Apparatuses are described to accurately determine a gas concentration of a sample of a patient's breath. The apparatuses may include a sample compartment, a breath speed analyzer, a gas analyzer, and a processor. The sample compartment includes an inlet that receives the breath. The breath speed analyzer determines the speed of a portion of the breath. The gas analyzer determines a gas concentration. The processor includes an algorithm that determines a degree of non-homogeneity of the sample based on the speed, and a corrected gas concentration based on the degree of non-homogeneity. In some variations, the gas correction is determined independently of patient cooperation. Apparatuses may be tuned based on the intended population's expected breathing pattern ranges such that the sample compartment is filled with a homogenous end-tidal gas sample regardless of an individual's breathing pattern. These apparatuses are useful, for example, for end-tidal CO analysis. Methods are also described.
Apparatuses are described to accurately determine a gas concentration of a sample of a patient's breath. The apparatuses may include a sample compartment, a breath speed analyzer, a gas analyzer, and a processor. The sample compartment includes an inlet that receives the breath. The breath speed analyzer determines the speed of a portion of the breath. The gas analyzer determines a gas concentration. The processor includes an algorithm that determines a degree of non-homogeneity of the sample based on the speed, and a corrected gas concentration based on the degree of non-homogeneity. In some variations, the gas correction is determined independently of patient cooperation. Apparatuses may be tuned based on the intended population's expected breathing pattern ranges such that the sample compartment is filled with a homogenous end-tidal gas sample regardless of an individual's breathing pattern. These apparatuses are useful, for example, for end-tidal CO analysis. Methods are also described.
Methods and systems are described to obtain and analyze one or more gas samples from the breath of a person, and organizing the samples in a sample registry for subsequent analysis. This technique solves the various problems that are associated with targeting an individual breath for analysis, and allows for additional versatility and options in the analysis process.
Resuscitation apparatuses and methods for assisted ventilation are described herein. The apparatuses may include functional elements that allow the manual delivery of a prescribed volume to an adult or an infant lung. Furthermore, the apparatuses may inform and assure an emergency worker that an appropriate volume is being delivered and therefore lessen the possibility of barotrauma from over-delivery, or ventilatory distress from under-delivery. In some embodiments, the apparatuses include biomechanical and ergonomic functional elements that allow an adult hand to hold it in place during operation, while at the same time, allowing the user to actuate the apparatus to deliver only the necessary amount of volume suitable for an infant lung. In other embodiments, a volume-controlled design is applied to pediatric and adult resuscitation.
Breath analysis systems and methods test for infectious diseases in exhaled breath gas or condensate. An automatic breath sampling system can obtain reliable samples over a variety of clinical situations. In some variations, the system is modular system and can protect the equipment and clinician from contamination. In some variations, the system can be a point-of-care rapid-result instrument. In some variations, can be configured for off-line analysis in which case the collected sample is presented to a stand-alone analyzer for measurement.
A61B 5/08 - Dispositifs de mesure pour examiner les organes respiratoires
A61B 5/097 - Dispositifs pour faciliter la collecte du gaz respiré ou pour le diriger vers ou à travers des dispositions de mesure
A61B 10/00 - Autres méthodes ou instruments pour le diagnostic, p.ex. pour le diagnostic de vaccination; Détermination du sexe; Détermination de la période d'ovulation; Instruments pour gratter la gorge
Methods for administering immune globulin and devices for use thereof. The methods may generally include measuring a patient's hemolysis levels and determining whether the patient is suitable for immune globulin treatment, determining whether immune globulin treatment should be continued, and/or determining if the dose needs to be changed.
Methods for administering immune globulin and devices for use thereof. The methods may generally include measuring a patient's hemolysis levels and determining whether the patient is suitable for immune globulin treatment, determining whether immune globulin treatment should be continued, and/or determining if the dose needs to be changed.
2 levels are continually monitored to ensure that the captured volume of air corresponds to the end-tidal portion of an exhalation. Once the captured volume of air is positively identified as the end-tidal portion of an exhalation, the captured volume is routed through a gas analyzer (44) for analysis of one or more predetermined gas levels.
Methods and systems are described to automatically obtain and analyze a lung airway gas sample from the breath of a person for compositional analysis. These techniques may provide an improved method for example for accurately and reliably measuring nitric oxide for asthma assessment in young children and non-cognizant patients.
A breath parameter measuring device is described which takes into account breathing patterns which historically have been incompatible with accurate measurements. In particular, during fast breathing patterns, the sensor performing the measurement may not be able to respond quickly enough to provide the true reading. The disclosure may be useful for example in the case of neonatal breath carbon dioxide measurements.
A breath parameter measuring device is described which takes into account breathing patterns which historically have been incompatible with accurate measurements. In particular, during fast breathing patterns, the sensor performing the measurement may not be able to respond quickly enough to provide the true reading. The disclosure may be useful for example in the case of neonatal breath carbon dioxide measurements.
A breath analysis device is described which minimizes mixing of gases between one section of a breath and another section of breath. In particular for example, when sampling and analyzing the end-tidal section of exhaled gas, the system may avoid mixing that can occur inside the device, between the end-tidal sample and the gases before and after the end- tidal sample. The system accomplishes this with an ultra-low uniform cross section fluid pathway, which includes componentry with ultra-low dead space.
A breath analysis device is described which obtains a desired segment of one or more breaths, and analyzes that or those samples for compositional analysis. A pneumatic control system may obtain these segments homogeneously, may reduce the amount of gases included from other segments of the breath, and may reduce mixing with other segments once obtained. These pneumatic control systems can be used for on-board compositional analysis, or for modular or off -board compositional analysis.
A breath parameter measuring device is described which takes into account breathing patterns which historically have been incompatible with accurate measurements. In particular, during fast breathing patterns, the sensor performing the measurement may not be able to respond quickly enough to provide the true reading. The disclosure may be useful for example in the case of neonatal breath carbon dioxide measurements.
05 - Produits pharmaceutiques, vétérinaires et hygièniques
10 - Appareils et instruments médicaux
Produits et services
Pharmaceutical preparations, namely, carbon dioxide gas for the non-inhaled treatment of inflammatory conditions, allergies, rhinitis, migraines, trigeminal neuralgia and jaw pain. Medical apparatus, namely, medical and therapeutic gas delivery systems comprised primarily of pressure and flow regulators for delivering therapeutic gases for medical treatment.
17.
SAMPLING AND STORAGE REGISTRY DEVICE FOR BREATH GAS ANALYSIS
Methods and systems are described to obtain and analyze one or more gas samples from the breath of a person, and organizing the samples in a sample registry for subsequent analysis. This technique solves the various problems that are associated with targeting an individual breath for analysis, and allows for additional versatility and options in the analysis process.
Methods and systems are described to obtain and analyze a gas sample from a desired section of the breath of a person, while accounting for erratic, episodic or otherwise challenging breathing patterns that may otherwise make the capturing of a gas sample from the desired section of breath difficult. These techniques may provide more reliable, accurate and adequate samples of gas such as end-tidal gas, and ultimately an accurate analysis of the sample captured.
Methods and systems are described to obtain and analyze a gas sample from a desired section of the breath of a person, while accounting for erratic, episodic or otherwise challenging breathing patterns that may otherwise make the capturing of a gas sample from the desired section of breath difficult. These techniques may provide more reliable, accurate and adequate samples of gas such as end-tidal gas, and ultimately an accurate analysis of the sample captured.
A61B 5/0205 - Evaluation simultanée de l'état cardio-vasculaire et de l'état d'autres parties du corps, p.ex. de l'état cardiaque et respiratoire
A61B 5/00 - Mesure servant à établir un diagnostic ; Identification des individus
A61B 5/08 - Dispositifs de mesure pour examiner les organes respiratoires
G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicales; TIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p.ex. basé sur des systèmes experts médicaux
G16H 10/40 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données relatives aux analyses de laboratoire, p.ex. pour des analyses d’échantillon de patient
G16H 40/63 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santé; TIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement local
A61B 5/01 - Mesure de la température de parties du corps
Described here are hand-held, low flow devices for dispensing a therapeutic gas. The devices may be configured to include a gas control assembly for delivering a defined volume of gas at a controlled pressure and flow rate. A nosepiece may be included in the device that is formed of a porous material capable of filtering the dispensed gas, and also diffusing the flow of gas as it travels through the nosepiece and into the nasal cavity. The nosepiece may be configured so that there is substantially no restriction of flow therethrough. Methods for treating various medical conditions and delivering therapeutic gases to the nasal mucosa using hand-held, low flow gas dispenser devices are also described.
A61M 37/00 - Autres appareils pour introduire des agents dans le corps; Percutanisation, c. à d. introduction de médicaments dans le corps par diffusion à travers la peau
Apparatuses are described to accurately determine a gas concentration of a sample of a patient' s breath. The apparatuses may include a sample compartment, a breath speed analyzer, a gas analyzer, and a processor. The sample compartment includes an inlet that receives the breath. The breath speed analyzer determines the speed of a portion of the breath. The gas analyzer determines a gas concentration. The processor includes an algorithm that determines a degree of non-homogeneity of the sample based on the speed, and a corrected gas concentration based on the degree of non-homogeneity. In some variations, the gas correction is determined independently of patient cooperation. Apparatuses may be tuned based on the intended population' s expected breathing pattern ranges such that the sample compartment is filled with a homogenous end-tidal gas sample regardless of an individual's breathing pattern. These apparatuses are useful, for example, for end-tidal CO analysis. Methods are also described.
Apparatuses are described to accurately determine a gas concentration of a sample of a patient's breath. The apparatuses may include a sample compartment, a breath speed analyzer, a gas analyzer, and a processor. The sample compartment includes an inlet that receives the breath. The breath speed analyzer determines the speed of a portion of the breath. The gas analyzer determines a gas concentration. The processor includes an algorithm that determines a degree of non-homogeneity of the sample based on the speed, and a corrected gas concentration based on the degree of non-homogeneity. In some variations, the gas correction is determined independently of patient cooperation. Apparatuses may be tuned based on the intended population's expected breathing pattern ranges such that the sample compartment is filled with a homogenous end-tidal gas sample regardless of an individual's breathing pattern. These apparatuses are useful, for example, for end-tidal CO analysis. Methods are also described.
Apparatuses are described to accurately determine a gas concentration of a sample of a patient' s breath. The apparatuses may include a sample compartment, a breath speed analyzer, a gas analyzer, and a processor. The sample compartment includes an inlet that receives the breath. The breath speed analyzer determines the speed of a portion of the breath. The gas analyzer determines a gas concentration. The processor includes an algorithm that determines a degree of non-homogeneity of the sample based on the speed, and a corrected gas concentration based on the degree of non-homogeneity. In some variations, the gas correction is determined independently of patient cooperation. Apparatuses may be tuned based on the intended population' s expected breathing pattern ranges such that the sample compartment is filled with a homogenous end-tidal gas sample regardless of an individual's breathing pattern. These apparatuses are useful, for example, for end-tidal CO analysis. Methods are also described.
Described here are devices for intranasally delivering therapeutic gases to a patient. The devices may include a measurement chamber, a combination of pressure regulators and a sequencing mechanism that controls valves associated with the pressure regulators. When implemented in a hand-held dispenser, the hand-held dispenser may reliably deliver consistent doses of gas regardless of the unknown state and pressure of the therapeutic gas in the measurement chamber.
Described here are devices including gas cylinders for use in various applications. The applications may comprise the dispensing and administration of a compressed gas to the nasal mucosa of a user. The devices generally include an integral valve comprised of a valve seat and a valve pin. The orifice of the valve seat may be configured to limit the flow rate of the gas.
B65D 23/00 - MANUTENTION; EMBALLAGE; EMMAGASINAGE; MANIPULATION DES MATÉRIAUX DE FORME PLATE OU FILIFORME ÉLÉMENTS D'EMBALLAGE; PAQUETS - Parties constitutives des bouteilles ou pots non prévues ailleurs
Described here are hand-held dispensers for intranasally delivering a therapeutic gas such as carbon dioxide to a user. The dispensers generally include a compressed gas cylinder, a pierce pin block, a valve, a regulator tube and a nosepiece. The regulator tube regulates both the pressure and flow of the gas out of the dispenser.
05 - Produits pharmaceutiques, vétérinaires et hygièniques
10 - Appareils et instruments médicaux
Produits et services
Pharmaceutical preparations, namely, carbon dioxide gas for
the non-inhaled treatment of inflammatory conditions. Medical apparatus, namely, medical and therapeutic gas
delivery systems comprised primarily of pressure and flow
regulators for measuring and regulating the mixture of
therapeutic gases for medical treatment.
05 - Produits pharmaceutiques, vétérinaires et hygièniques
10 - Appareils et instruments médicaux
Produits et services
(1) Pharmaceutical preparations, namely, carbon dioxide gas for the non-inhaled treatment of inflammatory conditions, allergies, rhinitis, migraines, trigeminal neuralgia and jaw pain; medical apparatus, namely, medical and therapeutic gas delivery systems consisting of pressure and flow regulators for delivering therapeutic gases for medical treatment.