A system and method to reboil a process or feed water stream in a distillation system does so in a liquid pool zone of a vessel as the stream is removed from a distillation column and comes into contact with a heating medium that is immiscible with and less volatile than the process stream. To keep the pool hot, the heating medium can be recirculated through a heater of a pump-around loop or a heater can be placed in the liquid pool. As the process stream is partially vaporized, any solids present in the process stream together with the unvaporized process or feed water stream move into the heating medium. These solids and unvaporized liquids may be further removed from the heating medium in the pool or in the pump-around loop. The vaporized stream is returned to the distillation column.
B01D 1/14 - Évaporation avec gaz ou vapeurs chauffés en contact avec le liquide
C02F 1/10 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par chauffage par distillation ou évaporation par contact direct avec un solide particulaire, ou un fluide, agissant comme agent de transfert de chaleur
B01D 3/32 - Autres caractéristiques de colonnes de fractionnement
B01D 3/34 - Distillation ou procédés d'échange apparentés dans lesquels des liquides sont en contact avec des milieux gazeux, p. ex. extraction avec une ou plusieurs substances auxiliaires
C02F 1/04 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par chauffage par distillation ou évaporation
2.
Salt removal and transport system and method for use in a mono ethylene glycol reclamation process
Systems and methods for removing solids from a process stream being fed into a flash separator include a solids fluidization device and a solids removal device. The solids fluidization device at the bottom end of the fluid column of the flash separator introduces a swirling motive fluid within the fluid column, while the solids removal device located above the solids fluidization device removes the slurry created by the swirling motive fluid. Systems and methods for fluidizing solids in the fluid column of a flash separator include a solids fluidization device that introduces a swirling motive fluid within the fluid column, means to limit the upward movement of the swirling motive fluid, such as a valve, and removing the solid slurry produced by the swirling motive fluid.
C07C 29/80 - SéparationPurificationStabilisationEmploi d'additifs par traitement physique par distillation
B01D 3/06 - Distillation par évaporation brusque (flash)
C07C 29/76 - SéparationPurificationStabilisationEmploi d'additifs par traitement physique
3.
System to reduce interface emulsion layer formation in an electrostatic dehydrator or desalter vessel through use of a low voltage electrostatic interface emulsion treatment system inside the vessel
A system for separating the components of an incoming oil-water mixture includes two electrode sets, one set arranged to apply an electrostatic field to an oil layer residing within a separator vessel and the other set arranged to apply an electrostatic field to the interface emulsion layer residing within the separator vessel. The first set of electrodes is in communication with a high voltage power source that ranges from 1 to 60 kV; the second set of electrodes is in communication with a low voltage power source that is no greater than 5 kV. Each set of electrodes may also be in communication with a second voltage source to provide increased power to promote effective coalescence. The system may also include power electronics to produce a variable amplitude and a variable frequency voltage supply to one or both electrode sets.
B03C 11/00 - Séparation par des champs électriques à haute tension, non prévue dans les autres groupes de la présente sous-classe
C02F 1/40 - Dispositifs pour séparer ou enlever les substances grasses ou huileuses, ou les matières flottantes similaires
C02F 1/463 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par des procédés électrochimiques par électrolyse par électrocoagulation
C02F 1/48 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout au moyen de champs magnétiques ou électriques
C10G 32/02 - Raffinage des huiles d'hydrocarbures par des moyens électriques ou magnétiques, par irradiation ou par utilisation de micro-organismes par des moyens électriques ou magnétiques
C10G 33/02 - Déshydratation ou désémulsification des huiles d'hydrocarbures par des moyens électriques ou magnétiques
C02F 103/28 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant du traitement de plantes ou de parties de celles-ci provenant de l'industrie du papier ou de la cellulose
C02F 103/30 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant de l'industrie textile
C02F 103/32 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant de l'industrie alimentaire, p. ex. eaux résiduaires de brasseries
C02F 103/36 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant de l'industrie chimique non prévue dans les groupes provenant de la fabrication de composés organiques
4.
System to reduce interface emulsion layer formation in an electrostatic dehydrator or desalter vessel through use of a low voltage electrostatic interface emulsion treatment system inside the vessel
A system for separating the components of an incoming oil-water mixture includes two electrode sets, one set arranged to apply an electrostatic field to an oil layer residing within a separator vessel and the other set arranged to apply an electrostatic field to the interface emulsion layer residing within the separator vessel. The first set of electrodes is in communication with a high voltage power source that ranges from 1 to 60 kV; the second set of electrodes is in communication with a low voltage power source that is no greater than 5 kV. Each set of electrodes may also be in communication with a second voltage source to provide increased power to promote effective coalescence. The system may also include power electronics to produce a variable amplitude and a variable frequency voltage supply to one or both electrode sets.
B01D 17/06 - Séparation de liquides les uns des autres par l'électricité
B03C 11/00 - Séparation par des champs électriques à haute tension, non prévue dans les autres groupes de la présente sous-classe
C02F 1/40 - Dispositifs pour séparer ou enlever les substances grasses ou huileuses, ou les matières flottantes similaires
C02F 1/463 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par des procédés électrochimiques par électrolyse par électrocoagulation
C02F 1/48 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout au moyen de champs magnétiques ou électriques
C10G 32/02 - Raffinage des huiles d'hydrocarbures par des moyens électriques ou magnétiques, par irradiation ou par utilisation de micro-organismes par des moyens électriques ou magnétiques
C10G 33/02 - Déshydratation ou désémulsification des huiles d'hydrocarbures par des moyens électriques ou magnétiques
C02F 103/28 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant du traitement de plantes ou de parties de celles-ci provenant de l'industrie du papier ou de la cellulose
C02F 103/30 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant de l'industrie textile
C02F 103/32 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant de l'industrie alimentaire, p. ex. eaux résiduaires de brasseries
C02F 103/36 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant de l'industrie chimique non prévue dans les groupes provenant de la fabrication de composés organiques
5.
Electrostatic technology system and process to dehydrate crude oil in a crude oil storage tank of a floating production storage and offloading installation
A process train for a floating production storage and offloading installation includes a crude oil storage tank equipped with at least one set of electrostatic internals. The set of electrostatic internals are arranged to provide a treatment flow path within the crude oil storage tank oblique to a longitudinal centerline of the crude oil storage tank and through an electric field provided by the set of electrostatic internals. Employing these electrostatic internals within the tank permits an allowable inlet water content into the tank of up to 80%, significantly reducing the required topside processing equipment. The process and system also includes, upstream of the tank, two separator vessels arranged in parallel so each receives a portion of an incoming oil-and-water stream, a flash vessel arranged downstream of the two separator vessels, and a degasser vessel. Downstream of the crude oil storage tank is an electrostatic treater.
C10G 31/06 - Raffinage des huiles d'hydrocarbures, en l'absence d'hydrogène, par des méthodes non prévues ailleurs par chauffage, refroidissement ou traitement par la pression
C10G 32/02 - Raffinage des huiles d'hydrocarbures par des moyens électriques ou magnétiques, par irradiation ou par utilisation de micro-organismes par des moyens électriques ou magnétiques
6.
Topside oil production equipment system for reduction in space and weight
A system and method for dehydrating crude oil on a floating production storage and offloading installation include a separator vessel to receive an incoming produced water stream, followed by a flash vessel, a treatment block, a crude oil storage tank, and an electrostatic treater. The treatment block includes a low pressure degasser followed by a compact electrostatic separator pre-treater or a compact electrostatic separator pre-treater followed by a low pressure degasser. The flash vessel and/or the low pressure degasser may employ an inlet cyclonic distributor and demisting cyclones, while the electrostatic treater may employ DUAL FREQUENCY® technology. The separator vessel may be a single horizontal two-phase separator/degasser or two vertical two-phase separator/degassers that operate in parallel with each receiving approximately 50 percent of the incoming produced water stream. The final outlet stream preferably contains no more than 0.5 BS&W and 285 milligrams per liter salt.
C10G 32/02 - Raffinage des huiles d'hydrocarbures par des moyens électriques ou magnétiques, par irradiation ou par utilisation de micro-organismes par des moyens électriques ou magnétiques
C10G 53/02 - Traitement des huiles d'hydrocarbures, en l'absence d'hydrogène, par plusieurs procédés de raffinage uniquement par plusieurs étapes en série
An acid gas purification system is described herein that includes a primary membrane system with a CO2- and H2S-enriched permeate stream effluent and a hydrocarbon stream effluent; a first compression stage arranged to receive the CO2- and H2S-enriched permeate stream and produce a compressed stream; and a cryogenic separation system to receive the compressed stream, the cryogenic separation system including a cooler followed by a fractionator, wherein the fractionator produces a CO2- and H2S liquid stream and a hydrocarbon gas stream.
B01D 53/22 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par diffusion
Crude oil storage tank with electrostatic internals to dehydrate crude oil within a process train of a floating production storage and offloading installation
A process train for a floating production storage and offloading installation includes a crude oil storage tank that is equipped with at least one electrostatic separator configured to subject the produced stream that enters the tank to an electric field. The electrostatic separator may include two inclined vessels containing electrostatic internals and in fluid communication with one another. Employing electrostatic separators within the tank can permit an allowable inlet water content into the tank of up to 80%, significantly reducing the required topside processing equipment.
A system and method arranged to treat a produced water stream used in chemical enhanced oil recovery. The produced water stream is exposed to ultraviolet light sources that provide a radiant energy dosage that destabilizes organics. The ultraviolet-radiated stream is then passed through an adsorbent polymer media. An oxidant may be added to the ultraviolet-radiated stream ahead of the adsorbent polymer media or to an effluent stream exiting the adsorbent polymer media.
C02F 1/78 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par oxydation au moyen d'ozone
C02F 1/467 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par des procédés électrochimiques par électrolyse par désinfection électrochimique
C02F 1/72 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par oxydation
10.
System and method to remove organic acid from a rich MEG stream by stripping
A system and method for removing acetic acid and other short chain fatty acids described as organic acid from a rich mono-ethylene glycol (“MEG”) solution does so by stripping the organic acid from the rich MEG solution by contacting the solution with a gas, the gas being nitrogen or a fuel gas such as methane; and stripping the organic acid from the gas by contacting the gas with a caustic solution such as a dilute sodium hydroxide solution. The stripping steps take place in respective stripping columns. A portion of the gas exiting the gas/organic acid stripping column can be recycled to the MEG/organic acid stripping column to reduce total gas usage. A portion of the waste stream exiting the gas/organic acid stripping column can be recycled back to the gas/organic acid stripping column to reduce the amount of caustic solution used as well as the amount of waste.
C07C 29/76 - SéparationPurificationStabilisationEmploi d'additifs par traitement physique
B01D 3/00 - Distillation ou procédés d'échange apparentés dans lesquels des liquides sont en contact avec des milieux gazeux, p. ex. extraction
B01D 53/00 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols
B01D 53/78 - Procédés en phase liquide avec un contact gaz-liquide
C10L 3/10 - Post-traitement de gaz naturel ou de gaz naturel de synthèse
B01D 3/34 - Distillation ou procédés d'échange apparentés dans lesquels des liquides sont en contact avec des milieux gazeux, p. ex. extraction avec une ou plusieurs substances auxiliaires
C07C 51/41 - Préparation de sels d'acides carboxyliques par conversion de ces acides ou de leurs sels en sels ayant la même partie acide carboxylique
A system and method to remove solids, liquid contaminants, or both from a process stream (15) does so in a liquid pool zone (21) of a vessel (20) as the stream comes into contact with a heating medium (23) that is less volatile than the process stream (15). To keep the pool hot, the heating medium (23) can be recirculated through a heater (41) of a pump- around loop (40) or a heater (41) can be placed in the liquid pool zone (21). As the process stream (15) is vaporized, solids and any remaining liquids present in the process stream (15) migrate from the process stream (15) into the heating medium (23), and may be further removed from the heating medium (23) in the pool or in the pump-around loop (40). The vaporized process stream (30) can be further condensed. Any heat recovered can be used to pre-heat the process stream or used in the pump-around loop's heater in case of mechanical vapor recovery.
C02F 1/10 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par chauffage par distillation ou évaporation par contact direct avec un solide particulaire, ou un fluide, agissant comme agent de transfert de chaleur
12.
System and method to generate steam by mixing a feed water stream with a heating medium
A system and method to generate steam from a feed water stream does so in a liquid pool zone of a vessel as the stream comes into contact with a heating medium that is less volatile than the feed water stream. To keep the pool hot, the heating medium can be recirculated through a heater of a pump-around loop or a heater can be placed in the liquid pool. As the feed water stream is vaporized or partially vaporized, any solids or unvaporized water present in the feed water stream come out of the stream and move into the heating medium. These solids and the unvaporized water may be further removed from the heating medium in the pool or in the pump-around loop. The heat exchange surface does not contact the feed water to generate steam.
C02F 1/10 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par chauffage par distillation ou évaporation par contact direct avec un solide particulaire, ou un fluide, agissant comme agent de transfert de chaleur
F22B 1/02 - Méthodes de production de vapeur caractérisées par le genre de chauffage par exploitation de l'énergie thermique contenue dans une source chaude
F16T 1/00 - Purgeurs d'eau de condensation ou appareils similaires pour expulser un liquide hors de réservoirs contenant principalement des gaz ou des vapeurs, p. ex. conduits de gaz, conduits de vapeur, réservoirs
F28C 3/04 - Autres appareils échangeurs de chaleur à contact direct les sources de potentiel calorifique étant toutes deux des liquides
B01D 1/28 - Évaporation avec compression de vapeur
F28D 21/00 - Appareils échangeurs de chaleur non couverts par l'un des groupes
13.
System and method for pH control of lean MEG product from MEG regeneration and reclamation packages
B01J 19/24 - Réacteurs fixes sans élément interne mobile
C09K 8/52 - Compositions pour éviter, limiter ou éliminer les dépôts, p. ex. pour le nettoyage
C07C 29/88 - SéparationPurificationStabilisationEmploi d'additifs par traitement donnant lieu à une modification chimique d'au moins un composé
C07C 29/94 - Emploi d'additifs, p. ex. pour la stabilisation
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
A system and method to desalinate a feed water stream does so in a liquid pool zone of a vessel as the stream comes into contact with a heating medium that is less volatile than the feed water stream. To keep the pool hot, the heating medium can be recirculated through a heater of a pump-around loop or a heater can be placed in the liquid pool. As the feed water stream is vaporized or partially vaporized, any solids and unvaporized water present in the feed water stream come out of the stream and move into the heating medium. These solids and unvaporized water may be further removed from the heating medium in the pool or in the pump-around loop. The heat exchange surface does not contact the feed water.
B01D 1/14 - Évaporation avec gaz ou vapeurs chauffés en contact avec le liquide
C02F 1/10 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par chauffage par distillation ou évaporation par contact direct avec un solide particulaire, ou un fluide, agissant comme agent de transfert de chaleur
A system and process for intermittently venting combustible gas (c-gas) from a continuous source to the atmosphere are presented. The system may include a c-gas storage tank, an admission valve located upstream of the c-gas storage tank for regulating the flow of c-gas from the continuous source to the storage tank; an inert gas storage tank and an inert gas valve for regulating flow of inert gas to the c-gas storage tank, the inert gas diluting the c-gas within the c-gas storage tank below a flammable level; a vent valve for atmospheric venting located downstream of the c-gas storage tank, and a PIC that opens the vent valve when pressure in the c-gas storage tank reaches a pre-determined PIC vent point. The system may also include an auxiliary system to receive and vent c-gas diluted below the flammable level while the primary admission valve is closed.
F16K 24/04 - Dispositifs, p. ex. soupapes, pour la mise à l'air libre ou l'aération d'enceintes pour la mise à l'air libre uniquement
F23N 5/02 - Systèmes de commande de la combustion utilisant des dispositifs sensibles aux variations thermiques ou à la dilatation thermique d'un agent
F23N 5/18 - Systèmes de commande de la combustion utilisant des détecteurs sensibles au débit de l'écoulement de l'air ou du combustible
F23N 5/24 - Systèmes prévenant le développement de conditions anormales ou indésirables, c.-à-d. dispositifs de sécurité
16.
SYSTEM AND METHOD TO REMOVE ACIDIC SPECIES FROM A RICH MEG STREAM BY STRIPPING
A system and method for removing acidic species from a rich mono-ethylene glycol ("MEG") solution (21) does so by stripping the acid from the rich MEG solution (21) by contacting the solution with a gas (23), the gas being nitrogen or a fuel gas such as methane; and stripping the acid from the gas by contacting the gas with a caustic solution (41) such as a dilute sodium hydroxide solution. The stripping steps take place in respective stripping columns (25). A portion of the gas (27) exiting the gas acid stripping column (30) can be recycled to the MEG acid stripping column (25) to reduce total gas usage. A portion of the waste stream (35) exiting the gas acid stripping column (30) can be recycled back to the gas acid stripping column (30) to reduce the amount of caustic solution (41) used as well as the amount of waste.
A system and method for removing acidic species from a rich mono-ethylene glycol ("MEG") solution (21) does so by stripping the acid from the rich MEG solution (21) by contacting the solution with a gas (23), the gas being nitrogen or a fuel gas such as methane; and stripping the acid from the gas by contacting the gas with a caustic solution (41) such as a dilute sodium hydroxide solution. The stripping steps take place in respective stripping columns (25). A portion of the gas (27) exiting the gas acid stripping column (30) can be recycled to the MEG acid stripping column (25) to reduce total gas usage. A portion of the waste stream (35) exiting the gas acid stripping column (30) can be recycled back to the gas acid stripping column (30) to reduce the amount of caustic solution (41) used as well as the amount of waste.
A method to remove oil from an oily water stream includes the step of pressure controlling a release of dissolved gases from the stream as the stream passes through two or more stages of gas flotation treatment. The operating pressure of the first stage of flotation treatment is purposefully reduced relative to that of an upstream unit so that a certain controlled percent volume of dissolved gases is released. The operating pressure of the second stage of flotation treatment is then purposefully reduced relative to that of the first stage so that another controlled percent volume of dissolved gases is released. Any subsequent flotation treatment stage is at a lower operating pressure than that of the previous stage so that the subsequent treatment stage releases a controlled percent volume of dissolved gases. By controlling the operating pressure in this way, overall separation performance is improved.
A method to remove oil from an oily water stream (25) includes the step of pressure controlling a release of dissolved gases from the stream (25) as the stream (25) passes through two or more stages of gas flotation treatment. The operating pressure of the first stage of flotation (30) treatment is purposefully reduced relative to that of an upstream unit (20) so that a certain controlled percent volume of dissolved gases is released. The operating pressure of the second stage of flotation (40) treatment is then purposefully reduced relative to that of the first stage (30) so that another controlled percent volume of dissolved gases is released. Any subsequent flotation treatment stage is at a lower operating pressure than that of the previous stage so that the subsequent treatment stage releases a controlled percent volume of dissolved gases. By controlling the operating pressure in this way, overall separation performance is improved.
A water injection process plant includes a catalytic deoxygenation unit (50) located subsea that makes use of a reducing agent (60) sent from topsides in liquid form. The catalyst is preferably a palladium catalyst or its equivalent. The reducing agent is an oxygen scavenger such as but not limited to hydrazine, carbohydrazide, sodium erythorbate, methyl ethyl ketoxime ("MEKO"), hydroquinone, diethylhydroxylamine ("DEHA"), formic acid (methanoic acid). A chemical umbilical (55) can be used to deliver the reducing agent to a mixer (51) located upstream of the deoxygenation unit, where the agent is mixed with seawater containing oxygen.
C02F 103/08 - Eau de mer, p. ex. pour le dessalement
C02F 1/72 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par oxydation
C02F 1/44 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par dialyse, osmose ou osmose inverse
C02F 1/467 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par des procédés électrochimiques par électrolyse par désinfection électrochimique
21.
Subsea deoxygenation in a water injection process plant
A water injection process plant includes a catalytic deoxygenation unit located subsea that makes use of a reducing agent sent from topsides in liquid form. The catalyst is preferably a palladium catalyst or its equivalent. The reducing agent is an oxygen scavenger such as but not limited to hydrazine, carbohydrazide, sodium erythorbate, methyl ethyl ketoxime (“MEKO”), hydroquinone, diethylhydroxylamine (“DEHA”), formic acid (methanoic acid). A chemical umbilical can be used to deliver the reducing agent to a mixer located upstream of the deoxygenation unit, where the agent is mixed with seawater containing oxygen.
C02F 103/08 - Eau de mer, p. ex. pour le dessalement
C02F 1/467 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par des procédés électrochimiques par électrolyse par désinfection électrochimique
C02F 1/72 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par oxydation
22.
System for removing salt from a rich mono ethylene glycol stream
A system for, and method of, recovering salt from fluid stream in a recycle loop of a flash separator has a desanding hydrocyclone located in the hot recycle loop of the flash separator; a first solids fluidization device located at the bottom end of the flash separator's brine column; a second desanding hydrocyclone arranged to receive a salt slurry stream created by the first solids fluidization device; and an accumulator located downstream of the second desanding hydrocyclone and having a second solids fluidization device located at its bottom end. Each solids fluidization device causes a motive fluid to exit the device in a swirling motion to fluidize the salt components contained in the resident fluid. The overflow from the second desanding hydrocyclone is the motive fluid for the brine column and a produced water, condensate water, or seawater stream is the motive fluid for the accumulator.
A system and method for removing acetic acid and other short chain fatty acids described as organic acid from a rich mono-ethylene glycol (“MEG”) solution does so by stripping the organic acid from the rich MEG solution by contacting the solution with a gas, the gas being nitrogen or a fuel gas such as methane; and stripping the organic acid from the gas by contacting the gas with a caustic solution such as a dilute sodium hydroxide solution. The stripping takes place in respective stripping columns. A portion of the gas exiting the gas/organic acid stripping column can be recycled to the MEG/organic acid stripping column to reduce total gas usage. A portion of the waste stream exiting the gas/organic acid stripping column can be recycled back to the gas/organic acid stripping column to reduce the amount of caustic solution used as well as the amount of waste.
C07C 29/76 - SéparationPurificationStabilisationEmploi d'additifs par traitement physique
B01D 3/00 - Distillation ou procédés d'échange apparentés dans lesquels des liquides sont en contact avec des milieux gazeux, p. ex. extraction
B01D 53/00 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols
B01D 3/34 - Distillation ou procédés d'échange apparentés dans lesquels des liquides sont en contact avec des milieux gazeux, p. ex. extraction avec une ou plusieurs substances auxiliaires
B01D 53/72 - Composés organiques non prévus dans les groupes , p. ex. hydrocarbures
B01D 53/78 - Procédés en phase liquide avec un contact gaz-liquide
24.
Salt removal and transport system and method for use in a mono ethylene glycol reclamation process
Systems and methods for removing solids from a process stream being fed into a flash separator include a solids fluidization device and a solids removal device. The solids fluidization device at the bottom end of the fluid column of the flash separator introduces a swirling motive fluid within the fluid column, while the solids removal device located above the solids fluidization device removes the slurry created by the swirling motive fluid. Systems and methods for fluidizing solids in the fluid column of a flash separator include a solids fluidization device that introduces a swirling motive fluid within the fluid column, means to limit the upward movement of the swirling motive fluid, such as a valve, and removing the solid slurry produced by the swirling motive fluid.
A system and method for dehydrating crude oil on a floating production storage and offloading installation include a separator vessel (20) to receive an incoming produced water stream (15), followed by a flash vessel (30), a treatment block, a crude oil storage tank (60), and an electrostatic treater (70). The treatment block includes a low pressure degasser (40) followed by a compact electrostatic separator pre-treater (50) or a compact electrostatic separator pre- treater (50) followed by a low pressure degasser (40). The flash vessel (30) and/or the low pressure degasser (40) may employ an inlet cyclonic distributor and demisting cyclones, while the electrostatic treater may employ DUAL FREQUENCY® technology. The separator vessel (20) may be a single horizontal two-phase separator/degasser or two vertical two-phase separator/degassers that operate in parallel with each receiving approximately 50 percent of the incoming produced water stream. The final outlet stream preferably contains no more than 0.5 BS&W and 285 milligrams per liter salt.
C10G 33/02 - Déshydratation ou désémulsification des huiles d'hydrocarbures par des moyens électriques ou magnétiques
C10G 53/02 - Traitement des huiles d'hydrocarbures, en l'absence d'hydrogène, par plusieurs procédés de raffinage uniquement par plusieurs étapes en série
26.
CRUDE OIL STORAGE TANK WITH ELECTROSTATIC INTERNALS TO DEHYDRATE CRUDE OIL WITHIN A PROCESS TRAIN OF A FLOATING PRODUCTION STORAGE AND OFFLOADING INSTTALLATION
A process train for a floating production storage and offloading installation includes a crude oil storage tank that is equipped with at least one set of electrostatic internals arranged to provide a treatment flow path isolated from a surrounding volume of the electrostatic separator section of the tank. An oil-and-water stream or mixture entering the set of electrostatic internals travels along the treatment flow path and is subjected to an electric field. The treatment flow path is in an upwardly direction toward the oil outlet section and in a downwardly opposite direction toward the water outlet section of the tank. Employing electrostatic internals within the tank permits an allowable inlet water content into the tank of up to 80%, significantly reducing the required topside processing equipment.
B01D 17/06 - Séparation de liquides les uns des autres par l'électricité
C10G 33/06 - Déshydratation ou désémulsification des huiles d'hydrocarbures par des moyens mécaniques, p. ex. par filtration
E21B 43/34 - Aménagements pour séparer les matériaux produits par le puits
27.
ELECTROSTATIC TECHNOLOGY SYSTEM AND PROCESS TO DEHYDRATE CRUDE OIL IN A CRUDE OIL STORAGE TANK OF A FLOATING PRODUCTION STORAGE AND OFFLOADING INSTALLATION
A process train for a floating production storage and offloading installation includes a crude oil storage tank (50) equipped with at least one set of electrostatic internals (71). The set of electrostatic internals are arranged to provide a treatment flow path (80) within the crude oil storage tank (50) oblique to a longitudinal centerline (61) of the crude oil storage tank (50) and through an electric field provided by the set of electrostatic internals. Employing these electrostatic internals (71) within the tank permits an allowable inlet water content into the tank of up to 80%, significantly reducing the required topside processing equipment. The process and system also includes, upstream of the tank, two separator vessels (20A/20B) arranged in parallel so each receives a portion of an incoming oil-and-water stream (15), a flash vessel (30) arranged downstream of the two separator vessels, and a degasser vessel (40). Downstream of the crude oil storage tank is an electrostatic treater.
E21B 43/34 - Aménagements pour séparer les matériaux produits par le puits
28.
Crude oil storage tank with electrostatic internals to dehydrate crude oil within a process train of a floating production storage and offloading installation
A process train for a floating production storage and offloading installation includes a crude oil storage tank that is equipped with at least one set of electrostatic internals arranged to provide a treatment flow path isolated from a surrounding volume of the electrostatic separator section of the tank. An oil-and-water stream or mixture entering the set of electrostatic internals travels along the treatment flow path and is subjected to an electric field. The treatment flow path is in an upwardly direction toward the oil outlet section and in a downwardly opposite direction toward the water outlet section of the tank. Employing electrostatic internals within the tank permits an allowable inlet water content into the tank of up to 80%, significantly reducing the required topside processing equipment.
Electrostatic technology system and process to dehydrate crude oil in a crude oil storage tank of a floating production storage and offloading installation
A process train for a floating production storage and offloading installation includes a crude oil storage tank equipped with at least one set of electrostatic internals. The set of electrostatic internals are arranged to provide a treatment flow path within the crude oil storage tank oblique to a longitudinal centerline of the crude oil storage tank and through an electric field provided by the set of electrostatic internals. Employing these electrostatic internals within the tank permits an allowable inlet water content into the tank of up to 80%, significantly reducing the required topside processing equipment. The process and system also includes, upstream of the tank, two separator vessels arranged in parallel so each receives a portion of an incoming oil-and-water stream, a flash vessel arranged downstream of the two separator vessels, and a degasser vessel. Downstream of the crude oil storage tank is an electrostatic treater.
C10G 33/02 - Déshydratation ou désémulsification des huiles d'hydrocarbures par des moyens électriques ou magnétiques
C10G 32/02 - Raffinage des huiles d'hydrocarbures par des moyens électriques ou magnétiques, par irradiation ou par utilisation de micro-organismes par des moyens électriques ou magnétiques
C10G 31/06 - Raffinage des huiles d'hydrocarbures, en l'absence d'hydrogène, par des méthodes non prévues ailleurs par chauffage, refroidissement ou traitement par la pression
B01D 17/06 - Séparation de liquides les uns des autres par l'électricité
A system and method for dehydrating crude oil on a floating production storage and offloading installation include a separator vessel to receive an incoming produced water stream, followed by a flash vessel, a treatment block, a crude oil storage tank, and an electrostatic treater. The treatment block includes a low pressure degasser followed by a compact electrostatic separator pre-treater or a compact electrostatic separator pre-treater followed by a low pressure degasser. The flash vessel and/or the low pressure degasser may employ an inlet cyclonic distributor and demisting cyclones, while the electrostatic treater may employ DUAL FREQUENCY® technology. The separator vessel may be a single horizontal two-phase separator/degasser or two vertical two-phase separator/degassers that operate in parallel with each receiving approximately 50 percent of the incoming produced water stream. The final outlet stream preferably contains no more than 0.5 BS&W and 285 milligrams per liter salt.
C10G 33/02 - Déshydratation ou désémulsification des huiles d'hydrocarbures par des moyens électriques ou magnétiques
C10G 32/02 - Raffinage des huiles d'hydrocarbures par des moyens électriques ou magnétiques, par irradiation ou par utilisation de micro-organismes par des moyens électriques ou magnétiques
An apparatus and method for separating water from an oil-water influx are provided. The apparatus includes a separation vessel having an inlet, an oil collection portion at its upper end, and a water collection portion at its lower end. Multiple high voltage tubes, each containing an electrode, are located within the oil collection portion. These high voltage tubes are staggered in length and held in place by perforated plates. The oil-water influx flows through the inlet of the vessel into the high voltage tubes, where it is subjected to an electrostatic field. The electrostatic field causes water droplets in the influx to coalesce and form a water out-flux which flows downwardly into the water collection portion of the vessel. The remaining stream of dehydrated oil flows upwardly to the upper outlet end. The oil collection portion of the separation vessel may be oriented vertically or at an angle.
An apparatus and method for separating water from an oil-water influx are provided. The apparatus includes a separation vessel (10) having an inlet (15), an oil collection portion (20) at its upper end (25), and a water collection portion (30) at its lower end (35). Multiple high voltage tubes (40), each containing an electrode (45), are located within the oil collection portion (20). These high voltage tubes (40) are staggered in length and held in place by perforated plates (100). The oil- water influx flows through the inlet (15) of the vessel (10) into the high voltage tubes (40), where it is subjected to an electrostatic field. The electrostatic field causes water droplets in the influx to coalesce and form a water out-flux which flows downwardly into the water collection portion (30) of the vessel (10). The remaining stream of dehydrated oil flows upwardly to the upper outlet end (25). The oil collection portion of (20) the separation vessel (10) may be oriented vertically or at an angle.
A system for desalting a crude oil stream includes vessel that has an interior piping structure that releases wash water into a crude oil flow within the vessel. The piping structure, which may have more than one level, has a plurality of spray nozzles for dispersing or releasing the wash water into the flowing crude oil stream. The spray nozzles may be located on a same side or opposite sides of the piping structure. Where multiple levels are used, the number of spray nozzles on each level may be the same as or different than the number of spray nozzles on other levels. The pressure drop through each spray nozzle is no greater than 300 psi and the nozzles deliver a dilution water droplet no larger than 300 microns in diameter. A mixing valve, static mixer, or both can be placed downstream of the vessel.
A system and process to protect chlorine-susceptible water treatment membranes from chlorine damage without the use of chemical scavengers employs a catalytic deoxygenation system located upstream of the chlorine-susceptible membranes. The system and process not only achieves the required oxygen discharge levels, via reaction of the oxygen with hydrogen, but also dechlorinates the water, via reaction of the chlorine species with hydrogen.
2 concentrations by adjustments to primary permeate, secondary permeate, and recycle gas operations. The glassy polymer membrane devices used in the system and process are selected so removal duty efficiency increases as acid gas concentration increase. Designing the system and process to handle about a 15% increase in acid gas concentrations over initial conditions effectively treats acid gas concentrations well above that 15% increase, thereby eliminating the need for additional equipment or for additional downstream amines and physical solvents.
B01D 53/22 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par diffusion
B01D 63/04 - Modules à fibres creuses comprenant plusieurs ensembles à fibres creuses
B01D 63/12 - Modules à membranes enroulées en spirale comprenant plusieurs ensembles enroulés en spirale
A system and process for removing divalent ions from a MEG feed stream is presented. Embodiments of the system include a chemical treatment tank where chemicals are mixed with the feed stream to form insoluble carbonate and hydroxide salts. The system also includes a solid-liquid separation unit that receives the feed stream from the chemical treatment tank and separates it into a liquids portion containing MEG and a insoluble salts portion. The system may also include washing the insoluble salts portion to remove additional MEG, which is then recycled to a MEG regeneration or reclamation process. The system may also include a dryer that receives waste slurry from the solid-liquid separation unit and dries it to form a solid waste, thereby facilitating its handling, storage, and disposal.
A membrane permeation system and process accommodates varying acid gas inlet concentrations over time while utilizing only the initially installed equipment and still maintaining the non-permeate gas specification. The system and process provide flexibility to operate efficiently over a wide range of inlet CO2 concentrations by adjustments to primary permeate, secondary permeate, and recycle gas operations. The glassy polymer membrane devices used in the system and process are selected so removal duty efficiency increases as acid gas concentration increase. Designing the system and process to handle about a 15% increase in acid gas concentrations over initial conditions effectively treats acid gas concentrations well above that 15% increase, thereby eliminating the need for additional equipment or for additional downstream amines and physical solvents.
C10L 3/10 - Post-traitement de gaz naturel ou de gaz naturel de synthèse
38.
System to reduce interface emulsion layer formation in an electrostatic dehydrator or desalter vessel through use of a low voltage electrostatic interface emulsion treatment system inside the vessel
A system for separating the components of an incoming oil-water mixture includes two electrode sets, one set arranged to apply an electrostatic field to an oil layer residing within a separator vessel and the other set arranged to apply an electrostatic field to the interface emulsion layer residing within the separator vessel. The first set of electrodes is in communication with a high voltage power source that ranges from 1 to 60 kV; the second set of electrodes is in communication with a low voltage power source that is no greater than 5 kV. Each set of electrodes may also be in communication with a second voltage source to provide increased power to promote effective coalescence. The system may also include power electronics to produce a variable amplitude and a variable frequency voltage supply to one or both electrode sets.
B03C 11/00 - Séparation par des champs électriques à haute tension, non prévue dans les autres groupes de la présente sous-classe
C02F 1/40 - Dispositifs pour séparer ou enlever les substances grasses ou huileuses, ou les matières flottantes similaires
C02F 1/463 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par des procédés électrochimiques par électrolyse par électrocoagulation
C02F 1/48 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout au moyen de champs magnétiques ou électriques
C10G 32/02 - Raffinage des huiles d'hydrocarbures par des moyens électriques ou magnétiques, par irradiation ou par utilisation de micro-organismes par des moyens électriques ou magnétiques
C10G 33/02 - Déshydratation ou désémulsification des huiles d'hydrocarbures par des moyens électriques ou magnétiques
C02F 103/28 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant du traitement de plantes ou de parties de celles-ci provenant de l'industrie du papier ou de la cellulose
C02F 103/30 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant de l'industrie textile
C02F 103/32 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant de l'industrie alimentaire, p. ex. eaux résiduaires de brasseries
C02F 103/36 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant de l'industrie chimique non prévue dans les groupes provenant de la fabrication de composés organiques
39.
SYSTEM TO REDUCE INTERFACE EMULSION LAYER FORMATION IN AN ELECTROSTATIC DEHYDRATOR OR DESALTER VESSEL THROUGH USE OF A LOW VOLTAGE ELECTROSTATIC INTERFACE EMULSION TREATMENT SYSTEM INSIDE THE VESSEL
A system ( 10) for separating the components of an incoming oil-water mixture includes two electrode sets (30/40), one set arranged to apply an electrostatic field to an oil layer residing within a separator vessel and the other set arranged to apply an electrostatic field to the interface emulsion layer residing within the separator vessel (12). The first set of electrodes (30) is in communication with a high voltage power source that ranges from 1 to 60 kV; the second set of electrodes (40) is in communication with a low voltage power source that is no greater than 5 kV. Each set of electrodes (30/40) may also be in communication with a second voltage source to provide increased power to promote effective coalescence. The system (10) may also include power electronics to produce a variable amplitude and a variable frequency voltage supply to one or both electrode sets (30/40).
A system for removing salt from a process stream being fed into a flash separator introduces a swirling motive fluid into the fluid column of the separator. The swirling motive fluid comes into contact with salt components residing in the fluid of the column to create a salt slurry. Means to limit the upward movement of the swirling motive fluid can be provided. The salt slurry is then removed and can be sent to a brine generation vessel. Saturated brine from the vessel is transported back to the fluid column to replace the motive fluid in the column.
A system and process for intermittently venting combustible gas (c-gas) from a continuous source to the atmosphere are presented. The system includes a primary c-gas storage tank, at least one primary admission valve located upstream of the primary c-gas storage tank for regulating the flow of c-gas from the continuous source to the storage tank, a primary valve for atmospheric venting located downstream of the primary c-gas storage tank, and a primary PIC that opens the primary valve for atmospheric venting when pressure in the primary c-gas storage tank reaches a pre-determined PIC vent point. The system may include an auxiliary system to receive and vent c-gas while the primary admission valve is closed. The primary and auxiliary systems may also include an inert gas storage tank and inert gas valve for diluting the c-gas before it is vented to the atmosphere.
F16K 24/04 - Dispositifs, p. ex. soupapes, pour la mise à l'air libre ou l'aération d'enceintes pour la mise à l'air libre uniquement
F23N 5/02 - Systèmes de commande de la combustion utilisant des dispositifs sensibles aux variations thermiques ou à la dilatation thermique d'un agent
F23N 5/18 - Systèmes de commande de la combustion utilisant des détecteurs sensibles au débit de l'écoulement de l'air ou du combustible
F23N 5/24 - Systèmes prévenant le développement de conditions anormales ou indésirables, c.-à-d. dispositifs de sécurité
42.
SYSTEM AND METHOD FOR SAFER VENTING OF HYDROGEN OR OTHER COMBUSTIBLE GASES
A system and process for intermittently venting combustible gas (c-gas) from a continuous source to the atmosphere are presented. The system includes a primary c-gas storage tank (40), at least one primary admission valve (20/30) located upstream of the primary c-gas storage tank (40) for regulating the flow of c-gas from the continuous source to the storage tank (40), a primary valve (50) for atmospheric venting located downstream of the primary c-gas storage tank (40), and a primary PIC (10) that opens the primary valve (50) for atmospheric venting when pressure in the primary c-gas storage tank (40) reaches a pre- determined PIC vent point. The system may include an auxiliary system (60) to receive and vent c-gas while the primary admission valve (20/30) is closed. The primary (5) and auxiliary (60) systems may also include an inert gas storage tank (120/140) and inert gas valve (130/150) for diluting the c-gas before it is vented to the atmosphere.
F23N 5/02 - Systèmes de commande de la combustion utilisant des dispositifs sensibles aux variations thermiques ou à la dilatation thermique d'un agent
F23N 5/18 - Systèmes de commande de la combustion utilisant des détecteurs sensibles au débit de l'écoulement de l'air ou du combustible
F23N 5/24 - Systèmes prévenant le développement de conditions anormales ou indésirables, c.-à-d. dispositifs de sécurité
43.
System and method for pH control of lean MEG product from MEG regeneration and reclamation packages
B01J 19/24 - Réacteurs fixes sans élément interne mobile
C09K 8/52 - Compositions pour éviter, limiter ou éliminer les dépôts, p. ex. pour le nettoyage
C07C 29/88 - SéparationPurificationStabilisationEmploi d'additifs par traitement donnant lieu à une modification chimique d'au moins un composé
C07C 29/94 - Emploi d'additifs, p. ex. pour la stabilisation
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
A lean MEG stream (20) having a first pH level is contacted with a CO2-rich gas stream (40) to yield a lean MEG product (50) having a second different and lower pH level preferably in a range of 6.5 to 7.0. The system and method can be readily incorporated into a slipstream MEG recovery package, with a source of the lean MEG stream (20) being a MEG regeneration section (30) of the package. The CO2-rich gas (40) could be a vented CO2 stream from the MEG reclamation section (60) of the package. Unlike hydrochloric and acetic acid overdosing, C02 overdosing of the lean MEG stream (20) does not lead to rapid acidification of the lean MEG product (50) to be stored or injected.
A vessel (10) for treating an oil-in-water inlet stream houses an inlet flow distributor (21) arranged to direct an inlet flow toward a perforated baffle (31) of a coalescing section (30), the coalescing section (30) housing a packing and being arranged upstream of a second baffle (31); a flotation section (50) arranged to receive a flow exiting the coalescing section (30) and being divided by one or more perforated baffles (55); and an outlet water collecting pipe (61) arranged to receive a flow exiting the flotation section (50), the outlet water collecting pipe (61) having one or more openings located along its length. The coalescing section (30) may be divided into two sections (37/39), with one section preferably housing a different pre-selected sized packing than the other section. The flotation section (50) may include one or more gas-inducing devices (53). A solid baffle (43) may be arranged downstream of the second baffle (31) and ahead of the flotation section (50) to provide single or dual flow through that section.
A system for, and method of, recovering salt from fluid stream in a recycle loop of a flash separator has a desanding hydrocyclone located in the hot recycle loop of the flash separator; a first solids fluidization device located at the bottom end of the flash separator's brine column; a second desanding hydrocyclone arranged to receive a salt slurry stream created by the first solids fluidization device; and an accumulator located downstream of the second desanding hydrocyclone and having a second solids fluidization device located at its bottom end. Each solids fluidization device causes a motive fluid to exit the device in a swirling motion to fluidize the salt components contained in the resident fluid. The overflow from the second desanding hydrocyclone is the motive fluid for the brine column and a produced water, condensate water, or seawater stream is the motive fluid for the accumulator.
A system and process for removing divalent ions from a MEG feed stream is presented. The system includes a chemical treatment tank where chemicals are mixed with the feed stream to form insoluble carbonate and hydroxide salts. The system also includes a membrane-type solid-liquid separation unit that receives the feed stream from the chemical treatment tank and separates it into a filtrate containing MEG and a retentate containing the insoluble salts. The system may also include washing the retentate to remove additional MEG, which is then recycled to a MEG regeneration or reclamation process. The system may also include a dryer that receives waste slurry from the solid-liquid separation unit and dries it to form a solid waste, thereby facilitating its handling, storage, and disposal.
A system for, and method of, recovering salt from a rich mono ethylene glycol MEG stream (23) includes a flash separator (20) having a desanding hydrocyclone (70) located in the hot MEG recycle loop (35) of the flash separator (20); a first solids fluidization device (40) located at the bottom end (37) of the flash separator's brine column (29); a second desanding hydrocyclone (100) arranged to receive a salt slurry stream (53) created by the first solids fluidization device (40); and an accumulator (80) located downstream of the second desanding hydrocyclone (100) and having a second solids fluidization device (90) located at its bottom end. Each solids fluidization device (40, 90) includes means for causing the motive fluid to exit the device in a swirling motion to fluidize the salt components contained in the resident fluid. The overflow (103) from the second desanding hydrocyclone (100) is the motive fluid for the brine column (29) and a produced water, condensate water, or seawater stream is the motive fluid for the accumulator (80).
A system (10) for removing salt from a rich mono ethylene glycol (MEG) stream (25) being fed into a flash separator (20) isolates the fluid residing in the brine column (29) of the separator from the MEG and introduces a swirling motive fluid (57) into the column (29). The swirling motive fluid (51) comes into contact with salt components residing in the isolated fluid of the column (29) to create a salt slurry. The salt slurry (53) is then removed and sent to a brine generation vessel (60). Saturated brine from the vessel (60) is transported back to the column (29) to replace the motive fluid (51) in the column (29).
C07C 29/80 - SéparationPurificationStabilisationEmploi d'additifs par traitement physique par distillation
B01D 53/04 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse avec adsorbants fixes
50.
System and method for pH control of lean MEG product from MEG regeneration and reclamation packages
A system for desalting a crude oil stream includes an elongated, vertically oriented vessel (10) that has an interior piping structure arranged concentric to the vessel (10). The piping structure, which may have more than one level (55/57/59), has a plurality of spray nozzles (11/21) oriented at a downward angle for atomizing wash water into a downward flowing crude oil stream. The spray nozzles (11/21) may be located on a same side or opposite sides of the piping structure. Where multiple levels (55/57/59) are used, the number of spray nozzles (11/21) on each level may be the same as or different than the number of spray nozzles (11/21) on other levels (55/57/59). The pressure drop through each spray nozzle (11/21) is preferably no greater than 300 psi and the nozzles (11/21) preferably deliver a dilution water droplet preferably no larger than 300 microns in diameter. A mixing valve (105), static mixer (103), or both can be placed downstream of the vessel (10).
A system and process for the removal of divalent ions from a MEG-water stream (10) are presented. The system includes a chemical treatment tank (5) that receives the MEG-water stream (10), means for precipitating the calcium, magnesium, and hydroxide ions that are contained in the MEG-water stream (10), means for discharging the MEG-water stream (10) from the chemical treatment tank (5), and means for recycling the discharged MEG-water stream (10) back to the chemical treatment tank (5) or routing it to a solids removal system (75). The means for precipitating the calcium, magnesium, and sulfate ions may be employed simultaneously or sequentially.
A system for, and method of, recovering salt from a rich mono ethylene glycol MEG stream includes a flash separator having a desanding hydrocyclone located in the hot MEG recycle loop of the flash separator; a first solids fluidization device located at the bottom end of the flash separator's brine column; a second desanding hydrocyclone arranged to receive a salt slurry stream created by the first solids fluidization device; and an accumulator located downstream of the second desanding hydrocyclone and having a second solids fluidization device located at its bottom end. Each solids fluidization device includes means for causing the motive fluid to exit the device in a swirling motion to fluidize the salt components contained in the resident fluid. The overflow from the second desanding hydrocyclone is the motive fluid for the brine column and a produced water, condensate water, or seawater stream is the motive fluid for the accumulator.
A system and process for removing divalent ions from a MEG feed stream is presented. The system includes a chemical treatment tank where chemicals are mixed with the feed stream to form insoluble carbonate and hydroxide salts. The system also includes a membrane-type solid-liquid separation unit that receives the feed stream from the chemical treatment tank and separates it into a filtrate containing MEG and a retentate containing the insoluble salts. The system may also include washing the retentate to remove additional MEG, which is then recycled to a MEG regeneration or reclamation process. The system may also include a dryer that receives waste slurry from the solid-liquid separation unit and dries it to form a solid waste, thereby facilitating its handling, storage, and disposal.
A system and process for removing divalent ions from a MEG feed stream (15) is presented. The system includes a chemical treatment tank (25) where chemicals are mixed with the feed stream (15) to form insoluble carbonate and hydroxide salts. The system also includes a membrane-type solid-liquid separation unit (60) that receives the feed stream (35) from the chemical treatment tank (25) and separates it into a filtrate (90) containing MEG and a retentate (130) containing the insoluble salts. The system may also include washing the retentate (130) to remove additional MEG, which is then recycled to a MEG regeneration or reclamation process. The system may also include a dryer (140) that receives waste slurry (132) from the solid-liquid separation unit (60) and dries it to form a solid waste, thereby facilitating its handling, storage, and disposal.
A shell-side feed, hollow fiber, fluid separation module arranged for counter-flow includes a hollow fiber membrane bundle with each individual hollow fiber membrane (31) in the bundle (30) having an open fiber end (39) and a sealed fiber end (43), The open fiber ends (39) are encapsulated in a tubesheet (19) located toward the permeate fluid outlet end (17) of the module (10). The sealed fiber ends (43) are tubesheet-free, uniformly spaced, and located toward the non-permeate fluid outlet end (41) of the module (10).
A shell-side feed, hollow fiber, fluid separation module arranged for counter-flow includes a hollow fiber membrane bundle with each individual hollow fiber membrane in the bundle having an open fiber end and a sealed fiber end. The open fiber ends are encapsulated in a tubesheet located toward the permeate fluid outlet end of the module. The sealed fiber ends are tubesheet-free, uniformly spaced, and located toward the non-permeate fluid outlet end of the module.
B01D 53/22 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par diffusion
A system to reduce scaling within or downstream of an electrolytic cell (30) includes sulfate removal membranes (20) located upstream of one or more electrolytic cells (30) which are arranged to receive a permeate feed stream (25) from the sulfate removal membranes (20). The membranes can be nanofiltration membranes. The saline feed stream (10), permeate feed stream (25), or both may be de-aerated streams. The electrolytic cells (30) may be part of an electro-chlorination unit and can be divided electrolytic cells.
C02F 1/44 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par dialyse, osmose ou osmose inverse
C02F 1/467 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par des procédés électrochimiques par électrolyse par désinfection électrochimique
59.
GAS-LIQUID CYCLONIC SEPARATORS AND METHODS TO REDUCE GAS CARRY-UNDER
A system and process for an improvement to a gas-liquid cylindrical cyclone ("GLCC") separator (10) to reduce gas carry-under to the liquid outlet (15) of the separator (10) is described. The means for reducing gas carry-under is arranged within the interior space of the separator and below the inclined inlet (13) of the separator (10) to affect the tangential flow of the incoming liquid-and-gas mixture stream into the interior space. The reducing means may be a vortex locator (30), preferably in the form of a horizontal plate (31), arranged coaxial with the separator vessel (11) and located at a vortex formation point within the interior space. The reducing means may also be a plurality of vertical baffles (41) located at a lower end (17) of the separator vessel (11) and extending radially inward from the wall (23) of the vessel (11). The reducing means may also be a combination of the horizontal plate (31) and vertical baffles (41).
An apparatus for separating water from a water-in-oil mixture having an elongated inlet vessel with a lower outlet end and an upper inlet end, the length thereof being a multiple of the largest vessel cross-sectional dimension. A separation vessel having an oil outlet and a divergent water outlet has an inlet passageway in communication with the inlet vessel lower outlet end. At least one electrode is positioned within the inlet vessel by which a mixture flowing therethrough is subjected to an electric field.
A method of removing entrained salt containing water from an inlet crude oil stream includes the steps of applying an electrical energy to at least one electrode of a plurality of horizontally oriented, spaced-apart electrodes (12, 14, 16) housed within an elongated desalting vessel (10) and distributing an inlet crude oil stream between the electrodes. Each electrode in the plurality of electrodes is housed in an upper portion of the desalting vessel and may be in communication with a first, second and third transformer (42, 44, 46), respectively. The electrical energy may be at a single frequency and voltage or at a modulated voltage. Or, the electrical energy may be a modulated frequency at a single or modulated voltage. Fresh water may be mixed with the inlet crude oil stream either exteriorly or interiorly of the vessel.
Separation equipment to remove sand and other solid
particles from multi-phase oil and gas wellstreams;
separation equipment to remove sand and other solid
particles in mining and minerals processing.
63.
Treatment of interface rag produced during heavy crude oil processing
A method for treating an interface rag includes the steps of removing a volume of rag at a controlled rate from an upstream rag source and passing the rag through a high pressure pump and a heater. The heater heats the rag to a temperature of at least 350° F. to thermally decomposing any chemicals that had been added to the interface rag to promote separation. Diluent is then mixed with the heated rag to cool the rag to a temperature less than 300° F. and produce a 30 API rag. The cooled diluted rag is then treated in an electrostatic treater or sent directly to a hydrocyclone cluster. The electrostatic treater is preferably a vertical electrostatic treater with a conical-shaped lower portion and a means for agitating the solid-laden water within the treater to prevent the solids from settling on the bottom of the treater.
A natural gas stream is passed through a single membrane element that is fabricated with two or more distinct types of membrane fibers. The membrane fibers have different characteristics in order to reduce the number of membrane elements required for gas separation and to improve gas separation performance due to changing gas composition because of permeation as the gas travels through the membrane element.
B01D 53/22 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par diffusion
B01D 63/04 - Modules à fibres creuses comprenant plusieurs ensembles à fibres creuses
CONTROL EQUIPMENT, NAMELY, A VENT GAS COLLECTOR, AERIAL CONDENSER, LIQUID/GAS SEPARATOR, BURNER MANIFOLD AND BURNER ASSEMBLY WITH VALVES, CONTROLS, AND PRESSURE GAUGES ALL SOLD AS A UNIT, AND USED FOR THE REMOVAL OF CARCINOGENIC GASES PRODUCED DURING GLYCOL RECONCENTRATION