A light detection and ranging (lidar) device includes: a lower base; an upper base; a laser emitting unit for emitting a laser in a form of a point light source; a nodding mirror for transforming the laser in the form of the point light source to a line beam pattern which is perpendicular to the lower base, wherein the nodding mirror reflects the laser emitted from the laser emitting unit; a polygonal mirror for transforming the line beam pattern to a plane beam pattern and receiving a laser reflected from an object; and a sensor unit for receiving the laser reflected from the object via the polygonal mirror.
A lidar device is proposed. The device may include a transmission module including a laser output array and transmission optics, the laser output array including a first laser emitting sub-array, and the first laser emitting sub-array including a first laser emitting unit and a second laser emitting unit. The device may also include a reception module including a laser detecting array and reception optics. The laser detecting array may include a first detecting unit configured to detect a laser beam emitted from the first laser emitting unit and a second detecting unit configured to detect a laser beam emitted from the second laser emitting unit.
A LIDAR device according to the present invention comprises: a transmission module including a laser emitting array and transmission optics, the transmission optics having a first optical axis and a transmission entrance pupil; a reception module including a laser detecting array and reception optics, the reception optics having a second optical axis; a case functioning to accommodate at least a portion of the transmission module and at least a portion of the reception module; and a window module coupled to the case and functioning to provide an inner space for accommodating the transmission optics and the reception optics.
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
H01S 5/02257 - Découplage de lumière utilisant des fenêtres optiques, p. ex. spécialement adaptées pour réfléchir de la lumière sur un détecteur à l’intérieur du boîtier
4.
LASER EMITTING UNIT AND LIDAR DEVICE USING THE SAME
A vertical cavity surface emitting laser (VCSEL) array is proposed. The array includes a first sub-array including a plurality of VCSEL units arranged along a first axis. The first sub-array includes a first VCSEL unit including a first upper contact and a first bottom contact, and a second VCSEL unit including a second upper contact and a second bottom contact. The array also includes a first contact electrically connected to the first upper contact and the second bottom contact, and a second contact electrically connected to the second upper contact and the first bottom contact. The first VCSEL unit operates when a first voltage is applied to the first contact and a second voltage smaller than the first voltage is applied to the second contact. The second VCSEL unit operates when the second voltage is applied to the first contact and the first voltage is applied to the second contact.
H01S 5/10 - Structure ou forme du résonateur optique
H01S 5/183 - Lasers à émission de surface [lasers SE], p. ex. comportant à la fois des cavités horizontales et verticales comportant uniquement des cavités verticales, p. ex. lasers à émission de surface à cavité verticale [VCSEL]
5.
ADAPTER INTERPOSED BETWEEN LIDAR DEVICE AND OPTICAL WINDOW AND LIDAR DEVICE INCLUDING SAME
A lidar device according to the present invention may comprise: a laser light-emitting element array including a plurality of laser light-emitting elements; a transmission optic assembly for steering laser output from the plurality of laser light-emitting elements; a detecting element array including a plurality of detecting elements; a reception optic assembly; and an adapter including a first optical path and a second optical path.
Proposed is a shared vehicle service providing method based on a shared vehicle management server communicating with a shared vehicle and a user device. Also proposed is a shared vehicle service providing method for managing an article of a shared vehicle user on the basis of a shared vehicle management server. For example, proposed is a shared vehicle service providing method in which a shared vehicle management server manages dispatch of a shared vehicle and an article of a user on the basis of data acquired from the shared vehicle and a user device.
B60W 60/00 - Systèmes d’aide à la conduite spécialement adaptés aux véhicules routiers autonomes
G01C 21/34 - Recherche d'itinéraireGuidage en matière d'itinéraire
G06Q 30/016 - Fourniture d’une assistance aux clients, p. ex. pour assister un client dans un lieu commercial ou par un service d’assistance après-vente
G06Q 50/40 - Procédés d’affaires s’appliquant à l’industrie du transport
G08G 1/00 - Systèmes de commande du trafic pour véhicules routiers
G08G 1/133 - Systèmes de commande du trafic pour véhicules routiers indiquant la position de véhicules, p. ex. de véhicules à horaire déterminé à l'intérieur du véhicule
H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
7.
LIDAR DEVICE COMPRISING A PLURALITY OF BEAM STEERING CELLS FOR STEERING A LASER BEAM
Proposed is a lidar device. The lidar device may include a polygonal mirror rotating along a rotational axis, reflecting a laser beam provided from a side toward an object and receiving a laser beam reflected from the object. The lidar device may also include a laser emitting module including a plurality of VCSEL (Vertical Cavity Surface Emitting Laser) elements emitting a laser beam toward the polygonal mirror and arranged along the rotational axis. The lidar device may further include a metasurface forming, via a plurality of nanopillars disposed on an emission surface side of the laser emitting module, a beam of line pattern line pattern being extended along the rotational axis using the laser beam emitted from the laser emitting module. The lidar device may further include a sensor unit receiving, via the polygonal mirror, the laser beam reflected from the object.
H01S 5/183 - Lasers à émission de surface [lasers SE], p. ex. comportant à la fois des cavités horizontales et verticales comportant uniquement des cavités verticales, p. ex. lasers à émission de surface à cavité verticale [VCSEL]
8.
Methods and apparatus for array based LiDAR systems with reduced interference
An array-based light detection and ranging (LiDAR) unit includes an array of emitter/detector sets configured to cover a field of view for the unit. Each emitter/detector set emits and receives light energy on a specific coincident axis unique for that emitter/detector set. A control system coupled to the array of emitter/detector sets controls initiation of light energy from each emitter and processes time of flight information for light energy received on the coincident axis by the corresponding detector for the emitter/detector set. The time of flight information provides imaging information corresponding to the field of view. Interference among light energy is reduced with respect to detectors in the LiDAR unit not corresponding to the specific coincident axis, and with respect to other LiDAR units and ambient sources of light energy. In one embodiment, multiple array-based LiDAR units are used as part of a control system for an autonomous vehicle.
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G01S 7/4863 - Réseaux des détecteurs, p. ex. portes de transfert de charge
G01S 7/4865 - Mesure du temps de retard, p. ex. mesure du temps de vol ou de l'heure d'arrivée ou détermination de la position exacte d'un pic
G01S 17/10 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement utilisant la transmission d'ondes à modulation d'impulsion interrompues
G01S 17/93 - Systèmes lidar, spécialement adaptés pour des applications spécifiques pour prévenir les collisions
9.
Methods and apparatus for array based LiDAR systems with reduced interference
An array-based light detection and ranging (LiDAR) unit includes an array of emitter/detector sets configured to cover a field of view for the unit. Each emitter/detector set emits and receives light energy on a specific coincident axis unique for that emitter/detector set. A control system coupled to the array of emitter/detector sets controls initiation of light energy from each emitter and processes time of flight information for light energy received on the coincident axis by the corresponding detector for the emitter/detector set. The time of flight information provides imaging information corresponding to the field of view. Interference among light energy is reduced with respect to detectors in the LiDAR unit not corresponding to the specific coincident axis, and with respect to other LiDAR units and ambient sources of light energy. In one embodiment, multiple array-based LiDAR units are used as part of a control system for an autonomous vehicle.
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G01S 7/4863 - Réseaux des détecteurs, p. ex. portes de transfert de charge
G01S 7/4865 - Mesure du temps de retard, p. ex. mesure du temps de vol ou de l'heure d'arrivée ou détermination de la position exacte d'un pic
G01S 17/10 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement utilisant la transmission d'ondes à modulation d'impulsion interrompues
G01S 17/93 - Systèmes lidar, spécialement adaptés pour des applications spécifiques pour prévenir les collisions
10.
METHOD FOR GENERATING LIDAR DATA FREE OF FLARING ARTIFACTS, FLARING ARTIFACT REMOVAL METHOD, AND LIDAR DEVICE
A method for generating LiDAR data according to the present invention comprises the steps of: acquiring a plurality of pieces of pixel data each including a pixel coordinate value and a detecting value set that includes an intensity value and a depth value; identifying retro pixel data among the plurality of pieces of pixel data in consideration of the intensity values included in each of the plurality of pieces of pixel data; identifying flaring pixel data among the plurality of pieces of pixel data in consideration of the identified retro pixel data, wherein the flaring pixel data is identified in consideration of at least the pixel coordinate value in the identified retro pixel data; and generating LiDAR data by changing the detecting value set in the identified flaring pixel data.
A method for generating enhanced LiDAR data, according to the present invention, may comprise the steps of: acquiring, on the basis of detecting signals acquired from a plurality of sub-detecting units included in a plurality of laser detecting units, first LiDAR data including pieces of point data, each corresponding to each of the plurality of laser detecting units; acquiring, on the basis of the detecting signals acquired from the plurality of sub-detecting units included in the plurality of laser detecting units, second LiDAR data including pieces of sub-point data, each corresponding to each of the plurality of sub-detecting units; and generating enhanced LiDAR data by using the first LiDAR data and the second LiDAR data.
Proposed is a method for processing, by one or more processors, data obtained on the basis of detection signals generated by a detector array including a plurality of detector units. The method includes generating, on the basis of the detection signals generated by the detector array, a spatio-temporal data set including a plurality of counting values, wherein each of the plurality of counting values corresponds to one of the plurality of detector units and is addressed to at least one time bin, and generating distance information including a plurality of distance values corresponding to each of the plurality of detector units by processing the spatio-temporal data set.
A LiDAR device comprising: a transmission module including a laser emitting array and a first lens assembly, wherein the laser emitting array is configured to emit a plurality of lasers at a first wavelength and wherein the first lens assembly is configured to steer the plurality of lasers at different angles within a first angle range; a reception module including a laser detecting array and a second lens assembly, wherein the laser detecting array includes at least two detectors for detecting at least a portion of the plurality of lasers and wherein the second lens assembly is configured to distribute the plurality of lasers to the at least two detectors; wherein the second lens assembly comprise: at least four lens layers including a first lens layer, a second lens layer, a third lens layer and a fourth lens layer; at least two gap layers including a first gap layer and a second gap layer; and a filter layer located in the first gap layer.
A LiDAR device according to the present invention comprises: a transmission module comprising a transmission optic and a laser output array which comprises a plurality of laser output units, the laser output array comprising a main array and an auxiliary array; and a reception module comprising a reception optic and a laser-detecting array comprising a plurality of laser-detecting units, wherein the main array and the auxiliary array are arranged such that the distance between the optical axis of the transmission optic and the main array is shorter than the distance between the optical axis of the transmission optic and the auxiliary array, and, when a laser outputted from the laser output array is reflected from an object positioned at a first distance, at least a portion of the auxiliary array becomes optically coupled to the laser-detecting array, while at least a portion of the main array may become optically decoupled from the laser-detecting array.
A method for generating enhanced LiDAR data, according to the present invention, may comprise the steps of: acquiring, on the basis of detecting signals acquired from a plurality of sub-detecting units included in a plurality of laser detecting units, first LiDAR data including pieces of point data corresponding to each of the plurality of laser detecting units; acquiring, on the basis of the detecting signals acquired from the plurality of sub-detecting units included in the plurality of laser detecting units, second LiDAR data including pieces of sub-point data corresponding to each of the plurality of sub-detecting units; and generating enhanced LiDAR data by using the first LiDAR data and the second LiDAR data.
A light detection and ranging (LiDAR) device according to the present invention comprises: a transmission module including a laser output array and a transmission optic, wherein the laser output array includes a first laser output unit and a second laser output unit, and the second laser output unit is located right next to the first laser output unit; and a reception module including a laser detecting array and a reception optic, wherein the laser detecting array includes a first laser detecting unit and a second laser detecting unit. The transmission module and the reception module are aligned so that the first laser output unit and the first laser detecting unit are optically coupled. The distance between the first laser detecting unit and the second laser detecting unit is determined such that the second laser detecting unit is optically connected to the second laser output unit. The laser detecting array may further include a first ambient detecting unit disposed between the first laser detecting unit and the second laser detecting unit.
Disclosed is a method for a light detection and ranging (LiDAR) device to measure the distance from the LiDAR device to an object. Specifically, the method may include a LiDAR device: outputting a first laser beam through a vertical-cavity surface-emitting laser (VCSEL) in each of a plurality of scan cycles; identifying at least one time point at which at least one photon is detected through a single-photon avalanche diode (SPAD) optically corresponding to the VCSEL, in each of the plurality of scan cycles, in a time bin unit having a specific time interval; determining a histogram on the basis of the at least one time point; and measuring the distance between the object and the LiDAR device on the basis of at least a portion of the histogram.
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
H01S 5/40 - Agencement de plusieurs lasers à semi-conducteurs, non prévu dans les groupes
H01S 5/42 - Réseaux de lasers à émission de surface
H01S 5/183 - Lasers à émission de surface [lasers SE], p. ex. comportant à la fois des cavités horizontales et verticales comportant uniquement des cavités verticales, p. ex. lasers à émission de surface à cavité verticale [VCSEL]
18.
METHOD FOR MANUFACTURING LIDAR DEVICE, AND ACTIVE ALIGN DEVICE FOR IMPLEMENTING METHOD FOR MANUFACTURING LIDAR DEVICE
A method for manufacturing a LiDAR device is proposed. The method may include providing a LiDAR module including a laser emitting module and a laser detecting module to a target region. The method may also include adjusting, on the basis of first detecting data obtained from the laser detecting module, a relative position of a detecting optic module with respect to the laser detecting module. The method may further include adjusting, on the basis of image data obtained from at least one image sensor, a relative position of an emitting optic module with respect to the laser emitting module.
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G01S 17/89 - Systèmes lidar, spécialement adaptés pour des applications spécifiques pour la cartographie ou l'imagerie
19.
METHOD FOR GENERATING INTENSITY INFORMATION HAVING EXTENDED EXPRESSION RANGE BY REFLECTING GEOMETRIC CHARACTERISTIC OF OBJECT, AND LIDAR APPARATUS PERFORMING SAME METHOD
A method for processing point data obtained from a light detection and ranging (LiDAR) device is proposed. The method may include obtaining point cloud data including a plurality of point data for a plurality of detection points. The method may also include generating an image of the plurality of detection points based on the point cloud data. Each of the plurality of point data may include location information about a detection point and a geometrically enhanced intensity of the detection point. The geometrically enhanced intensity may be generated based on a combination of a reflection parameter related to the amount of light scattered at the detection point and a geometric parameter based on geometrical characteristic of the detection point.
Proposed is a shared vehicle service providing method based on a shared vehicle management server communicating with a shared vehicle and a user device. Also proposed is a shared vehicle service providing method for managing an article of a shared vehicle user on the basis of a shared vehicle management server. For example, proposed is a shared vehicle service providing method in which a shared vehicle management server manages dispatch of a shared vehicle and an article of a user on the basis of data acquired from the shared vehicle and a user device.
B60W 60/00 - Systèmes d’aide à la conduite spécialement adaptés aux véhicules routiers autonomes
G01C 21/34 - Recherche d'itinéraireGuidage en matière d'itinéraire
G06Q 30/016 - Fourniture d’une assistance aux clients, p. ex. pour assister un client dans un lieu commercial ou par un service d’assistance après-vente
G06Q 50/40 - Procédés d’affaires s’appliquant à l’industrie du transport
G08G 1/00 - Systèmes de commande du trafic pour véhicules routiers
G08G 1/133 - Systèmes de commande du trafic pour véhicules routiers indiquant la position de véhicules, p. ex. de véhicules à horaire déterminé à l'intérieur du véhicule
H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
21.
LASER OUTPUT ARRAY, RECEPTION OPTICS, AND LIDAR DEVICE USING SAME
A lidar device according to the present invention may comprises: a transmission module comprising a laser output array and transmission optics, the laser output array comprising a first laser output sub-array, and the first laser output sub-array comprising a first laser output unit and a second laser output unit; and a reception module comprising a laser detecting array and reception optics, the laser detecting array comprising a first detecting unit for detecting a laser beam output from the first laser output unit and a second detecting unit for detecting a laser beam output from the second laser output unit.
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G01S 7/4863 - Réseaux des détecteurs, p. ex. portes de transfert de charge
G01S 17/93 - Systèmes lidar, spécialement adaptés pour des applications spécifiques pour prévenir les collisions
H01S 5/40 - Agencement de plusieurs lasers à semi-conducteurs, non prévu dans les groupes
H01S 5/183 - Lasers à émission de surface [lasers SE], p. ex. comportant à la fois des cavités horizontales et verticales comportant uniquement des cavités verticales, p. ex. lasers à émission de surface à cavité verticale [VCSEL]
A laser driver for driving a Vertical Cavity Surface Emitting Laser (VCSEL) includes a high-side switch (High-side Field Effect Transistor) having an internal capacitor for charging with a drain terminal thereof connected to a high-voltage terminal, a low-side switch (Low-side Field Effect Transistor) in which a drain terminal thereof is connected to a source terminal of the high-side switch and a source terminal thereof is connected to a ground terminal, and a VCSEL diode having an anode terminal connected to the high-side switch.
H03K 17/687 - Commutation ou ouverture de porte électronique, c.-à-d. par d'autres moyens que la fermeture et l'ouverture de contacts caractérisée par l'utilisation de composants spécifiés par l'utilisation, comme éléments actifs, de dispositifs à semi-conducteurs les dispositifs étant des transistors à effet de champ
A LiDAR apparatus according to the present invention comprises: a laser detecting array including a first detecting unit; a delay generation unit for obtaining a detecting signal from the first detecting unit and outputting a delay signal; a signal detection unit which detects the delay signal output from the delay generation unit by using a preset clock; a memory unit in which histogram data is stored on the basis of a result of detection by the signal detection unit; and a data processing unit which calculates a distance value for the first detecting unit on the basis of the histogram data stored in the memory unit, wherein the delay generation unit outputs the delay signal by applying a first delay value to a first cycle, and outputs the delay signal by applying a second delay value to a second cycle, and the first delay value and the second delay value may be different from each other.
G01S 7/4865 - Mesure du temps de retard, p. ex. mesure du temps de vol ou de l'heure d'arrivée ou détermination de la position exacte d'un pic
G01S 17/10 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement utilisant la transmission d'ondes à modulation d'impulsion interrompues
G01S 17/931 - Systèmes lidar, spécialement adaptés pour des applications spécifiques pour prévenir les collisions de véhicules terrestres
A Light Detection and Ranging (LiDAR) device comprising: a laser detecting array including a first detecting unit, a delay generating unit configured to obtain a detection signal from the first detecting unit and output a delay signal, a signal detecting unit configured to detect the delay signal outputted from the delay generating unit using a preset clock, a memory unit configured to store a histogram data based on a detection result by the signal detecting unit and a data processing unit for calculating a distance value for the first detecting unit based on the histogram data stored in the memory unit, wherein the delay generating unit applies a first delay value for a first detecting cycle, and applies a second delay value for a second detecting cycle, wherein the first delay value and the second delay value are different from each other.
A LiDAR device according to the present invention may comprise: a laser emitting chip for generating a laser beam; a laser detecting chip for sensing the laser beam; an emitting-optic module for guiding the laser beam, generated from the laser emitting chip, to the outside of the LiDAR device; a detecting-optic module for guiding the laser beam, received from the outside of the LiDAR device, to the laser detecting chip; an emitting-optic holder positioned between the laser emitting chip and the emitting-optic module; a first hardening material positioned between the emitting-optic holder and the emitting-optic module in order to fix the relative position relationship between the laser emitting chip and the emitting-optic module; and at least one emitting-optic fixer.
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
H01S 5/183 - Lasers à émission de surface [lasers SE], p. ex. comportant à la fois des cavités horizontales et verticales comportant uniquement des cavités verticales, p. ex. lasers à émission de surface à cavité verticale [VCSEL]
A light detection and ranging (LiDAR) device comprising: a laser emitting chip configured to emit laser, a laser detecting chip configured to detect laser, an emitting optic module configured to guide laser generated from the laser emitting chip to the outside of the LiDAR device, a detecting optic module configured to guide laser received from the outside of the LiDAR device to the laser detecting chip, an emitting optic holder located between the laser emitting chip and the emitting optic module, and an at least one emitting optic fixer located between the emitting optic holder and the emitting optic module, wherein the at least one emitting optic fixer is configured to fix a relative position between the laser emitting chip and the emitting optic module.
G01S 17/10 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement utilisant la transmission d'ondes à modulation d'impulsion interrompues
H01L 31/107 - Dispositifs sensibles au rayonnement infrarouge, visible ou ultraviolet caractérisés par une seule barrière de potentiel ou de surface la barrière de potentiel fonctionnant en régime d'avalanche, p.ex. photodiode à avalanche
G01S 7/4863 - Réseaux des détecteurs, p. ex. portes de transfert de charge
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G02B 7/00 - Montures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques
G02B 6/12 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques du genre à circuit intégré
According to one embodiment of the present invention, a method by which one or more processors process data acquired on the basis of a detection signal generated from a detector array including a plurality of detector units may comprise the steps of: generating, on the basis of detection signals generated from the detector array, a spatiotemporal dataset including a plurality of counting values - each of the plurality of counting values corresponding to one of the plurality of detector units and being addressed to at least one time bin; and processing the spatiotemporal dataset so as to generate distance information including a plurality of distance values corresponding to the plurality of detector units.
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G01S 17/10 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement utilisant la transmission d'ondes à modulation d'impulsion interrompues
G01S 17/894 - Imagerie 3D avec mesure simultanée du temps de vol sur une matrice 2D de pixels récepteurs, p. ex. caméras à temps de vol ou lidar flash
The present invention relates to a multi-channel lidar sensor module capable of measuring at least two target objects using one image sensor. The multi-channel lidar sensor module according to an embodiment of the present invention includes at least one pair of light emitting units configured to emit laser beams and a light receiving unit formed between the at least one pair of emitting units and configured to receive at least one pair of reflected laser beams which are emitted from the at least one pair of light emitting units and reflected by target objects.
G01S 7/48 - Détails des systèmes correspondant aux groupes , , de systèmes selon le groupe
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G01S 7/4861 - Circuits pour la détection, d'échantillonnage, d'intégration ou de lecture des circuits
G01S 17/10 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement utilisant la transmission d'ondes à modulation d'impulsion interrompues
G02B 26/02 - Dispositifs ou dispositions optiques pour la commande de la lumière utilisant des éléments optiques mobiles ou déformables pour commander l'intensité de la lumière
H04N 23/74 - Circuits de compensation de la variation de luminosité dans la scène en influençant la luminosité de la scène à l'aide de moyens d'éclairage
G06V 10/80 - Fusion, c.-à-d. combinaison des données de diverses sources au niveau du capteur, du prétraitement, de l’extraction des caractéristiques ou de la classification
Provided is a LiDAR (Light Detecting and Ranging) device for measuring distance using a laser, the LiDAR device including: a laser emitter configured to output the laser; a scanner configured to rotate around an axis of rotation, and be located at a reference measurement position and a scan position; a detector configured to detect the laser; and a controller configured to control the laser emitter and the detector, wherein the controller includes: a laser output controller configured to generate a trigger signal for controlling the laser emitter; and a detector controller configured to process a signal acquired from the detector and control the detector, wherein the detector controller includes: a correction signal calculator configured to calculate a correction signal to control a voltage applied to the detector; a distance offset calculator configured to calculate a distance offset; and a distance calculator configured to calculate a distance from an object.
A LIDAR performance evaluating apparatus of the present invention comprises: a first assembly for positioning a LIDAR to be measured; a second assembly comprising a reflective target mount to which at least one reflective target is attached; a distance adjustment driving portion which is operatively connected to at least one of the first assembly and the second assembly and transfers a driving force to at least one of the first assembly and the second assembly; and a passage guide portion to which at least one of the first assembly and the second assembly is attached and which guides and restricts a movement path of at least one of the first assembly and the second assembly.
A light detection and ranging (lidar) device includes: a lower base; an upper base; a laser emitting unit for emitting a laser in a form of a point light source; a nodding mirror for transforming the laser in the form of the point light source to a line beam pattern which is perpendicular to the lower base, wherein the nodding mirror reflects the laser emitted from the laser emitting unit; a polygonal mirror for transforming the line beam pattern to a plane beam pattern and receiving a laser reflected from an object; and a sensor unit for receiving the laser reflected from the object via the polygonal mirror.
According to one embodiment of the present invention, a method for manufacturing a lidar device may be provided, the method comprising the steps of: providing a lidar module including a laser emitting module and a laser detecting module to a target area; adjusting, on the basis of first detecting data obtained from the laser detecting module, a relative position of a detecting optic module with respect to the laser detecting module; and adjusting, on the basis of image data obtained from at least one image sensor, a relative position of an emitting optic module with respect to the laser emitting module.
H01L 31/02 - Dispositifs à semi-conducteurs sensibles aux rayons infrarouges, à la lumière, au rayonnement électromagnétique d'ondes plus courtes, ou au rayonnement corpusculaire, et spécialement adaptés, soit comme convertisseurs de l'énergie dudit rayonnement e; Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives; Leurs détails - Détails
The present invention is related to a Light Detecting And Ranging (LiDAR) device configured to measure a distance using a laser, the LiDAR device including: a first laser emitting unit configured to output a first laser; a second laser emitting unit configured to output a second laser; a scanning unit configured to form a first field of view (FOV) using the first laser and a second FOV using the second laser; and a detecting unit configured to measure a distance to an object using the first and second lasers.
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G01S 17/08 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement
34.
METHOD FOR GENERATING INTENSITY INFORMATION HAVING EXTENDED EXPRESSION RANGE BY REFLECTING GEOMETRIC CHARACTERISTIC OF OBJECT, AND LIDAR APPARATUS PERFORMING SAME METHOD
According to an embodiment, there may be provided a method for processing point data obtained from a LiDAR apparatus, the LiDAR data processing method comprising the steps of: obtaining point cloud data including a plurality of pieces of point data for a plurality of detection points; and generating an image for the plurality of detection points, on the basis of the point cloud data, wherein each of the plurality of pieces of point data includes location information for a detection point and geometrically reinforced intensity for the detection point, and the geometrically reinforced intensity is generated on the basis of a combination of a reflection parameter related to the amount of light scattered at the detection point and a geometry parameter based on a geometric characteristic of the detection point.
A LiDAR device including a emitting unit configured to emit a laser, a detecting unit configured to detect the laser, and a controller configured to control the emitting unit and the detecting unit, wherein the controller is configured to operate the LiDAR device at in at least a first operation mode or a second operation mode in which power consumption per unit time is lower than that of the first operation mode, and wherein the controller is configured to switch an operation mode of the LiDAR device from the first operation mode to the second operation mode when the controller receives a first trigger signal from a first device, and switch the operation mode of the LiDAR device from the second operation mode to the first operation mode when the controller receives a second trigger signal from the first device.
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
B60R 16/023 - Circuits électriques ou circuits de fluides spécialement adaptés aux véhicules et non prévus ailleursAgencement des éléments des circuits électriques ou des circuits de fluides spécialement adapté aux véhicules et non prévu ailleurs électriques pour la transmission de signaux entre des parties ou des sous-systèmes du véhicule
G01S 17/89 - Systèmes lidar, spécialement adaptés pour des applications spécifiques pour la cartographie ou l'imagerie
G01S 17/931 - Systèmes lidar, spécialement adaptés pour des applications spécifiques pour prévenir les collisions de véhicules terrestres
36.
LIDAR Device Having a Smart Power Management System And an Operating Method of the LIDAR Device Implementing the Smart Power Management System
a LiDAR device including a laser emitting unit configured to emit laser, a laser detecting unit configured to detect laser emitted from the laser emitting unit and a controller configured to operate the LiDAR device in a first operation mode and a second operation mode in which a power consumption per unit time is lower than a power consumption per unit time of the first operation mode.
According to an embodiment of the present invention, a LiDAR device may comprise: a laser output unit for outputting a first laser at a first time point, a second laser at a second time point, and a third laser at a third time point; a detecting unit for detecting at least a part of the first laser at a first detecting time point, at least a part of the second laser at a second detecting time point, and at least a part of the third laser at a third detecting time point, to generate multiple output signals; and a processor for determining the characteristics of the object on the basis of the histogram which comprises a first data set based on an output signal from the detecting unit generated during a first time interval, a second data set based on an output signal from the detecting unit generated during a second time interval, and a third data set based on an output signal from the detecting unit generated during a third time interval.
G01S 7/4865 - Mesure du temps de retard, p. ex. mesure du temps de vol ou de l'heure d'arrivée ou détermination de la position exacte d'un pic
G01S 7/4914 - Réseaux des détecteurs, p. ex. portes de transfert de charge
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G01S 17/931 - Systèmes lidar, spécialement adaptés pour des applications spécifiques pour prévenir les collisions de véhicules terrestres
G01S 17/08 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement
G02B 7/18 - Montures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques pour prismesMontures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques pour miroirs
G02B 7/02 - Montures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques pour lentilles
A LiDAR device for determining a distance information of an object, the LiDAR device comprising: a laser emitting unit configured to emit a laser aperiodically at a controlled emitting time; a detecting unit configured to detect a laser which is emitted from the laser emitting unit and reflected by the object aperiodically during at a controlled detecting window, and to generate detecting signals; and a processor configured to control the laser emitting unit to emit at least a first laser at a first emitting time, a second laser at a second emitting time and a third laser at a third emitting time. A first time gap between the first emitting time and the second emitting time is different from a second time gap between the second emitting time and the third emitting time.
G01S 17/894 - Imagerie 3D avec mesure simultanée du temps de vol sur une matrice 2D de pixels récepteurs, p. ex. caméras à temps de vol ou lidar flash
G01S 17/10 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement utilisant la transmission d'ondes à modulation d'impulsion interrompues
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G01S 7/4863 - Réseaux des détecteurs, p. ex. portes de transfert de charge
A LiDAR device comprising: a transmission module including a laser emitting array and a first lens assembly, wherein the laser emitting array is configured to emit a plurality of lasers at a first wavelength and wherein the first lens assembly is configured to steer the plurality of lasers at different angles within a first angle range; a reception module including a laser detecting array and a second lens assembly, wherein the laser detecting array includes at least two detectors for detecting at least a portion of the plurality of lasers and wherein the second lens assembly is configured to distribute the plurality of lasers to the at least two detectors; wherein the second lens assembly comprise: at least four lens layers including a first lens layer, a second lens layer, a third lens layer and a fourth lens layer; at least two gap layers including a first gap layer and a second gap layer; and a filter layer located in the first gap layer.
An array-based light detection and ranging (LiDAR) unit includes an array of emitter/detector sets configured to cover a field of view for the unit. Each emitter/detector set emits and receives light energy on a specific coincident axis unique for that emitter/detector set. A control system coupled to the array of emitter/detector sets controls initiation of light energy from each emitter and processes time of flight information for light energy received on the coincident axis by the corresponding detector for the emitter/detector set. The time of flight information provides imaging information corresponding to the field of view. Interference among light energy is reduced with respect to detectors in the LiDAR unit not corresponding to the specific coincident axis, and with respect to other LiDAR units and ambient sources of light energy. In one embodiment, multiple array-based LiDAR units are used as part of a control system for an autonomous vehicle.
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G01S 7/4863 - Réseaux des détecteurs, p. ex. portes de transfert de charge
G01S 7/4865 - Mesure du temps de retard, p. ex. mesure du temps de vol ou de l'heure d'arrivée ou détermination de la position exacte d'un pic
G01S 17/10 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement utilisant la transmission d'ondes à modulation d'impulsion interrompues
G01S 17/93 - Systèmes lidar, spécialement adaptés pour des applications spécifiques pour prévenir les collisions
Sharing sensor data of a first device with a second device includes obtaining a set of point data from at least one of a sensors located in the first device, generating a first property data of the first subset of point data based on the first subset of point data, generating a sharing data including at least a portion of the first subset of point data and the first property data, and transmitting the sharing data to the second device. If a class of a first object included in the class information a class in which personal information must be protected, a content of the sharing data includes a privacy protection data in which the first subset of point data is processed such that personal information of the first object does not identified by the second device.
H04W 4/40 - Services spécialement adaptés à des environnements, à des situations ou à des fins spécifiques pour les véhicules, p. ex. communication véhicule-piétons
H04W 4/38 - Services spécialement adaptés à des environnements, à des situations ou à des fins spécifiques pour la collecte d’informations de capteurs
G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès
Sharing sensor data between a first device and a second device comprising obtaining a set of point data from at least one of sensors located in the first device, determining a property data of the subset of point data based on the subset of point data, generating a first sharing data for sharing with the second device based on the property data, transmitting the sharing data to the second device, identifying an occurrence of an event at a first time point, and generating a second sharing data different from the first sharing data. A content of the second sharing data includes at least a portion of the set of point data obtained within a first time period including the first time point.
B60W 60/00 - Systèmes d’aide à la conduite spécialement adaptés aux véhicules routiers autonomes
H04W 4/40 - Services spécialement adaptés à des environnements, à des situations ou à des fins spécifiques pour les véhicules, p. ex. communication véhicule-piétons
G08G 1/00 - Systèmes de commande du trafic pour véhicules routiers
G06V 20/56 - Contexte ou environnement de l’image à l’extérieur d’un véhicule à partir de capteurs embarqués
H04W 4/38 - Services spécialement adaptés à des environnements, à des situations ou à des fins spécifiques pour la collecte d’informations de capteurs
G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès
A method for sharing sensor data between a first device and a second device, according to an embodiment, may be provided, the method for sharing sensor data comprising the steps of: obtaining, by a controller included in the first device, a point data set included in the sensor data from at least one sensor arranged in the first device; generating, by the controller, first attribute data of a first sub-point data set, on the basis of the first sub-point data set; generating, by the controller, sharing data including at least a part of the first attribute data and first sub-point data set; and transmitting, by the controller, the sharing data to the second device.
B60W 40/02 - Calcul ou estimation des paramètres de fonctionnement pour les systèmes d'aide à la conduite de véhicules routiers qui ne sont pas liés à la commande d'un sous-ensemble particulier liés aux conditions ambiantes
B60W 60/00 - Systèmes d’aide à la conduite spécialement adaptés aux véhicules routiers autonomes
A LiDAR device of the present invention comprises: a transmission module comprising a laser output array for outputting a plurality of lasers at a first wavelength and a first lens assembly for irradiating the plurality of lasers at different angles within a viewing angle range; and a reception module comprising a laser detecting array including at least two detectors for detecting the plurality of lasers and a second lens assembly for distributing the plurality of lasers to at least two different detectors, wherein the second lens assembly comprises at least four lens layers including a first lens layer, a second lens layer, a third lens layer, and a fourth lens layer, and at least two gap layers including a first gap layer and a second gap layer arranged among the at least four lens layers.
A LiDAR device comprising: a transmission module including a laser emitting array and a first lens assembly, wherein the laser emitting array is configured to emit a plurality of lasers at a first wavelength and wherein the first lens assembly is configured to steer the plurality of lasers at different angles within a first angle range; a reception module including a laser detecting array and a second lens assembly, wherein the laser detecting array includes at least two detectors for detecting at least a portion of the plurality of lasers and wherein the second lens assembly is configured to distribute the plurality of lasers to the at least two detectors; wherein the second lens assembly comprise: at least four lens layers including a first lens layer, a second lens layer, a third lens layer and a fourth lens layer; at least two gap layers including a first gap layer and a second gap layer; and a filter layer located in the first gap layer.
The LIDAR device of the present invention may comprise: an emitter array including a first emitter and a second emitter for outputting laser beams; a detector array including a first detector for receiving the laser beam reflected from a first region and a second detector for receiving the laser beam reflected from a second region; and a processor for determining the characteristics of the first region and the second region on the basis of a histogram in which output signals from the detector array are accumulated.
According to an aspect of the present disclosure, provided is a shared vehicle service providing method based on a shared vehicle management server communicating with a shared vehicle and a user device. Also provided is a shared vehicle service providing method for managing an article of a shared vehicle user on the basis of a shared vehicle management server. More specifically, provided is a shared vehicle service providing method in which a shared vehicle management server manages dispatch of a shared vehicle and an article of a user on the basis of data acquired from the shared vehicle and a user device.
G06Q 30/016 - Fourniture d’une assistance aux clients, p. ex. pour assister un client dans un lieu commercial ou par un service d’assistance après-vente
B60W 60/00 - Systèmes d’aide à la conduite spécialement adaptés aux véhicules routiers autonomes
G08G 1/133 - Systèmes de commande du trafic pour véhicules routiers indiquant la position de véhicules, p. ex. de véhicules à horaire déterminé à l'intérieur du véhicule
H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
G01C 21/34 - Recherche d'itinéraireGuidage en matière d'itinéraire
G08G 1/00 - Systèmes de commande du trafic pour véhicules routiers
48.
Laser emitting unit and LiDAR device using the same
A vertical cavity surface emitting laser (VCSEL) array, comprising: a first sub-array includes a plurality of VCSEL units arranged along a first axis, and wherein the first sub-array includes: a first VCSEL unit includes a first upper contact and a first bottom contact; and a second VCSEL unit includes a second upper contact and a second bottom contact; a first contact electrically connected to the first upper contact and the second bottom contact; and a second contact electrically connected to the second upper contact and the first bottom contact, wherein the first VCSEL unit is operated when a first voltage is applied to the first contact and a second voltage smaller than the first voltage is applied to the second contact, and wherein the second VCSEL unit is operated when the second voltage is applied to the first contact and the first voltage is applied to the second contact.
H01S 5/10 - Structure ou forme du résonateur optique
H01S 5/183 - Lasers à émission de surface [lasers SE], p. ex. comportant à la fois des cavités horizontales et verticales comportant uniquement des cavités verticales, p. ex. lasers à émission de surface à cavité verticale [VCSEL]
H01S 5/42 - Réseaux de lasers à émission de surface
49.
Shared vehicle service providing method performed by server communicating with user device of passenger and autonomous vehicle
According to an aspect of the present disclosure, provided is a shared vehicle service providing method based on a shared vehicle management server communicating with a shared vehicle and a user device. Also provided is a shared vehicle service providing method for managing an article of a shared vehicle user on the basis of a shared vehicle management server. More specifically, provided is a shared vehicle service providing method in which a shared vehicle management server manages dispatch of a shared vehicle and an article of a user on the basis of data acquired from the shared vehicle and a user device.
B60W 60/00 - Systèmes d’aide à la conduite spécialement adaptés aux véhicules routiers autonomes
G08G 1/133 - Systèmes de commande du trafic pour véhicules routiers indiquant la position de véhicules, p. ex. de véhicules à horaire déterminé à l'intérieur du véhicule
H04L 29/08 - Procédure de commande de la transmission, p.ex. procédure de commande du niveau de la liaison
G01C 21/34 - Recherche d'itinéraireGuidage en matière d'itinéraire
G08G 1/00 - Systèmes de commande du trafic pour véhicules routiers
A LIDAR device according to an embodiment may comprise: a first emitting unit including a first emitting group forming a first emitting viewing angle and a second emitting group forming a second emitting viewing angle; a second emitting unit including a third emitting group which forms the first emitting viewing angle or a third emitting viewing angle greater than the second emitting viewing angle; and a detecting unit including a first detector which has a first detecting viewing angle and receives a laser output from the first emitting group, and a second detector which has a second detecting viewing angle and receives a laser output from the second emitting group.
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G01S 7/4863 - Réseaux des détecteurs, p. ex. portes de transfert de charge
H01S 5/183 - Lasers à émission de surface [lasers SE], p. ex. comportant à la fois des cavités horizontales et verticales comportant uniquement des cavités verticales, p. ex. lasers à émission de surface à cavité verticale [VCSEL]
A lidar device for measuring distance according to the present invention comprises a laser output unit for outputting laser, and a sensor unit for acquiring the laser output by the laser unit, wherein the laser output unit comprises: a laser output array comprising a first laser output unit, a second laser output unit and a third laser output unit, each comprising one or more laser output elements; and a prism array for steering the laser output from the laser output array. The prism array comprises: a first prism element for steering the laser from the first laser output unit and second laser output unit; a second prism element for steering the laser from the third laser output unit; a third prism element for steering the laser from the first laser output unit and third laser output unit; and a fourth prism element for steering the laser from the second laser output unit. The distance between first and third locations on the third prism element is smaller than the distance between the first laser output unit and third laser output unit, the first location being the location on the third prism element from which the first laser from the first laser output unit is irradiated, and the third location being the location on the third prism element from which the third laser from the third laser output unit is irradiated.
Provided is an object recognition device for performing object recognition on a field of view (FoV). The object recognition device includes a light detection and ranging (LiDAR) data acquisition module configured to acquire data for the FoV from a sensor configured to project the FoV with a laser and receive reflected light, and a control module configured to perform object recognition on an object of interest in the FoV using an artificial neural network, wherein the control module includes a region of interest extraction module configured to acquire region of interest data based on acquired intensity data for the FoV, and an object recognition module configured to acquire object recognition data using an artificial neural network, and recognize the object of interest for the FoV.
G06V 20/59 - Contexte ou environnement de l’image à l’intérieur d’un véhicule, p. ex. concernant l’occupation des sièges, l’état du conducteur ou les conditions de l’éclairage intérieur
G06V 10/22 - Prétraitement de l’image par la sélection d’une région spécifique contenant ou référençant une formeLocalisation ou traitement de régions spécifiques visant à guider la détection ou la reconnaissance
G06V 20/56 - Contexte ou environnement de l’image à l’extérieur d’un véhicule à partir de capteurs embarqués
G06T 5/40 - Amélioration ou restauration d'image utilisant des techniques d'histogrammes
G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques
The present invention relates a lidar device that measures distance using a laser, the lidar device comprising: a first laser output unit for outputting a first laser; a second laser output unit for outputting a second laser; a scanning for forming a first viewing angle using the first laser and forming a second viewing angle using the second laser; and a detector for measuring the distance to an object using the first and second lasers.
G02B 7/182 - Montures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques pour prismesMontures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques pour miroirs pour miroirs
54.
Laser emitting unit and lidar device using the same
A vertical cavity surface emitting laser (VCSEL) array, comprising: a first sub-array includes a plurality of VCSEL units arranged along a first axis, and wherein the first sub-array includes: a first VCSEL unit includes a first upper contact and a first bottom contact; and a second VCSEL unit includes a second upper contact and a second bottom contact; a first contact electrically connected to the first upper contact and the second bottom contact; and a second contact electrically connected to the second upper contact and the first bottom contact, wherein the first VCSEL unit is operated when a first voltage is applied to the first contact and a second voltage smaller than the first voltage is applied to the second contact, and wherein the second VCSEL unit is operated when the second voltage is applied to the first contact and the first voltage is applied to the second contact.
H01S 5/10 - Structure ou forme du résonateur optique
H01S 5/183 - Lasers à émission de surface [lasers SE], p. ex. comportant à la fois des cavités horizontales et verticales comportant uniquement des cavités verticales, p. ex. lasers à émission de surface à cavité verticale [VCSEL]
G01S 17/08 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement
A vertical cavity surface emitting laser (VCSEL) array of the present invention comprises: a first sub-array including a plurality of VCSEL units arranged along a first axis; a first VCSEL unit which includes a first upper contact and a first lower contact and which is included in the first sub-array; a second VCSEL unit which includes a second upper contact and a second lower contact and which is included in the first sub-array; a first contact electrically connected to the first upper contact and the second lower contact; and a second contact electrically connected to the second upper contact and the first lower contact, wherein the first VCSEL unit can operate when a first voltage is applied to the first contact and a second voltage that is lower than the first voltage is applied to the second contact, and the second VCSEL unit can operate when the second voltage is applied to the first contact and the first voltage is applied to the second contact.
H01S 5/42 - Réseaux de lasers à émission de surface
H01S 5/187 - Lasers à émission de surface [lasers SE], p. ex. comportant à la fois des cavités horizontales et verticales comportant uniquement des cavités horizontales, p. ex. lasers à émission de surface à cavité horizontale [HCSEL] à réflexion de Bragg
A lidar device comprises: a laser emitting unit for including a plurality of VCSEL elements emitting a laser beam; a metasurface for including a plurality of beam steering cells arranged in a form of two-dimensional array by a row direction and a column direction, wherein the plurality of beam steering cells guide the laser beam by using nanopillars; wherein the nanopillars included in the plurality of beam steering cells form a subwavelength pattern, wherein the increase of an attribute related to at least one of the width, height, and number per unit length of the nanopillars is repetitive along the direction from the center of the metasurface to the position of the row corresponding to the plurality of beam steering cells.
H01S 5/183 - Lasers à émission de surface [lasers SE], p. ex. comportant à la fois des cavités horizontales et verticales comportant uniquement des cavités verticales, p. ex. lasers à émission de surface à cavité verticale [VCSEL]
The present invention relates to a light detecting and ranging (LiDAR) device for obtaining information on a distance from an object using laser light. A light detection and ranging (LiDAR) device according to the present invention may include: a laser emitting unit configured to emit a laser, a first scanner configured to obtain the laser emitted by the laser emitting unit and continuously change a travel path of the laser so as to extend a irradiation area to a line shape, a second scanner configured to obtain and continuously changes the travel path of the laser projected from the first scanner which has a line-shaped irradiation area, so as to extend the irradiation area to a plane shape, and a sensor configured to detect a laser reflected from an object located in a scanning area by the laser projected from the second scanner, wherein the first scanner comprises nodding mirror which extend the irradiation area to a line shape by changing a travel path of the laser while nodding within a preset angle range, and wherein the second scanner comprises a rotating polygon mirror which changes the travel path of the laser which has the line-shaped irradiation area by rotating on one axis so as to extend the irradiation area to a plane shape.
09 - Appareils et instruments scientifiques et électriques
Produits et services
Range sensor; LIDAR sensor for measuring distance; optical sensors; motion detecting sensors; LIDAR sensor for navigational purposes for drones; optical measurement apparatus based on LIDAR sensor; measuring instruments based on LIDAR sensor; laser sensor; LIDAR sensor for detecting motion and object for robots; object detecting sensors; LIDAR sensor for measuring speed; LIDAR sensor for measuring position; LIDAR sensor for detecting motion and object for self-driving; LIDAR sensor for precision measuring apparatus; LIDAR sensor for precision measuring apparatus for vehicles; measuring sensors; hybrid sensors; radar systems; telemetry apparatus and devices; radar detectors; solid-state LIDAR sensor; hybrid LIDAR sensor; software; self-driving software; self-driving software based on three-dimensional point cloud.
09 - Appareils et instruments scientifiques et électriques
Produits et services
Range sensor for measuring distance, measuring speed, measuring position, measuring climate, detecting objects, and detecting walkers, not for medical use; LIDAR sensor for measuring distance; optical sensors; motion detecting sensors; LIDAR sensor for navigational purposes for drones; Optical measurement apparatus based on LIDAR sensor, namely, distance, speed, direction, position, height, motion, temperature, climate, and obstacle sensor; Measuring instruments based on LIDAR sensor, namely, distance, speed, direction, position, height, motion, temperature, climate, and obstacle sensor; laser measuring systems, namely, laser sensor; LIDAR sensor for detecting motion and object for robots; object detecting sensors, namely, proximity sensors; LIDAR sensor for measuring speed; LIDAR sensor for measuring position; LIDAR sensor for detecting motion and object for self-driving; LIDAR sensor for precision measuring apparatus; LIDAR sensor for precision measuring apparatus for vehicles; Measuring sensors for measuring distance, speed, direction, position, height, temperature, chemical substances, and climate, not for medical use; Hybrid sensors, namely, electric sensors and motion sensors; Radar systems, namely, radar apparatus and detectors; Telemetric apparatus and instruments, namely, telemeters; radar detectors; Solid-state LIDAR sensor; Hybrid LIDAR sensor combined with a motor-method LIDAR and a fixed type LIDAR device; Downloadable software enabling the operation of LIDAR sensor; Recorded software enabling the operation of LIDAR sensor; Downloadable software for controlling operation of a self-driving vehicle; Recorded software for controlling operation of a self-driving vehicle; Downloadable software for controlling operation of a self-driving vehicle based on three-dimensional point cloud; Recorded software for controlling operation of a self-driving vehicle based on three-dimensional point cloud
A light detection and ranging (lidar) device includes: a lower base; an upper base; a laser emitting unit for emitting a laser in a form of a point light source; a nodding mirror for transforming the laser in the form of the point light source to a line beam pattern which is perpendicular to the lower base, wherein the nodding mirror reflects the laser emitted from the laser emitting unit; a polygonal mirror for transforming the line beam pattern to a plane beam pattern and receiving a laser reflected from an object; and a sensor unit for receiving the laser reflected from the object via the polygonal mirror.
The present invention relates to a LiDAR device. A LiDAR device according to one aspect of the present invention comprises a laser output unit and a metasurface, which guides a laser beam by using nanocolumns and includes a plurality of beam steering cells arranged in a two-dimensional array in row and column directions, wherein the nanocolumns belonging to the plurality of beam steering cells have, from the center of the metasurface, a subwavelength pattern in which an increase in characteristics related to at least one from among the width, height, and number per unit length of the nanocolumns is repetitive in a positional direction of each of rows to which the plurality of beam steering cells belongs.
A lidar device comprises: a laser emitting unit for including a plurality of VCSEL elements emitting a laser beam; a metasurface for including a plurality of beam steering cells arranged in a form of two-dimensional array by a row direction and a column direction, wherein the plurality of beam steering cells guide the laser beam by using nanopillars; wherein the nanopillars included in the plurality of beam steering cells form a subwavelength pattern, wherein the increase of an attribute related to at least one of the width, height, and number per unit length of the nanopillars is repetitive along the direction from the center of the metasurface to the position of the row corresponding to the plurality of beam steering cells.
A lidar device comprises: a laser emitting unit for including a plurality of VCSEL elements emitting a laser beam; a metasurface for including a plurality of beam steering cells arranged in a form of two-dimensional array by a row direction and a column direction, wherein the plurality of beam steering cells guide the laser beam by using nanopillars; wherein the nanopillars included in the plurality of beam steering cells form a subwavelength pattern, wherein the increase of an attribute related to at least one of the width, height, and number per unit length of the nanopillars is repetitive along the direction from the center of the metasurface to the position of the row corresponding to the plurality of beam steering cells.
G01C 3/08 - Utilisation de détecteurs électriques de radiations
G01S 7/4861 - Circuits pour la détection, d'échantillonnage, d'intégration ou de lecture des circuits
H01S 5/183 - Lasers à émission de surface [lasers SE], p. ex. comportant à la fois des cavités horizontales et verticales comportant uniquement des cavités verticales, p. ex. lasers à émission de surface à cavité verticale [VCSEL]
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
A lidar device comprises: a laser emitting unit for including a plurality of VCSEL elements emitting a laser beam; a metasurface for including a plurality of beam steering cells arranged in a form of two-dimensional array by a row direction and a column direction, wherein the plurality of beam steering cells guide the laser beam by using nanopillars; wherein the nanopillars included in the plurality of beam steering cells form a subwavelength pattern, wherein the increase of an attribute related to at least one of the width, height, and number per unit length of the nanopillars is repetitive along the direction from the center of the metasurface to the position of the row corresponding to the plurality of beam steering cells.
G01C 3/08 - Utilisation de détecteurs électriques de radiations
G01S 7/4861 - Circuits pour la détection, d'échantillonnage, d'intégration ou de lecture des circuits
H01S 5/183 - Lasers à émission de surface [lasers SE], p. ex. comportant à la fois des cavités horizontales et verticales comportant uniquement des cavités verticales, p. ex. lasers à émission de surface à cavité verticale [VCSEL]
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G01S 17/08 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement
G02B 1/00 - Éléments optiques caractérisés par la substance dont ils sont faitsRevêtements optiques pour éléments optiques
A light detection and ranging (lidar) device includes: a lower base; an upper base; a laser emitting unit for emitting a laser in a form of a point light source; a nodding mirror for transforming the laser in the form of the point light source to a line beam pattern which is perpendicular to the lower base, wherein the nodding mirror reflects the laser emitted from the laser emitting unit; a polygonal mirror for transforming the line beam pattern to a plane beam pattern and receiving a laser reflected from an object; and a sensor unit for receiving the laser reflected from the object via the polygonal mirror.
The present invention relates to a multi-channel lidar sensor module capable of measuring at least two target objects using one image sensor. The multi-channel lidar sensor module according to an embodiment of the present invention includes at least one pair of light emitting units configured to emit laser beams and a light receiving unit formed between the at least one pair of emitting units and configured to receive at least one pair of reflected laser beams which are emitted from the at least one pair of light emitting units and reflected by target objects.
G01C 25/00 - Fabrication, étalonnage, nettoyage ou réparation des instruments ou des dispositifs mentionnés dans les autres groupes de la présente sous-classe
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G01S 7/4861 - Circuits pour la détection, d'échantillonnage, d'intégration ou de lecture des circuits
G01S 17/10 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement utilisant la transmission d'ondes à modulation d'impulsion interrompues
H04N 5/235 - Circuits pour la compensation des variations de la luminance de l'objet
G02B 26/02 - Dispositifs ou dispositions optiques pour la commande de la lumière utilisant des éléments optiques mobiles ou déformables pour commander l'intensité de la lumière
An array-based light detection and ranging (LiDAR) unit includes an array of emitter/detector sets configured to cover a field of view for the unit. Each emitter/detector set emits and receives light energy on a specific coincident axis unique for that emitter/detector set. A control system coupled to the array of emitter/detector sets controls initiation of light energy from each emitter and processes time of flight information for light energy received on the coincident axis by the corresponding detector for the emitter/detector set. The time of flight information provides imaging information corresponding to the field of view. Interference among light energy is reduced with respect to detectors in the LiDAR unit not corresponding to the specific coincident axis, and with respect to other LiDAR units and ambient sources of light energy. In one embodiment, multiple array-based LiDAR units are used as part of a control system for an autonomous vehicle.
G01S 7/48 - Détails des systèmes correspondant aux groupes , , de systèmes selon le groupe
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G01S 17/10 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement utilisant la transmission d'ondes à modulation d'impulsion interrompues
G01S 17/93 - Systèmes lidar, spécialement adaptés pour des applications spécifiques pour prévenir les collisions
G01S 7/4863 - Réseaux des détecteurs, p. ex. portes de transfert de charge
G01S 7/4865 - Mesure du temps de retard, p. ex. mesure du temps de vol ou de l'heure d'arrivée ou détermination de la position exacte d'un pic
The present invention relates to a light detecting and ranging (LiDAR) device for obtaining information on a distance from an object using laser light. A light detection and ranging (LiDAR) device according to the present invention may include: a laser emitting unit configured to emit a laser, a first scanner configured to obtain the laser emitted by the laser emitting unit and continuously change a travel path of the laser so as to extend a irradiation area to a line shape, a second scanner configured to obtain and continuously changes the travel path of the laser projected from the first scanner which has a line-shaped irradiation area, so as to extend the irradiation area to a plane shape, and a sensor configured to detect a laser reflected from an object located in a scanning area by the laser projected from the second scanner, wherein the first scanner comprises nodding mirror which extend the irradiation area to a line shape by changing a travel path of the laser while nodding within a preset angle range, and wherein the second scanner comprises a rotating polygon mirror which changes the travel path of the laser which has the line-shaped irradiation area by rotating on one axis so as to extend the irradiation area to a plane shape.
The present invention relates to a lidar device, and a lidar device according to one aspect of the present invention comprises: a lower base; an upper base; a laser output unit for emitting a laser in the form of a point light source; a nodding mirror which reflects the laser emitted from the laser output unit and forms a line beam pattern, from the point light source laser; a polygon mirror which forms a plain beam pattern from the line beam pattern laser, and receives a laser reflected from an object; and a sensor unit which receives a laser reflected from the object, via the polygon mirror.
The present invention relates to a distance calculation method which comprises the steps of: outputting a laser; obtaining the time point of the output; irradiating the outputted laser via a plurality of channels; receiving the laser, among the plurality of irradiated lasers, which has been reflected from an object; obtaining the time point of the reception; calculating the travel distance of the laser on the basis of the output time point and the reception time point; and, on the basis of the travel distance and rotation angle, obtaining the distance to the object from a reference point that is defined on the basis of virtual lines which extend at least some of the plurality of channels backward in the progression direction of the laser.
G01S 17/08 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G02B 7/182 - Montures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques pour prismesMontures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques pour miroirs pour miroirs
G01S 17/88 - Systèmes lidar, spécialement adaptés pour des applications spécifiques
G02B 5/09 - Miroirs à facettes multiples ou polygonales
G02B 26/12 - Systèmes de balayage utilisant des miroirs à facettes multiples
G02B 26/08 - Dispositifs ou dispositions optiques pour la commande de la lumière utilisant des éléments optiques mobiles ou déformables pour commander la direction de la lumière
A light detection and ranging (lidar) device includes: a lower base; an upper base; a laser emitting unit for emitting a laser in a form of a point light source; a nodding mirror for transforming the laser in the form of the point light source to a line beam pattern which is perpendicular to the lower base, wherein the nodding mirror reflects the laser emitted from the laser emitting unit; a polygonal mirror for transforming the line beam pattern to a plane beam pattern and receiving a laser reflected from an object; and a sensor unit for receiving the laser reflected from the object via the polygonal mirror.
The present invention relates to a lidar device for measuring distance using a laser. A lidar device, according to the present invention, comprises: a laser output unit for outputting a laser; a first scanning unit which expands an irradiation area into a line form by acquiring the laser outputted from the laser output unit; a second scanning unit which expands the irradiation area into a plane form by acquiring the laser irradiated from the first scanning unit; and a sensor unit which detects the laser reflected from an object, wherein the first scanning unit may comprise a nodding mirror which nods in a pre-set angle range and expands the irradiation area of the laser to a line form, and the second scanning unit may comprise a rotating polygon mirror which expands the irradiation area of the laser to a plane form by rotating with respect to a single axis.
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G01S 17/08 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement
G02B 27/00 - Systèmes ou appareils optiques non prévus dans aucun des groupes ,
G02B 7/182 - Montures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques pour prismesMontures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques pour miroirs pour miroirs
G01S 17/88 - Systèmes lidar, spécialement adaptés pour des applications spécifiques
G02B 5/09 - Miroirs à facettes multiples ou polygonales
G02B 26/12 - Systèmes de balayage utilisant des miroirs à facettes multiples
G02B 26/08 - Dispositifs ou dispositions optiques pour la commande de la lumière utilisant des éléments optiques mobiles ou déformables pour commander la direction de la lumière
09 - Appareils et instruments scientifiques et électriques
Produits et services
Range sensor for measuring distance, measuring speed, measuring position, measuring climate, detecting objects, and detecting walkers, not for medical use; LIDAR sensor for measuring distance, measuring speed, measuring position, measuring climate, detecting objects, and detecting walkers; light sensors, namely, electric sensors for detecting and measuring lights; optical sensors; optical measurement apparatus for measuring distance, speed, direction, position, height, temperature, chemical substances, and climate, not for medical use; motion detecting sensors; LIDAR sensor; measuring instruments based on LIDAR sensor, namely, distance, speed, direction, position, height, motion, temperature, climate, and obstacle sensor; optical measurement apparatus based on LIDAR sensor, namely, distance, speed, direction, position, height, motion, temperature, climate, and obstacle sensor; Radar systems, namely, radar apparatus and detectors; Laser measuring systems, namely, laser senor; object detecting sensors, namely, proximity sensors; telemetric apparatus and instruments, namely, telemeters; sensors for determining position, velocity, acceleration and temperature; infrared sensors; electronic sensors for measuring lights and determining position, velocity, acceleration and temperature; LIDAR sensor for vehicles, airplanes, ships, drones, robots, smart factories, screen doors, self-driving, and security; Measuring instruments for measuring distance, speed, direction, position, height, temperature, chemical substances, and climate, not for medical use; measuring sensors for measuring distance, speed, direction, position, height, temperature, chemical substances, and climate, not for medical use; Hybrid sensors, namely, electric sensors and motion sensors
The present invention relates to a multi-channel LIDAR sensor module capable of measuring at least two objects with a single image sensor. The multi-channel LIDAR sensor module according to an embodiment of the present invention, comprises: at least one pair of light-emitting parts for emitting a laser beam; and a light-receiving part, formed between the at least one pair of light-emitting parts, for receiving at least one pair of reflected laser beams emitted from the at least one pair of light-emitting parts and reflected by an object.
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G02B 26/02 - Dispositifs ou dispositions optiques pour la commande de la lumière utilisant des éléments optiques mobiles ou déformables pour commander l'intensité de la lumière
The present invention relates to a hybrid LiDAR scanner capable of simultaneously measuring a short-distance area and a long-distance area with one LiDAR scanner. The hybrid LiDAR scanner according to an embodiment of the present invention comprises: a first LiDAR unit including a first multi-facet mirror comprising n reflecting mirrors; a second LiDAR unit including a second multi-facet mirror comprising fewer reflecting mirrors than the first multi-facet mirror; and a driving motor for coaxially rotating the first LiDAR unit and the second LiDAR unit.
09 - Appareils et instruments scientifiques et électriques
Produits et services
Laser sensor for measuring distance and detecting motions of individuals and objects by using laser; laser range finders; laser displacement sensor detectors; laser level measuring apparatus; radar altimeters; radar systems comprised of radar displays and radar antenna; radar apparatus; radar detectors; laser object detectors for use on vehicles, aircraft, marine vessels, robots, factory automation system, and industry safety and security system; laser measuring systems; range sensor, namely, LIDAR sensor; range finders; light sensors, namely, electric sensors for detecting and measuring lights; object detecting sensors, namely, LIDAR sensors; non-contact measuring apparatus, namely, LIDAR apparatus; non-contact optical sensors
Provided are an apparatus and a method for detecting an obstacle. The apparatus includes a light-emitting unit configured to emit a plane beam by converting a laser beam into the plane beam having a rectangular shape; a light reception unit configured to receive the laser beam which is emitted from the light-emitting unit and reflected from the obstacle; and a control unit configured to measure a distance to the obstacle by using the laser beam received in the light reception unit. Thus, an obstacle is detected by using the plane beam having a rectangular shape, so that the measurement range may be enlarged upwardly and downwardly.
The present invention relates to an obstacle sensing device and sensing method, the device comprising: a light-emitting unit for emitting a laser beam by converting the same into a planar beam having a square form; a light-receiving unit for receiving a laser beam returning when the laser beam emitted from the light-emitting unit is reflected by an obstacle; and a control unit for measuring the distance to the obstacle by using the laser beam received by the light-receiving unit, such that an obstacle is sensed by using a planar beam of a square form, thereby enabling a measurement range to be expanded in the vertical direction.
An array-based light detection and ranging (LiDAR) unit includes an array of emitter/detector sets configured to cover a field of view for the unit. Each emitter/detector set emits and receives light energy on a specific coincident axis unique for that emitter/detector set. A control system coupled to the array of emitter/detector sets controls initiation of light energy from each emitter and processes time of flight information for light energy received on the coincident axis by the corresponding detector for the emitter/detector set. The time of flight information provides imaging information corresponding to the field of view. Interference among light energy is reduced with respect to detectors in the LiDAR unit not corresponding to the specific coincident axis, and with respect to other LiDAR units and ambient sources of light energy. In one embodiment, multiple array-based LiDAR units are used as part of a control system for an autonomous vehicle.
G01S 7/48 - Détails des systèmes correspondant aux groupes , , de systèmes selon le groupe
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G01S 17/10 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement utilisant la transmission d'ondes à modulation d'impulsion interrompues
G01S 17/93 - Systèmes lidar, spécialement adaptés pour des applications spécifiques pour prévenir les collisions