
G01J 3/51 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des détecteurs électriques de radiations en utilisant des filtres de couleur
G01S 3/784 - Systèmes pour déterminer une direction ou une déviation par rapport à une direction prédéterminée utilisant la comparaison d'amplitude de signaux provenant de détecteurs ou de systèmes de détecteurs statiques utilisant une mosaïque de détecteurs
An integrated radiation sensor for color matching functions comprises a plurality of color matching channels, each color matching channel comprising a radiation sensing element and an associated optical filter defining a spectral sensitivity profile corresponding to a color matching function. The sensors comprise a plurality of compensation channels, each compensation channel comprising a radiation sensing element and an associated optical filter defining a spectral sensitivity profile for use in compensating a color sensed by the color matching channels. The spectral sensitivity profile of each compensation channel substantially corresponds to a mean of an upper deviation spectra and a lower deviation spectra, wherein the upper deviation spectra corresponds to a spectral sensitivity profile of a typical color matching channel increased by a fixed deviation in wavelength and the lower deviation spectra corresponds to the spectral sensitivity profile of the typical color matching channel decreased by the fixed deviation in wavelength.
G01J 3/36 - Étude de plusieurs bandes d’un spectre à l’aide de détecteurs distincts
G01J 3/51 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des détecteurs électriques de radiations en utilisant des filtres de couleur
G01J 3/52 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des échelles de couleurs
An integrated radiation sensor is disclosed. The integrated radiation sensor comprises a first optical filter associated with a first radiation-sensing element and a second optical filter associated with a second radiation-sensing element. The first optical filter is configured to pass radiation to the first radiation-sensing element with wavelengths within a UV-C range. The second optical filter is configured to pass radiation to the second radiation-sensing element with wavelengths longer than wavelengths within the UV-C range. Also disclosed is a method of manufacturing the integrated radiation sensor and methods of use of the integrated radiation sensor.
:Thus, according to a first aspect of the disclosure there is provided a multi-spectral optical sensor (102) comprising: a monolithic semiconductor chip (110) defining a plurality of subarrays (112) of optical detector regions (111), each array comprising the same number and relative spatial arrangement of optical detector regions (111); a plurality of optical filters (160); and a plurality of lens elements (162), wherein each optical filter (160) is positioned between a corresponding lens element (162) and a corresponding subarray (112) of optical detector regions (111) such that light from a scene incident on any one of the lens elements (162) along a direction of incidence propagates through the corresponding optical filter (160) towards a corresponding one of the optical detector regions (111) of the corresponding subarray (112) of optical detector regions, which corresponding one of the optical detector regions depending on the direction of incidence, and wherein the incident light forms an out-of-focus image of the scene at a plane (1105) of the optical detector regions (111).[FIG. 11]
A method of measuring the color of a surface may include a device positioned above the surface. The device may include an optical sensor and a display screen. The optical sensor measures visible light level reflected from the surface in a plurality of spectral channels. A plurality of patterns are sequentially displayed on the display screen. The optical sensor is used to measure light reflected by the surface during display of each pattern. A value is determined for the distance from the optical sensor to the illuminated region for a first local maximum of intensity of the measured light reflected by the surface. A location in a color space corresponding to a color of the surface or a reflectance spectrum of the surface is determined based on the visible light level in each spectral channel for the value of the distance corresponding to the first local maximum.
An image-sensing device is disclosed, the image-sensing device comprising a multispectral sensor and a processor communicably coupled to the multispectral sensor. The processor is configured to determine an ambient light source classification based on a comparison of predefined spectral data to data corresponding to an output of the multispectral sensor. Also disclosed is a method of classifying an ambient light source by sensing a spectrum of light with a multispectral sensor; and determining an ambient light source classification based on a comparison of predefined spectral data to data corresponding to an output of the multispectral sensor. An associated computer program, computer-readable medium and data processing apparatus are also disclosed.
A system comprising a transimpedance amplifier (TIA) circuit, the TIA circuit comprising a primary transimpedance circuit stage for connection to an optical sensor. The primary transimpedance circuit stage comprises: a first and second current source providing biasing currents for the primary stage; and a first transistor, a second transistor and a resistor which provide a current path through the first transistor and the resistor for current to flow through the primary stage in response to light being sensed by the optical sensor. The TIA circuit further comprises a secondary transimpedance circuit stage coupled to the primary transimpedance circuit stage which comprises: a third and fourth current source provide biasing currents for the secondary stage; and a fourth transistor a fifth transistor and a resistor which provide a current path through the fourth transistor and the resistor for current to flow through the secondary stage in response to sensed light.
H03F 1/30 - Modifications des amplificateurs pour réduire l'influence des variations de la température ou de la tension d'alimentation
H03F 3/08 - Amplificateurs comportant comme éléments d'amplification uniquement des tubes à décharge ou uniquement des dispositifs à semi-conducteurs comportant uniquement des dispositifs à semi-conducteurs commandés par la lumière
Optical property measurement using a sensor behind a display screen Examples of this application disclose a method for measuring optical properties of a target. The method comprises illuminating the target with an illumination area with a display screen in contact with the target, and analysing signals reflected from the target and transmitted back through the display screen to a sensor positioned behind the display screen, to determine the optical properties of the target.
G01N 21/25 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes
G01N 21/27 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en utilisant la détection photo-électrique
G01N 33/483 - Analyse physique de matériau biologique
A camera system with a multispectral sensor that can be used in combination with a flash to determine a spectrum of the ambient illumination without needing a separate measurement. This may then be used to colour-correct an image captured with or without flash.
H04N 23/88 - Chaînes de traitement de la caméraLeurs composants pour le traitement de signaux de couleur pour l'équilibrage des couleurs, p. ex. circuits pour équilibrer le blanc ou commande de la température de couleur
G01J 3/50 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des détecteurs électriques de radiations
H04N 9/67 - Circuits pour le traitement de signaux de couleur pour le matriçage
H04N 9/77 - Circuits pour le traitement l'un par rapport à l'autre des signaux de luminance et de chrominance, p. ex. ajustement de la phase du signal de luminance par rapport au signal de couleur, correction différentielle du gain ou de la phase
H04N 23/56 - Caméras ou modules de caméras comprenant des capteurs d'images électroniquesLeur commande munis de moyens d'éclairage
H04N 23/71 - Circuits d'évaluation de la variation de luminosité
H04N 23/74 - Circuits de compensation de la variation de luminosité dans la scène en influençant la luminosité de la scène à l'aide de moyens d'éclairage
An optical tilt sensor for use in sensing a tilt angle of a flat reflective surface around a pivot axis comprises an optical emitter arrangement for emitting at least three beams of light so that each emitted beam of light is incident on, and reflected from, the flat reflective surface to form a corresponding reflected beam of light and an image sensor having a sensor area for detecting an intensity distribution of each of the reflected beams of light and outputting one or more signals representative of the detected intensity distribution of each of the reflected beams of light. The at least three emitted beams of light are emitted along at least three corresponding different emission paths, each emission path extending from a corresponding emission point along a different corresponding emission direction, wherein each emission direction has a different known orientation relative to an orientation of the sensor area of the image sensor, and wherein each emission point has a known spatial relationship relative to each of the other emission points. The optical tilt sensor may be used in an optical tilt apparatus for measuring and, optionally, also controlling the tilt angle of the flat reflective surface around the pivot axis.
G01B 11/26 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer des angles ou des cônesDispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour tester l'alignement des axes
An optical module (200) for Raman spectroscopy. The optical module comprises: a laser source (201) mounted on a substrate (202) and configured to emit electromagnetic radiation (203) at a target (204); a plurality of sensors (206) mounted on the substrate (202) and configured to detect electromagnetic radiation (207) scattered from the target (204); and a first filter (208) disposed over one or more of the plurality of sensors (206), wherein the first filter (208) is substantially transparent to a first wavelength band corresponding to a Raman scattering wavelength of a first molecule of the target (204) and opaque to wavelengths outside the first wavelength band.
A signal processing circuit comprises a first and a second current sensor input (PD1, PD2) for receiving respective sensor currents and a voltage sensor input for receiving a sensor voltage. A first selection unit (SEL1) comprises a first and a second current input coupled to the first and the second current sensor input respectively and being configured to select one of the first and the second current input as a first selected input to be connected to a first current output and to select one of the first and the second current input as a second selected input to be connected to a second current output. A second selection unit (SEL2) comprises a first voltage input being coupled to the voltage sensor input (VIN) and a second voltage input and being configured to connect one of the first and the second voltage inputs to a voltage output. A current ADC (IADC) is coupled to the first current output and a voltage ADC (VADC) is coupled to the voltage output. A digital processing block (DIG) is coupled to respective outputs of the current ADC and the voltage ADC. A current voltage converter (TIA) is coupled between the second current output and the second voltage input.
In at least one embodiment, the sensor device (1) comprises: a light source (2) configured to emit a primary radiation (P), - a detector (3) comprising a plurality of detector units ( 31 ), and - a sensor film (5) comprising metallic nanoparticles (51) geometrically between the reflecting optical element (4) and the detector (3), wherein - the sensor film (5) is configured to be exposed to a liquid or gas (7), and - the detector (3) is configured to detect a spectral change in the primary radiation (P) caused by the sensor film (5) upon exposure to the liquid or gas (7).
G01N 21/78 - Systèmes dans lesquels le matériau est soumis à une réaction chimique, le progrès ou le résultat de la réaction étant analysé en observant l'effet sur un réactif chimique produisant un changement de couleur
B82Y 15/00 - Nanotechnologie pour l’interaction, la détection ou l'actionnement, p. ex. points quantiques comme marqueurs en dosages protéiques ou moteurs moléculaires
B82Y 30/00 - Nanotechnologie pour matériaux ou science des surfaces, p. ex. nanocomposites
G01N 33/543 - Tests immunologiquesTests faisant intervenir la formation de liaisons biospécifiquesMatériaux à cet effet avec un support insoluble pour l'immobilisation de composés immunochimiques
G01N 21/77 - Systèmes dans lesquels le matériau est soumis à une réaction chimique, le progrès ou le résultat de la réaction étant analysé en observant l'effet sur un réactif chimique
G01N 21/25 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes
A particle detector. The particle detector comprises one or more light sources, an optical sensor, and a controller. The one or more light sources are collectively operable to simultaneously produce at least two wavelength ranges of emitted light. The optical sensor is configured to sense light of the at least two wavelength ranges emitted by the one or more light sources and to distinguish each range. The controller is configured to detect particles based on the light sensed by the optical sensor.
G01N 15/0205 - Recherche de la dimension ou de la distribution des dimensions des particules par des moyens optiques
G01N 15/00 - Recherche de caractéristiques de particulesRecherche de la perméabilité, du volume des pores ou de l'aire superficielle effective de matériaux poreux
G01N 15/06 - Recherche de la concentration des suspensions de particules
G01N 15/075 - Recherche de la concentration des suspensions de particules par des moyens optiques
G01N 21/359 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique en utilisant la lumière infrarouge en utilisant la lumière de l'infrarouge proche
G08B 17/107 - Déclenchement par la présence de fumée ou de gaz utilisant un dispositif émetteur et récepteur de lumière pour détecter une diffusion de lumière due à de la fumée
The present disclosure describes a method and apparatus that uses spectral reconstruction of detector sensitivity to solve the above and other problems. Specifically, light sources (e.g., of visible light, infrared light and/or ultraviolet light) may target the sensor and emit, in sequence, beams of different wavelength. Spectral output of multiple channels of the sensor is received, the output including intensity (e.g., peak intensity) for each channel. The output is compared with reference intensities for each of the light sources and difference values are calculated. Based on the difference values, a calibration matrix is calculated that can be used in calibrating the specific sensor. In addition, the present disclosure describes an apparatus that includes a plurality of light sources, a receiver for receiving sensor output, and circuitry configured to generate a calibration matrix using the light sources, the receiver using spectral reconstruction of detector sensitivity.
A photodetector device includes: a plurality of light detector elements; and a plurality of filters, in which each filter of the plurality of filters is arranged in front of a light detection surface of a corresponding light detector element to filter incoming light incident on the light detection surface, and in which the plurality of filters are configured to filter at least two different wavelength bands, respectively, of the incoming light, and in which the at least two wavelength bands combine to span a predefined range of wavelengths, and in which each filter of the plurality of filters has a corresponding spectral sensitivity, and in which a sum of the spectral sensitivity curves of the plurality of filters over the predefined range of wavelengths is a constant value.
G01J 3/51 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des détecteurs électriques de radiations en utilisant des filtres de couleur
57.
Method and apparatus for determining or classifying the surface colour of at least partly translucent materials
An apparatus for determining a colour of a translucent material. The apparatus comprises a first light source configured to illuminate a translucent material at a first surface location, a second light source configured to illuminate the translucent material at a second surface location spaced apart from said first surface location, and a light spectral sensor configured to detect light at said first surface location. The apparatus is configured to operate the first and second light sources alternately, and such that light detected by the light spectral sensor originating from said first source is principally light diffusely reflected from said first surface location, whilst light detected by the detector originating from said second source is principally light scattered by scattering centres in the interior of the translucent material.
G01J 3/42 - Spectrométrie d'absorptionSpectrométrie à double faisceauSpectrométrie par scintillementSpectrométrie par réflexion
G01J 3/46 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres
G01N 21/25 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes
In one embodiment an optical sensing arrangement comprises a first sensor (D1) configured to provide a first sensor signal (I1), a second sensor (D2) configured to provide a second sensor signal (I2), an integration unit (20) comprising a first input (21) which is connected to the first sensor (D1), a second input (22) which is connected to the second sensor (D2), a first output (23) which is configured to provide a first integration signal (V1) as a function of the first sensor signal (I1), and a second output (24) which is configured to provide a second integration signal (V2) as a function of the second sensor signal (I2), a comparing unit (30) comprising a first input (31) which is connected to the first output (23) of the integration unit (20), a second input (32) which is connected to the second output (24) of the integration unit (20) and an output (33) configured to provide a comparison signal (CMP) as a function of the first and the second integration signal (V1, V2), and a control unit (40) comprising a first input (41) which is coupled to the output (33) of the comparing unit (30), wherein the control unit (40) is configured to evaluate pulses of the comparison signal (CMP) and therefrom provide an output count indicative of a difference between the first and the second sensor signal (I1, I2).
A writing utensil (100) comprising a color sensor (200) operable to generate sensor data A processing unit (300) is configured to receive the sensor data from the color sensor (200) and to output the sensor data. A networking device (400) is configured to receive the sensor data from the processing unit (300) and arranged to transmit the sensor data via a network connection.
A monolithic semiconductor chip defines a plurality of subarrays of optical detector regions, wherein each subarray of optical detector regions includes a corresponding plurality of optical detector regions and wherein each subarray of optical detector regions has the same relative spatial arrangement of optical detector regions as each of the other subarrays of optical detector regions. A multi-spectral optical sensor comprises the monolithic semiconductor chip, a plurality of optical filters, and a plurality of lens elements, wherein each optical filter is aligned between a corresponding lens element and a corresponding subarray of optical detector regions such that light which is incident on any one of the lens elements along a direction of incidence converges through the corresponding optical filter onto a corresponding one of the optical detector regions of the corresponding subarray of optical detector regions, which corresponding one of the optical detector regions depends on the direction of incidence. Such a multi-spectral optical sensor may be used to measure spectral information relating to different parts or sectors of a scene captured by an image sensor or a camera. A multi-spectral optical system and an image sensing system are also disclosed which comprise the multi-spectral optical sensor.
G01J 3/02 - SpectrométrieSpectrophotométrieMonochromateursMesure de la couleur Parties constitutives
G01J 1/42 - Photométrie, p. ex. posemètres photographiques en utilisant des détecteurs électriques de radiations
61.
Method of characterizing an optical sensor chip, method of calibrating an optical sensor chip, method of operating an optical sensor device, optical sensor device and calibration system
Disclosed are methods and devices for calibration in the field of optical sensors, e.g. characterizing and calibrating an optical sensor chip. In order to address complexity of sensor data with high accuracy the optical sensor, e.g. an optical sensor is not provided as an already calibrated unit. Rather, sensor response data may be recorded in a defined or standardized environment, e.g. at a production line, and with high precision. This high standard sensor response data can be obtained on a per device basis and, thus, is referenced with an unambiguous chip identification number, chip ID. The sensor data is complemented with a dedicated calibration algorithm which can be tailor-made to fit the optical sensor or the optical sensor chip. In order to retrieve the sensor response data and the calibration algorithm both can be made available by means of the chip ID, for example.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating a first light wave by an emitter of the sensor system and detecting a second light wave by a detector of the sensor system. The second light wave is detected in response to the first light wave being reflected from a target object. The sensor system includes a first converter that obtains a first temperature measurement from a temperature sensor of the sensor system at least when the first light wave is generated or when the second light wave is detected. A temperature controller computes temperature coefficients to regulate a temperature of the sensor system. Each of the temperature coefficients are computed based on a difference between the first temperature and a reference temperature. The temperature controller generates a control signal to regulate the temperature of the sensor system based on the computed temperature coefficients.
G01N 21/35 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique en utilisant la lumière infrarouge
A sensor package includes a semiconductor sensor chip having multiple light sensitive regions each of which defines a respective light sensitive channel. An optical filter structure is disposed over the sensor chip and includes filters defining respective spectral functions for different ones of the light sensitive channels. In particular, the optical filter structure includes at least three optical filters defining spectral functions for tristimulus detection by a first subset of the light sensitive channels, and at least one additional optical filter defining a spectral function for spectral detection by a second subset of the light sensitive channels encompassing a wavelength range that differs from that of the first subset of light sensitive channels.
G01J 3/51 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des détecteurs électriques de radiations en utilisant des filtres de couleur
G01J 3/50 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des détecteurs électriques de radiations
G01J 1/42 - Photométrie, p. ex. posemètres photographiques en utilisant des détecteurs électriques de radiations
G01J 3/02 - SpectrométrieSpectrophotométrieMonochromateursMesure de la couleur Parties constitutives
G01J 3/46 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres
An integrated radiation sensor (1920, 1970) for color matching functions comprises a plurality of color matching channels, each color matching channel comprising a radiation sensing element and an associated optical filter defining a spectral sensitivity profile corresponding to a color matching function. The sensors comprise a plurality of compensation channels, each compensation channel comprising a radiation sensing element and an associated optical filter defining a spectral sensitivity profile for use in compensating a color sensed by the color matching channels. The spectral sensitivity profile of each compensation channel substantially corresponds to a mean of an upper deviation spectra and a lower deviation spectra, wherein the upper deviation spectra corresponds to a spectral sensitivity profile of a typical color matching channel increased by a fixed deviation in wavelength and the lower deviation spectra corresponds to the spectral sensitivity profile of the typical color matching channel decreased by the fixed deviation in wavelength.
G01J 3/46 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres
G01J 3/50 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des détecteurs électriques de radiations
G01J 3/51 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des détecteurs électriques de radiations en utilisant des filtres de couleur
G01J 3/52 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des échelles de couleurs
An integrated radiation sensor is disclosed. The integrated radiation sensor comprises a first optical filter associated with a first radiation-sensing element and a second optical filter associated with a second radiation-sensing element. The first optical filter is configured to pass radiation to the first radiation-sensing element with wavelengths within a UV-C range. The second optical filter is configured to pass radiation to the second radiation-sensing element with wavelengths longer than wavelengths within the UV-C range. Also disclosed is a method of manufacturing the integrated radiation sensor and methods of use of the integrated radiation sensor.
A method of measuring the color of a surface. A device is positioned above the surface. The device comprises an optical sensor and a display screen. The optical sensor measures visible light level in a plurality of spectral channels, each channel having different spectral sensitivity characteristics. The device is positioned such that the sensor measures light reflected from the surface. A plurality of patterns are sequentially displayed on the display screen, each pattern comprising an illuminated region at a different respective distance from the optical sensor. The optical sensor is used to measure light reflected by the surface during display of each pattern. A value is determined for the distance from the optical sensor to the illuminated region for a first local maximum of intensity of the measured light reflected by the surface, the first local maximum being a maximum of the diffuse reflection of the pattern. A location in a color space corresponding to a color of the surface or a reflectance spectrum of the surface is determined based on the visible light level in each spectral channel for the value of the distance corresponding to the first local maximum.
G01J 3/32 - Mesure de l'intensité des raies spectrales directement sur le spectre lui-même en étudiant des bandes d'un spectre successivement à l'aide d'un détecteur unique
G01J 3/36 - Étude de plusieurs bandes d’un spectre à l’aide de détecteurs distincts
G01J 3/42 - Spectrométrie d'absorptionSpectrométrie à double faisceauSpectrométrie par scintillementSpectrométrie par réflexion
G01J 3/50 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des détecteurs électriques de radiations
G01J 3/52 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des échelles de couleurs
G01N 21/25 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes
An image-sensing device is disclosed, the image-sensing device comprising a multispectral sensor and a processor communicably coupled to the multispectral sensor. The processor is configured to determine an ambient light source classification based on a comparison of predefined spectral data to data corresponding to an output of the multispectral sensor. Also disclosed is a method of classifying an ambient light source by sensing a spectrum of light with a multispectral sensor; and determining an ambient light source classification based on a comparison of predefined spectral data to data corresponding to an output of the multispectral sensor. An associated computer program, computer-readable medium and data processing apparatus are also disclosed.
Examples of this application disclose a method for measuring optical properties of a target. The method comprises illuminating the target with an illumination area with a display screen in contact with the target, and analysing signals reflected from the target and transmitted back through the display screen to a sensor positioned behind the display screen, to determine the optical properties of the target.
G01N 21/25 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes
G01N 21/31 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique
G01N 21/49 - Dispersion, c.-à-d. réflexion diffuse dans un corps ou dans un fluide
G01N 21/27 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en utilisant la détection photo-électrique
A camera system with a multispectral sensor that can be used in combination with a flash to determine a spectrum of the ambient illumination without needing a separate measurement. This may then be used to colour-correct an image captured with or without flash.
A multispectral sensor comprises an opaque housing having a first chamber with a first aperture and a separate second chamber with a second aperture. An optical emitter is arranged in the first chamber and is arranged to emit light of a specified wavelength or range of wavelengths through the first aperture. An optical sensor is arranged in the second chamber and arranged to detect received photons through the second aperture. A control unit is configured to initiate emission of light by the optical emitter and a measurement unit is configured to provide sensor signals generated by the optical sensor. The optical sensor comprises an array of sensor pixels of a first type and pixels of a second type. The pixels of the first type each have a different transmission characteristic, each generating a multispectral sensor signal, respectively. The pixels of the second type have a same transmission characteristic and each generate a compensation sensor signal.
The present disclosure describes a method and apparatus that uses spectral reconstruction of detector sensitivity to solve the above and other problems. Specifically, light sources (e.g., of visible light, infrared light and/or ultraviolet light) may target the sensor and emit, in sequence, beams of different wavelength. Spectral output of multiple channels of the sensor is received, the output including intensity (e.g., peak intensity) for each channel. The output is compared with reference intensities for each of the light sources and difference values are calculated. Based on the difference values, a calibration matrix is calculated that can be used in calibrating the specific sensor. In addition, the present disclosure describes an apparatus that includes a plurality of light sources, a receiver for receiving sensor output, and circuitry configured to generate a calibration matrix using the light sources, the receiver using spectral reconstruction of detector sensitivity.
A photodetector device includes: a plurality of light detector elements; and a plurality of filters, in which each filter of the plurality of filters is arranged in front of a light detection surface of a corresponding light detector element to filter incoming light incident on the light detection surface, and in which the plurality of filters are configured to filter at least two different wavelength bands, respectively, of the incoming light, and in which the at least two wavelength bands combine to span a predefined range of wavelengths, and in which each filter of the plurality of filters has a corresponding spectral sensitivity, and in which a sum of the spectral sensitivity curves of the plurality of filters over the predefined range of wavelengths is a constant value.
G01J 3/51 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des détecteurs électriques de radiations en utilisant des filtres de couleur
73.
METHOD AND APPARATUS FOR DETERMINING OR CLASSIFYING THE SURFACE COLOUR OF AT LEAST PARTLY TRANSLUCENT MATERIALS
An apparatus for determining a colour of a translucent material. The apparatus comprises a first light source (1) configured to illuminate a translucent material (8) at a first surface location, a second light source (2) configured to illuminate the translucent material at a second surface location spaced apart from said first surface location, and a light spectral sensor (3) configured to detect light at said first surface location. The apparatus is configured to operate the first and second light sources alternately., Apertures (4, 7) are arranged such that light detected by the light spectral sensor originating from said first source is principally light diffusely reflected from said first surface location under exclusion of specularly reflected light, and light detected by the detector originating from said second source is principally light scattered by scattering centres in the interior of the translucent material.
G01J 3/42 - Spectrométrie d'absorptionSpectrométrie à double faisceauSpectrométrie par scintillementSpectrométrie par réflexion
G01N 21/25 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes
ININ) into a digital output signal (ADC_RESULT) which is indicative of the photocurrent generated by the photodiode, a first switch electrically coupled to the photodiode and the integrator input, and a second switch electrically coupled to the input voltage node and a second reference voltage.
A method of processing an analog signal includes receiving, into signal processing circuitry from compensation circuitry, an offset compensation signal, the offset compensation signal having (i) a polarity opposite a polarity of a gain error of the signal processing circuitry and (ii) a magnitude equal to a nominal compensation value plus a deviation. The method includes generating, by the signal processing circuitry, an output signal based on an analog signal received into the signal processing circuitry, including applying the offset compensation signal to an intermediate signal generated by the signal processing circuitry. The method includes scaling the output signal based on the deviation between the magnitude of the offset compensation signal and the nominal compensation value.
G01J 3/26 - Production du spectreMonochromateurs en utilisant une réflexion multiple, p. ex. interféromètre de Fabry-Perot, filtre à interférences variables
G01J 3/02 - SpectrométrieSpectrophotométrieMonochromateursMesure de la couleur Parties constitutives
76.
COMPENSATION OF TEMPERATURE EFFECTS IN A SENSOR SYSTEM
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating a first light wave by an emitter of the sensor system and detecting a second light wave by a detector of the sensor system. The second light wave is detected in response to the first light wave being reflected from a target object. The sensor system includes a first converter that obtains a first temperature measurement from a temperature sensor of the sensor system at least when the first light wave is generated or when the second light wave is detected. A temperature controller computes temperature coefficients to regulate a temperature of the sensor system. Each of the temperature coefficients are computed based on a difference between the first temperature and a reference temperature. The temperature controller generates a control signal to regulate the temperature of the sensor system based on the computed temperature coefficients.
A method of processing an analog signal includes receiving, into a signal processing circuity, an analog signal from a sensor, the signal processing circuitry having an offset voltage. The method includes receiving, into the signal processing circuitry from compensation circuitry, an offset compensation signal. The offset compensation signal has (i) a polarity opposite a polarity of the offset voltage of the signal processing circuitry and (ii) a magnitude equal to a nominal compensation value plus a deviation. The method includes generating, by the signal processing circuitry, an output signal based on the received analog signal, including applying the offset compensation signal to an intermediate signal generated by the signal processing circuitry. The method includes scaling the output signal based on the deviation between the magnitude of the offset compensation signal and the nominal compensation value.
H03M 3/00 - Conversion de valeurs analogiques en, ou à partir d'une modulation différentielle
78.
METHOD OF CHARACTERIZING AN OPTICAL SENSOR CHIP, METHOD OF CALIBRATING AN OPTICAL SENSOR CHIP, METHOD OF OPERATING AN OPTICAL SENSOR DEVICE, OPTICAL SENSOR DEVICE AND CALIBRATION SYSTEM
Means are suggested for calibration in the field of optical sensors, e.g. characterizing and calibrating an optical sensor chip. In order to address complexity of sensor data with high accuracy the optical sensor, e.g. an optical sensor is not provided as an already calibrated unit. Rather, sensor response data may be recorded in a defined or standardized environment, e.g. at a production line, and with high precision. This high standard sensor response data can be obtained on a per device basis and, thus, is referenced with an unambiguous chip identification number, chip ID. The sensor data is complemented with a dedicated calibration algorithm which can be tailor-made to fit the optical sensor or the optical sensor chip. In order to retrieve the sensor response data and the calibration algorithm both can be made available by means of the chip ID, for example.
A sensor package includes a semiconductor sensor chip (22) having multiple light sensitive regions each of which defines a respective light sensitive channel. An optical filter structure (26) is disposed over the sensor chip and includes filters (X,Y,Z,a-d) defining respective spectral functions for different ones of the light sensitive channels. In particular, the optical filter structure includes at least three optical filters (Χ,Υ,Ζ) defining spectral functions for tristimulus detection by a first subset of the light sensitive channels, and at least one additional optical filter (a,b,c,d) defining a spectral function for spectral detection by a second subset of the light sensitive channels encompassing a wavelength range that differs from that of the first subset of light sensitive channels.
G01J 3/36 - Étude de plusieurs bandes d’un spectre à l’aide de détecteurs distincts
G01J 3/46 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres
G01J 3/50 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des détecteurs électriques de radiations
G01J 3/51 - Mesure de couleurDispositifs de mesure de couleur, p. ex. colorimètres en utilisant des détecteurs électriques de radiations en utilisant des filtres de couleur
A multispectral sensor comprises an opaque housing (OH) having a first chamber (CH1) with a first aperture (AP1) and a separate second chamber (CH2) with a second aperture (AP2). An optical emitter (OE) is arranged in the first chamber (CH1) and is arranged to emit light of a specified wavelength or range of wavelenghts through the first aperture (AP1). An optical sensor (OS) is arranged in the second chamber (CH2) and arranged to detect received photons through the second aperture (AP2). A control unit (CU) is configured to initiate emission of light by the optical emitter (OE) and a measurement unit (MU) is configured to provide sensor signals generated by the optical sensor (OS). The optical sensor (OS) comprises an array of sensor pixels of a first type (Spx) and pixels of a second type (Cpx). The pixels of the first type (Spx) each have a different transmission characteristic,each generating a multispectral sensor signal (MS), respectively. The pixels of the second type (Cpx) have a same transmission characteristic and each generate a compensation sensor signal (CS)..
09 - Appareils et instruments scientifiques et électriques
Produits et services
Active infrared sensors; digital sensory devices;
electro-optical sensors; electronic sensors; optical fibre
sensors; infrared detectors; laser sensors; light sensors;
luminescence scanners; measuring sensors; optical sensors;
passive infrared detectors; photoelectric sensors; photo
sensors; sensors for measuring instruments; ultraviolet
detection apparatus; heat detectors; heat sensors;
electronic monitoring instruments, other than for medical
use; process monitors; temperature monitors for scientific
use; apparatus and instruments for astronomy; image
analyzers; chromatogram analyzers for scientific or
laboratory use; diagnostic apparatus, not for medical
purposes; electronic colour analyzers; electro-optic
transducers; fluorescence analyzers; luminescence analyzers;
luminescence measuring devices; photo electron spectroscopy
analyzers [not for medical purposes]; photometric analyzers
[other than for medical use]; physical analysing apparatus
[other than for medical use]; physical analyzers [other than
for medical use]; sensors and detectors; spectrum analyzers,
other than for medical use; monitoring instruments and
apparatus; testing apparatus not for medical purposes;
non-destructive testing apparatus; testing apparatus for
electronic equipment; testing apparatus for checking optical
devices; lighting control apparatus; process controlling
apparatus [electronic]; electronic regulators; instruments
for monitoring and regulating the temperature; sensor
controllers; illuminometers; calibrating apparatus;
electronic meters; fluorometers; photometers; photometric
apparatus [other than for medical use]; housings for
measuring apparatus; instruments for surveying physical
data; colorimeters; luminoflux meters; measuring apparatus;
shaft identification gauges; measuring instruments;
measuring transducers; optical measurement apparatus;
optical measuring components; reflectometers; spectrometers;
spectrophotometer; spectroscopes; temperature measuring
instruments and apparatus.
82.
METHOD FOR DETERMINING AN ABSOLUTE GAS CONCENTRATION USING A GAS SENSOR ARRANGEMENT AND GAS SENSOR ARRANGEMENT FOR DETERMINING AN ABSOLUTE GAS CONCENTRATION
A method is suggested for determining an absolute gas concentration. The method employs a gas sensor arrangement comprising a gas sensor (1) and means (11, 12) for decomposing a gas to be measured. Furthermore, the method comprises the steps of acquiring a first sensor signal and determining from the first sensor signal at least one initial data point. Then the gas to be measured is decomposed using the means (11, 12) for decomposing the gas of the gas sensor arrangement. A second sensor signal is acquired and from the second sensor signal at least one decay data point is determined. Finally, an absolute gas concentration is determined from a gas concentration function by evaluating the gas concentration function at least for the initial data point and the decay data point.
G01N 27/12 - Recherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant l'impédance en recherchant la résistance d'un corps solide dépendant de l'absorption d'un fluideRecherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant l'impédance en recherchant la résistance d'un corps solide dépendant de la réaction avec un fluide
G01N 33/00 - Recherche ou analyse des matériaux par des méthodes spécifiques non couvertes par les groupes
83.
Sensor arrangement with a silicon-based optical sensor and a substrate for functional layer systems
H01L 31/0232 - Dispositifs à semi-conducteurs sensibles aux rayons infrarouges, à la lumière, au rayonnement électromagnétique d'ondes plus courtes, ou au rayonnement corpusculaire, et spécialement adaptés, soit comme convertisseurs de l'énergie dudit rayonnement e; Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives; Leurs détails - Détails Éléments ou dispositions optiques associés au dispositif
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Industrial process control software; computer software for
processing, controlling, displaying and transferring of
signals received by opto-electronic sensors; circuit boards;
circuit boards provided with integrated circuits; integrated
circuits; printed circuit boards; amplifiers, namely for
signals; opto-electronic sensors, sensors for determination
of color of light. Computer software design for others for application in
electrical engineering, microelectronics and micro system
engineering.
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Integrated circuits, measuring systems comprised of capacitors, comparators, electrical inductors, electrical resistors, and measuring devices comprised of capacitors, comparators, electrical inductors, electrical resistors, for measuring technology and measuring systems, namely, for precision time measurement on a nanosecond time scale, for recording positions, paths, lengths, and distance measurement, for recording rotational movements and angles of rotation, for surveying sensors which are based on resistors and resistance bridges such as wire strain gauges or piezoresistive sensors, capacitive and inductive elements; computer software used with integrated circuits and measurement standard tools for conducting of measuring, namely, for precision time measurement on a nanosecond time scale, for recording positions, paths, lengths, and distance measurement, for recording rotational movements and angles of rotation, for surveying sensors which are based on resistors and resistance bridges such as wire strain gauges or piezoresistive sensors, capacitive and inductive elements, as well as computer software used with integrated circuits and measurement standard tools for evaluating the results of the measurements listed above, namely, for recording positions, paths, lengths and distance measurement, for recording rotational movements and angles of rotation, for surveying sensors which are based on resistors and resistance bridges such as wire strain gauges or piezoresistive sensors, capacitive and inductive elements [ Development of integrated circuits, systems and complete measuring apparatus for measuring technology, namely, for precision time measurement on a nanosecond time scale, and all types of measuring tasks which are based on time measurement; development services in the field of measuring technology and chip development, focusing on time measuring technology ]
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Industrial process control software; computer software for processing, controlling, displaying and transferring of signals received by opto-electronic sensors; circuit boards; circuit boards provided with integrated circuits; integrated circuits; printed circuit boards; amplifiers, namely for signals; opto-electronic sensors, sensors for determination of color of light Computer software design for others for application in electrical engineering, microelectronics and micro system engineering
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Electric apparatus and instruments based on resistors and resistance bridges, namely, integrated circuits and measuring systems comprised of capacitors, comparators, electrical inductors, electrical resistors, used for recording positions, including path, length, and distance measurement, for recording rotational movements and angles of rotation, and for surveying resistive, ohmic, capacitive and inductive sensors; [ measuring apparatus and instruments, namely, acceleration sensors, liquid level sensors, pressure sensors; electric or electronic sensors for sensing pressure, acceleration, distance, position, angle and/or level; automatic vending machines; cash registers, calculators; ] data processors; computers; industrial process control software; computer software used in the electrical industry, machine industry, automobile industry and mechanical technology for analyzing measurement data provided by capacitors, electrical inductors or resistors [ Development of integrated circuits, systems and integrated devices for metrology, including precision time [ management ] * measurement * and all types of measuring tasks based on chronometry; development services in the field of chronometry and chip development ]