Watercrafts that include a fluid system are described. An example watercraft includes a fluid system, a hull, a sail, and a compressor. The hull has a bow and a stern. The sail has a first end, a second end disposed on the hull, a lengthwise axis, a central axis, a first side, a second side, and defines an injection opening, a suction opening, and a channel. The lengthwise axis extends from the first end to the second end. The central axis is disposed orthogonally to the lengthwise axis and between the first side and the second side. The suction opening is disposed on the second side and between the injection opening and the first side. The channel extends from the suction opening to the injection opening such that fluid can travel into the suction opening and exit the injection opening. The compressor is disposed within the channel.
Watercrafts that include a fluid system are described. An example watercraft includes a fluid system, a hull, a sail, and a compressor. The hull has a bow and a stern. The sail has a first end, a second end disposed on the hull, a lengthwise axis, a central axis, a first side, a second side opposably facing the first side, and defines an injection opening, a suction opening, and a channel. The lengthwise axis extends from the first end to the second end. The central axis is disposed orthogonally to the lengthwise axis and between the first side and the second side. The suction opening is disposed on the second side and between the injection opening and the first side. The channel extends from the suction opening to the injection opening such that fluid can travel into the suction opening and exit the injection opening. The compressor is disposed within the channel.
B63H 9/04 - Propulsion marine obtenue directement par l'énergie éolienne employant des voiles ou des surfaces similaires captant l'action du vent
B63H 9/02 - Propulsion marine obtenue directement par l'énergie éolienne employant l'effet Magnus
B63H 9/06 - Types de voilureÉléments de construction des voiluresLeurs agencements à bord des navires
B63H 9/067 - Voiles caractérisées par leur construction ou leur procédé de fabrication
B64C 21/02 - Moyens permettant d'influencer l'écoulement d'air sur les surfaces des aéronefs en agissant sur la couche limite par utilisation de fentes, de conduits, de surfaces poreuses ou de dispositifs similaires
B64C 3/36 - Structures adaptées pour réduire les effets de l'échauffement aérodynamique ou les effets d'un échauffement externe d'une autre origine
Inlet systems are described. An example inlet system has a first wall, a second wall, and a compressor. The first wall has a first end, a second end, and defines a passageway, a first passageway opening, and a second passageway opening. The passageway extends from the first passageway opening to the second passageway opening. The first wall and the second wall cooperatively define an inlet, an outlet, and a channel. The channel extends from the inlet to the outlet. The compressor is disposed within the passageway and is configured to pressurize fluid that passes through the passageway. The first end of the first wall is disposed outside of the channel. The passageway is in fluid communication with the channel.
B64D 33/02 - Aménagement sur les aéronefs des éléments ou des auxiliaires des ensembles fonctionnels de propulsion, non prévu ailleurs des entrées d'air de combustion
Fluid systems are described. An example fluid system includes a body and a housing. The body has a leading edge, a trailing edge, a first portion, and a second portion attached to the first portion. The second portion is moveable relative to the first portion between a first position and a second position. The housing extends from the first portion to the second portion and is configured to move as the second portion moves relative to the first portion. The housing is moveable between a first configuration and a second configuration. The housing is in the first configuration when the second portion is in the first position and is in the second configuration when the second portion is in the second position. The housing has a first length when in the first configuration and a second length when in the second configuration that is greater than the first length.
B64C 3/48 - Variation de la courbure par parties semi-mobiles des structures d'ailes
B64C 3/50 - Variation de la courbure par volets de bord d'attaque ou de bord de fuite
B64C 9/18 - Surfaces ou éléments de commande réglables, p. ex. gouvernes de direction formant des fentes à l'arrière de l'aile par volet unique
B64C 9/28 - Surfaces ou éléments de commande réglables, p. ex. gouvernes de direction formant des fentes par volets disposés à la fois à l'avant et à l'arrière de l'aile, fonctionnant en accord
5.
Deflected Slip Stream Wing System with Coflow Jet Flow Control
UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA (USA)
Inventeur(s)
Zha, Gecheng
Whiteside, Siena
Pollard, Beau
Patterson, Michael
Fei, Xiaofan
Rothhaar, Paul
Antcliff, Kevin
Geuther, Steven
Abrégé
An example of a deflected slip stream wing system with coflow jet flow control includes a wingbox, a flap, a compressor, and a propulsor. The wingbox has a root and a tip. The flap is moveably attached to the wingbox and has a leading edge, a trailing edge, an injection opening, a suction opening, and a channel. The injection opening is disposed between the leading edge and the suction opening. The suction opening is disposed between the injection opening and the trailing edge. The channel extends from the injection opening to the suction opening. The compressor is disposed within the channel. The propulsor is disposed on the wingbox between the root and the tip. The propulsor has an off state and an on state. When in the on state, the propulsor is aligned relative to the flap such that fluid accelerated by the propulsor contacts the flap.
B64C 21/06 - Moyens permettant d'influencer l'écoulement d'air sur les surfaces des aéronefs en agissant sur la couche limite par utilisation de fentes, de conduits, de surfaces poreuses ou de dispositifs similaires en vue de l'aspiration
B64C 9/14 - Surfaces ou éléments de commande réglables, p. ex. gouvernes de direction formant des fentes
Fluid systems are described herein. An example embodiment of a fluid system has a first body portion, a second body portion, a plurality of supports, a plurality of fluid pressurizers, and a plurality of ducts. The first body portion and the second body portion cooperatively define an injection opening, a suction opening, and a channel that extends from the injection opening to the suction opening. The fluid pressurizer is disposed within the channel cooperatively defined by the first body portion and the second body portion. Each duct of the plurality of ducts is disposed within the channel cooperatively defined by the first body portion and the second body portion.
B64C 3/36 - Structures adaptées pour réduire les effets de l'échauffement aérodynamique ou les effets d'un échauffement externe d'une autre origine
B64C 21/02 - Moyens permettant d'influencer l'écoulement d'air sur les surfaces des aéronefs en agissant sur la couche limite par utilisation de fentes, de conduits, de surfaces poreuses ou de dispositifs similaires
UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA (USA)
Inventeur(s)
Zha, Gecheng
Whiteside, Siena
Pollard, Beau
Patterson, Michael
Fei, Xiaofan
Rothhaar, Paul
Antcliff, Kevin
Geuther, Steven
Abrégé
An example of a deflected slip stream wing system with coflow jet flow control includes a wingbox, a flap, a compressor, and a propulsor. The wingbox has a root and a tip. The flap is moveably attached to the wingbox and has a leading edge, a trailing edge, an injection opening, a suction opening, and a channel. The injection opening is disposed between the leading edge and the suction opening. The suction opening is disposed between the injection opening and the trailing edge. The channel extends from the injection opening to the suction opening. The compressor is disposed within the channel. The propulsor is disposed on the wingbox between the root and the tip. The propulsor has an off state and an on state. When in the on state, the propulsor is aligned relative to the flap such that fluid accelerated by the propulsor contacts the flap.
B64C 21/02 - Moyens permettant d'influencer l'écoulement d'air sur les surfaces des aéronefs en agissant sur la couche limite par utilisation de fentes, de conduits, de surfaces poreuses ou de dispositifs similaires
B64C 23/00 - Moyens permettant d'influencer l'écoulement d'air sur les surfaces des aéronefs, non prévus ailleurs
B64C 21/06 - Moyens permettant d'influencer l'écoulement d'air sur les surfaces des aéronefs en agissant sur la couche limite par utilisation de fentes, de conduits, de surfaces poreuses ou de dispositifs similaires en vue de l'aspiration
B64C 21/08 - Moyens permettant d'influencer l'écoulement d'air sur les surfaces des aéronefs en agissant sur la couche limite par utilisation de fentes, de conduits, de surfaces poreuses ou de dispositifs similaires réglables
Fluid systems and methods for addressing fluid separation are described. An example fluid system includes a main body and a fluid pressurizer. The main body has a first portion, a second portion, an injection opening, a suction opening, a channel that extends from the suction opening to the injection opening, and a side wall. The first portion has a first axis that extends along the side wall. The second portion has a second axis that extends along the side wall at an angle relative to the first axis such that when fluid flows over the main body flow separation is defined adjacent to the second portion. The injection opening is disposed at a first location relative to said flow separation. The suction opening is disposed at a second location relative to said flow separation. The channel extends from the suction opening to the injection opening.
F15D 1/04 - Agencement de déflecteurs de guidage dans les coudes des tuyaux ou les courbes des conduitsStructure des éléments de conduit pour des coudes en relation avec l'écoulement, p. ex. pour réduire les chutes de débit
F15D 1/12 - Action sur l'écoulement des fluides autour de corps formés d'un matériau solide en agissant sur la couche-limite
F15D 1/02 - Action sur l'écoulement des fluides dans les tuyaux ou les conduits
F15D 1/08 - Action sur l'écoulement des fluides des jets sortant d'un orifice
9.
Wind turbine blades and wind turbine systems that include a co-flow jet
Wind turbine blades and wind turbine systems that include a co-flow jet are described. An example wind turbine blade has a main body and a fluid pressurizer. The main body has a first portion, a second portion, a leading edge, a trailing edge, an injection opening, a suction opening, and a channel. The first portion has a first cross-sectional shape and the second portion has a second cross-sectional shape that is different than the first cross-sectional shape. The injection opening is disposed on the first portion between the leading edge and the trailing edge. The channel extends from the suction opening to the injection opening. The fluid pressurizer is disposed within the channel.
Wind turbine blades and wind turbine systems that include a co-flow jet are described. An example wind turbine blade has a main body and a fluid pressurizer. The main body has a. first portion, a second portion, a leading edge, a trailing edge, an injection opening, a suction opening, and a channel. The first portion has a first cross-sectional shape and the second portion has a second cross-sectional shape that is different than the first cross-sectional shape. The injection opening is disposed on the first portion between the leading edge and the trailing edge. The channel extends from the suction opening to the injection opening. The fluid pressurizer is disposed within the channel.
B64C 3/26 - Construction, forme ou fixation des revêtements distincts, p. ex. panneaux
B64C 9/00 - Surfaces ou éléments de commande réglables, p. ex. gouvernes de direction
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
F03D 80/00 - Détails, composants ou accessoires non prévus dans les groupes
Fluid systems are described. An example fluid system includes a body and a housing. The body has a leading edge, a trailing edge, a first portion, and a second portion attached to the first portion. The second portion is moveable relative to the first portion between a first position and a second position. The housing extends from the first portion to the second portion and is configured to move as the second portion moves relative to the first portion. The housing is moveable between a first configuration and a second configuration. The housing is in the first configuration when the second portion is in the first position and is in the second configuration when the second portion is in the second position. The housing has a first length when in the first configuration and a second length when in the second configuration that is greater than the first length.
Fluid systems are described herein. An example embodiment of a fluid system has a first body portion, a second body portion, a plurality of supports, a plurality of fluid pressurizers, and a plurality of ducts. The first body portion and the second body portion cooperatively define an injection opening, a suction opening, and a channel that extends from the injection opening to the suction opening. The fluid pressurizer is disposed within the channel cooperatively defined by the first body portion and the second body portion. Each duct of the plurality of ducts is disposed within the channel cooperatively defined by the first body portion and the second body portion.
B64C 21/02 - Moyens permettant d'influencer l'écoulement d'air sur les surfaces des aéronefs en agissant sur la couche limite par utilisation de fentes, de conduits, de surfaces poreuses ou de dispositifs similaires
Fluid systems are described herein. An example fluid system includes a main body and a heating member attached to the main body. The main body has a leading edge, a trailing edge, an injection opening, a suction opening, a channel, a first passageway, a second passageway, a first opening, a second opening, and a third opening. The channel extends from the injection opening to the suction opening. The first passageway extends from the first opening to the second opening. The first opening is in communication with the channel and the second opening is in communication with the second passageway. The second passageway is in communication with the first passageway and extends to the third opening, which is in communication with a first environment exterior to the second passageway. The heating member is sized and configured to heat fluid traveling through the second passageway.
A fluid system has a lengthwise axis, a chord length, a first body portion, a second body portion, a spacer, and a fluid pressurizer. The first body portion and the second body portion cooperatively define an injection opening, a suction opening, and a channel that extends from the injection opening to the suction opening. The fluid pressurizer is disposed within the channel cooperatively defined by the first body portion and the second body portion. The first body portion defines a cavity that is sized and configured to filter debris that enters the channel during use and provide a mechanism for removing the debris from the system.
B64C 21/02 - Moyens permettant d'influencer l'écoulement d'air sur les surfaces des aéronefs en agissant sur la couche limite par utilisation de fentes, de conduits, de surfaces poreuses ou de dispositifs similaires
B64C 21/08 - Moyens permettant d'influencer l'écoulement d'air sur les surfaces des aéronefs en agissant sur la couche limite par utilisation de fentes, de conduits, de surfaces poreuses ou de dispositifs similaires réglables
Turbomachine casing treatments are described. A turbomachine that includes an example of a turbomachine casing treatment includes a wheel, a casing, and a fluid pressurizer. The wheel has a hub that defines a rotational axis and a plurality of blades. The casing has a first end, a second end, and defines an inner surface that surrounds the plurality of blades, an inlet opening, an outlet opening, a passageway, and a channel that extends from the inlet opening to the outlet opening. The passageway extends from a first passageway opening that is defined on the inner surface and a second passageway opening that is defined on the inner surface and is disposed between the first passageway opening and the first end of the casing. The fluid pressurizer is disposed within the passageway.
F04D 29/52 - Carters d'enveloppeTubulures pour le fluide énergétique pour pompes axiales
F04D 29/68 - Lutte contre la cavitation, les tourbillons, le bruit, les vibrations ou phénomènes analoguesÉquilibrage en agissant sur les couches limites
Fluid systems are described herein. An example embodiment of a fluid system has a first body portion, a second body portion, a plurality of supports, a plurality of fluid pressurizers, and a plurality of ducts. The first body portion and the second body portion cooperatively define an injection opening, a suction opening, and a channel that extends from the injection opening to the suction opening. The fluid pressurizer is disposed within the channel cooperatively defined by the first body portion and the second body portion. Each duct of the plurality of ducts is disposed within the channel cooperatively defined by the first body portion and the second body portion.
B64C 21/02 - Moyens permettant d'influencer l'écoulement d'air sur les surfaces des aéronefs en agissant sur la couche limite par utilisation de fentes, de conduits, de surfaces poreuses ou de dispositifs similaires
Fluid systems are described herein. An example embodiment of a fluid system has a first body portion, a second body portion, a plurality of supports, a plurality of fluid pressurizers, and a plurality of ducts. The first body portion and the second body portion cooperatively define an injection opening, a suction opening, and a channel that extends from the injection opening to the suction opening. The fluid pressurizer is disposed within the channel cooperatively defined by the first body portion and the second body portion. Each duct of the plurality of ducts is disposed within the channel cooperatively defined by the first body portion and the second body portion.
B64C 21/02 - Moyens permettant d'influencer l'écoulement d'air sur les surfaces des aéronefs en agissant sur la couche limite par utilisation de fentes, de conduits, de surfaces poreuses ou de dispositifs similaires
Fluid systems are described herein. An example embodiment of a fluid system has a first body portion, a second body portion, a plurality of supports, a plurality of fluid pressurizers, and a plurality of ducts. The first body portion and the second body portion cooperatively define an injection opening, a suction opening, and a channel that extends from the injection opening to the suction opening. The fluid pressurizer is disposed within the channel cooperatively defined by the first body portion and the second body portion. Each duct of the plurality of ducts is disposed within the channel cooperatively defined by the first body portion and the second body portion.
B64C 21/02 - Moyens permettant d'influencer l'écoulement d'air sur les surfaces des aéronefs en agissant sur la couche limite par utilisation de fentes, de conduits, de surfaces poreuses ou de dispositifs similaires
Fluid systems are described. An example fluid system has a first body portion, a second body portion, a spacer, and a fluid pressurizer. The first body portion and the second body portion cooperatively define an injection opening, a suction opening, and a channel that extends from the injection opening to the suction opening. The fluid pressurizer is disposed within the channel cooperatively defined by the first body portion and the second body portion. The first body portion defines a cavity that is sized and configured to filter debris that enters the channel during use and provide a mechanism for removing the debris from the system.
B64C 21/02 - Moyens permettant d'influencer l'écoulement d'air sur les surfaces des aéronefs en agissant sur la couche limite par utilisation de fentes, de conduits, de surfaces poreuses ou de dispositifs similaires
Fluid systems are described. An example fluid system has a first body portion, a second body portion, a spacer, and a fluid pressurizer. The first body portion and the second body portion cooperatively define an injection opening, a suction opening, and a channel that extends from the injection opening to the suction opening. The fluid pressurizer is disposed within the channel cooperatively defined by the first body portion and the second body portion. The first body portion defines a cavity that is sized and configured to filter debris that enters the channel during use and provide a mechanism for removing the debris from the system.
B64C 21/08 - Moyens permettant d'influencer l'écoulement d'air sur les surfaces des aéronefs en agissant sur la couche limite par utilisation de fentes, de conduits, de surfaces poreuses ou de dispositifs similaires réglables
B64C 21/02 - Moyens permettant d'influencer l'écoulement d'air sur les surfaces des aéronefs en agissant sur la couche limite par utilisation de fentes, de conduits, de surfaces poreuses ou de dispositifs similaires
Fluid systems are described herein. An example embodiment of a fluid system has a lengthwise axis, a chord length, a first body portion, a second body portion, a spacer, and a fluid pressurizer. The first body portion and the second body portion cooperatively define an injection opening, a suction opening, and a channel that extends from the injection opening to the suction opening. The fluid pressurizer is disposed within the channel cooperatively defined by the first body portion and the second body portion. The first body portion defines a cavity that is sized and configured to filter debris that enters the channel during use and provide a mechanism for removing the debris from the system.
B64C 21/02 - Moyens permettant d'influencer l'écoulement d'air sur les surfaces des aéronefs en agissant sur la couche limite par utilisation de fentes, de conduits, de surfaces poreuses ou de dispositifs similaires
B64C 21/08 - Moyens permettant d'influencer l'écoulement d'air sur les surfaces des aéronefs en agissant sur la couche limite par utilisation de fentes, de conduits, de surfaces poreuses ou de dispositifs similaires réglables