Maplebear Inc.

États‑Unis d’Amérique

Retour au propriétaire

1-100 de 1 233 pour Maplebear Inc. Trier par
Recheche Texte
Affiner par
Type PI
        Brevet 812
        Marque 421
Juridiction
        États-Unis 914
        International 198
        Canada 104
        Europe 17
Date
Nouveautés (dernières 4 semaines) 16
2025 janvier 16
2024 décembre 28
2024 novembre 11
2024 octobre 23
Voir plus
Classe IPC
G06Q 30/0601 - Commerce électronique [e-commerce] 152
G06Q 30/06 - Transactions d’achat, de vente ou de crédit-bail 121
G06Q 30/02 - MarketingEstimation ou détermination des prixCollecte de fonds 110
G06N 20/00 - Apprentissage automatique 80
G06Q 10/08 - Logistique, p. ex. entreposage, chargement ou distributionGestion d’inventaires ou de stocks 80
Voir plus
Classe NICE
42 - Services scientifiques, technologiques et industriels, recherche et conception 165
09 - Appareils et instruments scientifiques et électriques 154
35 - Publicité; Affaires commerciales 145
39 - Services de transport, emballage et entreposage; organisation de voyages 126
45 - Services juridiques; services de sécurité; services personnels pour individus 113
Voir plus
Statut
En Instance 449
Enregistré / En vigueur 784
  1     2     3     ...     13        Prochaine page

1.

GENERATING ARTIFICIAL INTELLIGENCE (AI)-BASED IMAGES USING LARGE LANGUAGE MACHINE-LEARNED MODELS

      
Numéro d'application US2024039787
Numéro de publication 2025/024783
Statut Délivré - en vigueur
Date de dépôt 2024-07-26
Date de publication 2025-01-30
Propriétaire MAPLEBEAR INC. (USA)
Inventeur(s)
  • Srinivasan, Prithvishankar
  • Lin, Shih-Ting
  • Zhu, Yuanzheng
  • Xie, Min
  • Prasad, Shishir, Kumar
  • Archak, Shrikar
  • Ahuja, Karuna

Abrégé

An online system performs a task in conjunction with the model serving system or the interface system. The system generates a first prompt for input to a machine-learned language model, which specifies contextual information and a first request to generate a theme. The system provides the first prompt to a model serving system for execution by the machine-learned language model, receives a first response, and generates a second prompt. The second prompt specifies the theme and a second request to generate a third prompt for input to an image generation model that includes a third request to generate one or more images of one or more items associated with the theme. The system receives the third prompt by executing the model on the second prompt, provides the third prompt to the image generation model, and receives one or more images for presentation.

Classes IPC  ?

2.

SYSTEMS AND METHODS FOR ITEM RECOGNITION

      
Numéro d'application 18906868
Statut En instance
Date de dépôt 2024-10-04
Date de la première publication 2025-01-30
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Yang, Shiyuan
  • Gao, Lin
  • He, Yufeng
  • Zhou, Xiao
  • Huang, Yilin
  • Kelly, Griffin
  • Tsai, Isabel
  • Beshry, Ahmed

Abrégé

Self-checkout vehicle systems and methods comprising a self-checkout vehicle having a camera(s), a weight sensor(s), and a processor configured to: (i) identify via computer vision a merchandise item selected by a shopper based on an identifier affixed to the selected item, and (ii) calculate a price of the merchandise item based on the identification and weight of the selected item. Computer vision systems and methods for identifying merchandise selected by a shopper comprising a processor configured to: (i) identify an identifier affixed to the selected merchandise and an item category of the selected merchandise, and (ii) compare the identifier and item category identified in each respective image to determine the most likely identification of the merchandise.

Classes IPC  ?

  • G06Q 20/20 - Systèmes de réseaux présents sur les points de vente
  • B62B 3/14 - Voitures à bras ayant plus d'un essieu portant les roues servant au déplacementDispositifs de direction à cet effetAppareillage à cet effet caractérisées par des moyens pour l'emboîtement ou l'empilage, p. ex. chariots pour achats
  • G07G 1/00 - Caisses enregistreuses

3.

AUTOMATED CORRECTION OF ATTRIBUTES USING MACHINE-LEARNED LARGE LANGUAGE MODELS (LLMS)

      
Numéro d'application 18786352
Statut En instance
Date de dépôt 2024-07-26
Date de la première publication 2025-01-30
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Manchanda, Saurav
  • Baranowski, Paul
  • Sebastian, Ashna

Abrégé

An online system maintains a product catalog including products from various retailers, from which users can purchase products. Each of the products are associated with attributes such as a size value and a size unit of measure (UOM). The online system identifies products with erroneous product attributes using taxonomy attribute value homogeneity. The online system performs an inference task in conjunction with the model serving system or the interface system to infer a correct size value and size UOM of the product. The online system evaluates the accuracy of the inferred size value and size UOM of the product. Responsive to determining that the inferred data is accurate, the online system updates the product catalog with the corrected product attribute information.

Classes IPC  ?

  • G06F 16/215 - Amélioration de la qualité des donnéesNettoyage des données, p. ex. déduplication, suppression des entrées non valides ou correction des erreurs typographiques
  • G06F 16/23 - Mise à jour
  • G06F 40/205 - Analyse syntaxique

4.

GENERATING ARTIFICIAL INTELLIGENCE (AI)-BASED IMAGES USING LARGE LANGUAGE MACHINE-LEARNED MODELS

      
Numéro d'application 18785665
Statut En instance
Date de dépôt 2024-07-26
Date de la première publication 2025-01-30
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Srinivasan, Prithvishankar
  • Lin, Shih-Ting
  • Zhu, Yuanzheng
  • Xie, Min
  • Prasad, Shishir Kumar
  • Archak, Shrikar
  • Ahuja, Karuna

Abrégé

An online system performs a task in conjunction with the model serving system or the interface system. The system generates a first prompt for input to a machine-learned language model, which specifies contextual information and a first request to generate a theme. The system provides the first prompt to a model serving system for execution by the machine-learned language model, receives a first response, and generates a second prompt. The second prompt specifies the theme and a second request to generate a third prompt for input to an image generation model that includes a third request to generate one or more images of one or more items associated with the theme. The system receives the third prompt by executing the model on the second prompt, provides the third prompt to the image generation model, and receives one or more images for presentation.

Classes IPC  ?

  • G06T 11/00 - Génération d'images bidimensionnelles [2D]
  • G06T 5/70 - DébruitageLissage
  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo

5.

INFERRING A LOCATION OF AN ITEM WITHIN A WAREHOUSE FROM A TAXONOMY OF ITEMS OFFERED BY THE WAREHOUSE AND LOCATIONS OF OTHER ITEMS WITHIN THE WAREHOUSE

      
Numéro d'application 18916477
Statut En instance
Date de dépôt 2024-10-15
Date de la première publication 2025-01-30
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Knight, Benjamin
  • Johnson, Darren
  • Haugh, Daniel
  • Maheshwari, Saumitra
  • Xi, Qi
  • Woods, Conor

Abrégé

A method for optimizing order fulfillment in a warehouse by an online system. The system receives an item catalog from an inventory system, which includes item locations. The system also obtains a taxonomy that organizes items into hierarchical levels based on attributes. When an order is placed by a user, the system checks whether the item catalog contains location data for each item. If an item's location is missing, the system identifies alternative items from the taxonomy with shared attributes and uses the location of a selected alternative item as a proxy. The system determines a picking sequence for the items in the order, optimized to minimize travel distance within the warehouse, and transmits the sequence to a shopper's device for fulfillment.

Classes IPC  ?

  • G06Q 10/087 - Gestion d’inventaires ou de stocks, p. ex. exécution des commandes, approvisionnement ou régularisation par rapport aux commandes
  • G06Q 30/0601 - Commerce électronique [e-commerce]

6.

CUSTOMIZING RECIPES GENERATED FROM ONLINE SEARCH HISTORY USING MACHINE-LEARNED MODELS

      
Numéro d'application 18776104
Statut En instance
Date de dépôt 2024-07-17
Date de la première publication 2025-01-23
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Sejpal, Riddhima
  • Srinivasan, Prithvishankar
  • Manrique, Luis

Abrégé

An online system performs an inference task in conjunction with the model serving system or the interface system to generate customized recipes for users. The online system identifies a plurality of popular recipes based on historical user search data. The online system uses the collection of popular recipes to generate customized recipes for users based on user data and retailer data. The online system presents a customized recipe to the user, which may include items required to fulfill the recipe, a list of retailers at which the items are available for purchase, and instructions to combine the items. The online system collects user ratings and feedback on customized recipes to calculate a quality score. The online system may use the quality score to rank the customized recipes.

Classes IPC  ?

  • G06F 16/9535 - Adaptation de la recherche basée sur les profils des utilisateurs et la personnalisation
  • G06F 9/451 - Dispositions d’exécution pour interfaces utilisateur
  • G06F 16/9538 - Présentation des résultats des requêtes
  • G06Q 30/0282 - Notation ou évaluation d’opérateurs commerciaux ou de produits
  • G06Q 30/0601 - Commerce électronique [e-commerce]

7.

MACHINE LEARNING MODEL FOR ADDING AN ORDER TO A SET OF EXISTING ORDERS BEING SERVICED BY A PICKER OF A FULFILLMENT SYSTEM

      
Numéro d'application 18224795
Statut En instance
Date de dépôt 2023-07-21
Date de la première publication 2025-01-23
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Ryan, Kevin Charles
  • Selvam, Krishna Kumar
  • Shahriar, Tahmid
  • Sampat, Ajay Pankaj
  • Dutta, Shouvik
  • Bowman, Sawyer
  • Rose, Nicholas
  • Shi, Ziwei

Abrégé

An online concierge system receives information describing the progress of a picker servicing a batch of existing orders and a service request for an order. The system identifies picker attributes of the picker and order attributes of the order and each existing order of the set and accesses a machine learning model trained to predict a likelihood the picker will accept an add-on request to add the order to the batch of existing orders. To predict the likelihood, the system applies the model to the picker attributes, the progress of the picker, and the order attributes. The system determines a cost associated with sending the add-on request to the picker based on the likelihood and assigns the order to a set of orders based on the cost. The system sends the add-on request to the picker responsive to determining the order is assigned to the batch of existing orders.

Classes IPC  ?

8.

MEAL PLANNING USER INTERFACE WITH LARGE LANGUAGE MODELS

      
Numéro d'application 18771748
Statut En instance
Date de dépôt 2024-07-12
Date de la première publication 2025-01-23
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Sejpal, Riddhima
  • Manrique, Luis
  • Lu, Shiyun
  • Verma, Vikrant
  • Altman, Nicole Yin Chuen Lee

Abrégé

An online system leverages a machine-learning model to craft personalized meal plans for users. The system generates and presents an interface displaying categories of user preferences. The system receives, from the user via the interface, user preferences for the meal plan. The system generates a prompt including a request to generate the meal plan for the user and the user preferences. The system provides the prompt to the machine-learning model and receives, as output, a meal plan that comprises a list of meals and a list of ingredients for each meal. The system presents the meal plan to the user. The system receives user input to add ingredients to an order and generates an order including the lists of ingredients corresponding to the selected meals.

Classes IPC  ?

9.

Self-Checkout Anti-Theft Vehicle Systems And Methods

      
Numéro d'application 18906012
Statut En instance
Date de dépôt 2024-10-03
Date de la première publication 2025-01-23
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Gao, Lin
  • Huang, Yilin
  • Yang, Shiyuan
  • Beshry, Ahmed

Abrégé

Disclosed herein relates to a self-checkout anti-theft vehicle system, comprising: a self-checkout vehicle having a plurality of sensors and components implemented thereon, the self-checkout vehicle being used by shoppers for storing selected merchandises in a retail environment; and a centralized computing device. The centralized computing device is configured to: obtain information related to each merchandise selected and placed into the self-checkout vehicle by a shopper by exchanging data with the plurality of sensors and components via a first communication network, identify each merchandise via a second, different communication network based at least upon the information obtained from the plurality of sensors and components, and process payment information of each merchandise.

Classes IPC  ?

  • G06Q 20/18 - Architectures de paiement impliquant des terminaux en libre-service, des distributeurs automatiques, des bornes ou des terminaux multimédia
  • B62B 3/14 - Voitures à bras ayant plus d'un essieu portant les roues servant au déplacementDispositifs de direction à cet effetAppareillage à cet effet caractérisées par des moyens pour l'emboîtement ou l'empilage, p. ex. chariots pour achats
  • G06K 7/10 - Méthodes ou dispositions pour la lecture de supports d'enregistrement par radiation électromagnétique, p. ex. lecture optiqueMéthodes ou dispositions pour la lecture de supports d'enregistrement par radiation corpusculaire
  • G06K 7/14 - Méthodes ou dispositions pour la lecture de supports d'enregistrement par radiation électromagnétique, p. ex. lecture optiqueMéthodes ou dispositions pour la lecture de supports d'enregistrement par radiation corpusculaire utilisant la lumière sans sélection des longueurs d'onde, p. ex. lecture de la lumière blanche réfléchie
  • G06N 3/042 - Réseaux neuronaux fondés sur la connaissanceReprésentations logiques de réseaux neuronaux
  • G06N 3/044 - Réseaux récurrents, p. ex. réseaux de Hopfield
  • G06N 3/045 - Combinaisons de réseaux
  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 5/01 - Techniques de recherche dynamiqueHeuristiquesArbres dynamiquesSéparation et évaluation
  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance
  • G06Q 20/20 - Systèmes de réseaux présents sur les points de vente
  • G06Q 20/40 - Autorisation, p. ex. identification du payeur ou du bénéficiaire, vérification des références du client ou du magasinExamen et approbation des payeurs, p. ex. contrôle des lignes de crédit ou des listes négatives
  • G07G 1/00 - Caisses enregistreuses
  • G07G 1/14 - Systèmes comportant une ou plusieurs stations coopérant avec une unité centrale
  • G07G 3/00 - Indicateurs d'alarme, p. ex. sonneries

10.

ASSIGNING CONTROL AND VARIANTS TO DYNAMICALLY DEFINED TIME PERIODS IN APPLICATION STATE EXPERIMENTS

      
Numéro d'application 18353744
Statut En instance
Date de dépôt 2023-07-17
Date de la première publication 2025-01-23
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Zeng, Yixiang
  • Mannava, Aneesh
  • How, Bing Hong Leonard
  • Liang, Zhongqiang
  • Zhang, Wenhui
  • Yu, Lan

Abrégé

An online system dynamically determines time periods during which interaction data points are collected for application states being tested as part of an application state experiment. The online system collects interaction data points that occurred after a time when instructions were transmitted to apply the first application state and labels those with a state label corresponding to the first application state. When the online system detects that an interaction data minimum has been met, the online system transmits instructions to the client devices to present a user interface in accordance with a second application state. The online system applies a transition period between when the second set of instructions are transmitted and when the online system starts labeling interaction data points with a state label for the second application state. After the transition period, the online system labels interaction data points with state labels for the second application state.

Classes IPC  ?

  • G06F 9/451 - Dispositions d’exécution pour interfaces utilisateur
  • G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p. ex. des interruptions ou des opérations d'entrée–sortie

11.

TRANSFORMING ONLINE CONVERSATIONS IN A MESSAGING INTERFACE USING LARGE LANGUAGE MACHINE-LEARNED MODELS

      
Numéro d'application 18769970
Statut En instance
Date de dépôt 2024-07-11
Date de la première publication 2025-01-16
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Wong, Pak Hong
  • Fang, Shengwen
  • Shahriar, Tahmid
  • Williams, Zyshia

Abrégé

An online system performs a message transformation task in conjunction with the model serving system or the interface system to transform a message input to a chat message. The online system receives the message input in a conversation between a picker and a customer. The online system may transform the message input to a text string that is properly formed and contextually appropriate, format the text string into a chat message, and send the chat message to a receiving party on behalf of the sending party.

Classes IPC  ?

  • G06F 40/58 - Utilisation de traduction automatisée, p. ex. pour recherches multilingues, pour fournir aux dispositifs clients une traduction effectuée par le serveur ou pour la traduction en temps réel
  • G06F 40/106 - Affichage de la mise en page des documentsPrévisualisation
  • G06F 40/166 - Édition, p. ex. insertion ou suppression
  • G06F 40/232 - Correction orthographique, p. ex. vérificateurs d’orthographe ou insertion des voyelles

12.

USER EMBEDDING GENERATION USING LLM-GENERATED CONTENT EMBEDDINGS

      
Numéro d'application 18772774
Statut En instance
Date de dépôt 2024-07-15
Date de la première publication 2025-01-16
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Ruan, Chuanwei
  • Stewart, Allan
  • Tan, Li
  • Ye, Yunzhi
  • Nejad, Aref Kashani

Abrégé

An online system selects an item to present to a user of the online system. The online system accesses user interaction data for the user. The online system transmits the user interaction data to a model serving system and receives, from the model serving system, item embeddings for the items with which the user interacted. The model serving system may use an LLM to generate the item embeddings based on the user interaction data. The online system generates a user embedding array based on the item embeddings. The online system applies a transformer network to the user embedding array to generate a user embedding describing the user. To select an item to present to the user, the online system compares the generated user embedding to item embeddings for a set of candidate items. The online system selects a candidate item based on the interaction scores.

Classes IPC  ?

13.

SELECTING A LOCATION FOR ORDER FULFILLMENT BASED ON MACHINE LEARNING MODEL PREDICTION OF INCOMPLETE FULFILLMENT OF THE ORDER FOR DIFFERENT LOCATIONS

      
Numéro d'application 18898272
Statut En instance
Date de dépôt 2024-09-26
Date de la première publication 2025-01-16
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Rao Karikurve, Sharath
  • Pawar, Abhay
  • Prasad, Shishir Kumar

Abrégé

A system or a method for fulfilling orders using a machine-learned model in an online system. When a user places an order, the system accesses a model trained on historical data, including characteristics of candidate locations, previous orders, and recent inventory records. The model predicts the probability that each candidate location will incompletely fulfill the order. The system selects the location with the lowest probability of incomplete fulfillment and sends fulfillment instructions to client devices of available shoppers. After the order is fulfilled, the system receives data from the client devices of shoppers, identifies whether the order was completely fulfilled, and updates the machine-learned model based on the actual outcomes.

Classes IPC  ?

  • G06Q 30/0601 - Commerce électronique [e-commerce]
  • G06N 7/01 - Modèles graphiques probabilistes, p. ex. réseaux probabilistes
  • G06N 20/00 - Apprentissage automatique
  • G06Q 10/0875 - Énumération ou classification des pièces, des fournitures ou des services, p. ex. nomenclatures
  • G06Q 20/40 - Autorisation, p. ex. identification du payeur ou du bénéficiaire, vérification des références du client ou du magasinExamen et approbation des payeurs, p. ex. contrôle des lignes de crédit ou des listes négatives
  • G06Q 30/0204 - Segmentation du marché

14.

RELATING ENVIRONMENTAL EFFECTS TO USER INTERACTIONS USING AUTOMATED SHOPPING CARTS

      
Numéro d'application 18350202
Statut En instance
Date de dépôt 2023-07-11
Date de la première publication 2025-01-16
Propriétaire Maplebear Inc. (USA)
Inventeur(s) Nigul, Leho

Abrégé

An automated checkout system applies environmental effects to physical regions within a store. The automated checkout system logs the environmental effect, a time the environmental effect was applied, and the physical region to which the environmental effect was applied. The automated checkout system detects an interaction event and logs a time associated with the interaction event. The automated checkout system identifies a location of the automated shopping cart and identifies a physical region within the store that contains the automated shopping cart's location. The automated checkout system identifies the environmental effect that was applied to the physical region at the time of the interaction event and generates a data point. For each environmental effect, the automated checkout system computes a success metric based on the generated data points. The automated checkout system applies environmental effects to physical regions based on the success metrics.

Classes IPC  ?

15.

RECOMMENDATION SYSTEM USING USER EMBEDDINGS HAVING STABLE LONG-TERM COMPONENT AND DYNAMIC SHORT-TERM SESSION COMPONENT

      
Numéro d'application US2024028927
Numéro de publication 2025/006065
Statut Délivré - en vigueur
Date de dépôt 2024-05-10
Date de publication 2025-01-02
Propriétaire MAPLEBEAR INC. (USA)
Inventeur(s)
  • Ruan, Chuanwei
  • Ye, Yunzhi
  • Li, Han
  • Vengerov, David
  • Stewart, Allan
  • Nejad, Aref, Kashani

Abrégé

An online system accesses a two-tower model trained to identify candidate items for presentation to users, in which the model includes an item tower trained to compute item embeddings and a user tower trained to compute user embeddings. The user tower includes a long-term sub-tower trained to compute long-term embeddings for users and a short-term sub-tower trained to compute short-term embeddings for users. The model is trained based on item data associated with items, user data associated with users, and session data associated with user sessions. The system uses the item tower to compute an item embedding for each of multiple candidate items. The system also uses the long-term sub-tower to compute a long-term embedding for a user. The system then receives session data associated with a current session of the user and uses the short-term sub-tower to compute a short-term embedding for the user based on this session data.

Classes IPC  ?

  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06Q 30/06 - Transactions d’achat, de vente ou de crédit-bail

16.

MODIFYING RANKINGS OF ITEMS IN SEARCH RESULTS BASED ON ITEM AVAILABILITIES AND SEARCH QUERY ATTRIBUTES

      
Numéro d'application US2024033550
Numéro de publication 2025/006183
Statut Délivré - en vigueur
Date de dépôt 2024-06-12
Date de publication 2025-01-02
Propriétaire MAPLEBEAR INC. (USA)
Inventeur(s)
  • Fan, Raochuan
  • Putta, Prakash
  • Gudla, Vinesh
  • Paulet Okoye, Nkemakonam
  • Na, Taesik
  • Tenneti, Tejaswi

Abrégé

An online concierge system allows a customer to search items offered by a retailer by providing a set of items to the customer based on a search query. To account for varying availability of items at the retailer, the online concierge system modifies rankings in the set of items having less than a threshold predicted availability at the retailer. This reduces a likelihood selection of an item likely to be unavailable at the retailer. To maintain customer confidence in the items selected based on the search results by maintaining visibility of items relevant to the search query, the online concierge system determines how much an item is modified within the set based on search query attributes, item attributes, or customer characteristics. This allows different items to be adjusted different amounts in a set based on the item, as well as the search query for which the item was selected.

17.

DETERMINING PURCHASE SUGGESTIONS FOR AN ONLINE SHOPPING CONCIERGE PLATFORM

      
Numéro d'application 18212122
Statut En instance
Date de dépôt 2023-06-20
Date de la première publication 2024-12-26
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Mccoleman, Ryan
  • Scheibelhut, Brent
  • Oberemk, Mark
  • Maharaj, Shaun Navin

Abrégé

The present disclosure is directed to determining purchase suggestions for an online shopping concierge platform. In particular, the methods and systems of the present disclosure may receive, from a computing device associated with a customer of an online shopping concierge platform, data indicating one or more interactions of the customer with the online shopping concierge platform; determine, based at least in part on one or more machine learning (ML) models and the data indicating the interaction(s), a likelihood that the customer will purchase a particular item if presented, at a specific time, with a suggestion to purchase the particular item; and generate and communicate data describing a graphical user interface (GUI) comprising at least a portion of a listing of one or more purchase suggestions including the suggestion to purchase the particular item.

Classes IPC  ?

  • G06Q 30/0601 - Commerce électronique [e-commerce]
  • G06Q 30/0201 - Modélisation du marchéAnalyse du marchéCollecte de données du marché

18.

OFFLINE SIMULATION TO TEST AN EFFECT OF A CONFIGURABLE PARAMETER USED BY A CONTENT DELIVERY SYSTEM

      
Numéro d'application 18213761
Statut En instance
Date de dépôt 2023-06-23
Date de la première publication 2024-12-26
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s) Ren, Tianshu

Abrégé

An online concierge system includes a content selection simulation module that performs offline simulations of a content selection process to enable rapid testing of various content selection parameters. The content selection simulation module obtains historical content selection data including content delivery opportunities and candidate content items associated with those content delivery opportunities. The content selection simulation module simulates the filtering, ranking, and auction stages of a content selection process using a set of configurable content selection parameters that affects selection of a winning content item and price. The winning content items from the simulation may be used to compute performance metrics associated with the configured content selection parameters. Different content selection parameters may be compared to determine an effect of changes to the parameters.

Classes IPC  ?

19.

SUGGESTING FULFILLMENT SOURCES FOR A USER AT A NEW LOCATION BASED ON USER'S HISTORICAL ACTIVITY

      
Numéro d'application 18213764
Statut En instance
Date de dépôt 2023-06-23
Date de la première publication 2024-12-26
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Rao Karikurve, Sharath
  • Balasubramanian, Ramasubramanian

Abrégé

An online system provides a platform for users to place orders at different physical retailers. When a user moves from one location to another (e.g., the user physically moves or is traveling), where the user's preferred retailer is not available, the online system suggests a new retailer for the user and optionally items to purchase at the new retailer. When a user accesses the online system from a new location, the system obtains the user's previous purchases and computes a repurchase probability. The system then ranks candidate new retailers in the new location based on their match to the likely repurchased items. To suggest new items to buy at the new retailer, the system uses existing replacement models to suggest replacements for the items that the user is likely to buy based on previous purchases.

Classes IPC  ?

20.

MACHINE-LEARNED MODEL FOR PERSONALIZING SERVICE OPTIONS IN AN ONLINE CONCIERGE SYSTEM USING LOCATION FEATURES

      
Numéro d'application 18214150
Statut En instance
Date de dépôt 2023-06-26
Date de la première publication 2024-12-26
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Fletcher, Robert
  • Balasubramanian, Ramasubramanian
  • Drerup, Tilman
  • Rao Karikurve, Sharath

Abrégé

Based on logged information about prior events, an online concierge system generates a set of location metrics that quantify properties of locations such as retailers at which items may be acquired, and residences to which the items are brought. The location metrics can be used for a variety of purposes to aid customers or other users of the online concierge system, such as providing the users with more information (e.g., likely delivery delays) or alternative options (e.g., pricing options), or emphasizing options that the location metrics indicate would be of particular value to the user. To determine whether to emphasize a particular option, the online concierge system applies a machine-learned model that predicts whether emphasizing that option would effect a positive change in user behavior, relative to not emphasizing it.

Classes IPC  ?

21.

TRAINED MODELS FOR PREDICTING TIMES FOR COMPLETION OF TASKS FOR AN ORDER PLACED WITH AN ONLINE SYSTEM AND DETERMINING REMEDIAL ACTIONS

      
Numéro d'application 18214316
Statut En instance
Date de dépôt 2023-06-26
Date de la première publication 2024-12-26
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Neray, Dustin
  • Yin, Licheng
  • Zeng, George
  • Kalra, Siddarth
  • Dolbakian, Levon
  • Too, Amos
  • Tandler, Jaclyn

Abrégé

Embodiments are related to automatic prediction of times for completion of tasks for an order by a picker associated with an online system and determination of an appropriate intervention for the picker. The online system applies a computer model to predict a plurality of times for completion of a plurality of tasks associated with the first order. The online system determines that the picker who accepted the first order did not complete a task of the plurality of tasks at a predicted time of the plurality of times increased by a threshold time. The online system determines an intervention associated with the picker, based in part on the determination that the picker did not complete the task. The online system causes a device of the picker to display a message that corresponds to the determined intervention.

Classes IPC  ?

22.

USER INTERFACE FOR ACCESSING MULTIPLE CATALOGS OF ITEMS AND INDICATING ITEMS ADDED FROM CATALOGS

      
Numéro d'application 18212633
Statut En instance
Date de dépôt 2023-06-21
Date de la première publication 2024-12-26
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Rudnick, Christopher Hans Nietes
  • Munir, Imaan
  • Alarcon Villaran, Eduardo Martin
  • Bouck, Miranda
  • Bahatyrevich, Uladzimir

Abrégé

A scrollable listing of icons associated with catalogs is displayed, in which the scrollable listing of icons is overlaid onto a page and remains fixed when the page is scrolled, each icon is associated with a catalog, and each icon is displayed with an indication of a set of items selected from a corresponding catalog. In response to a user selection of an icon from the scrollable listing of icons, the page is updated to include items included in a catalog associated with the selected icon. In response to a user selection to add an item from the page including the items, the indication displayed with the selected icon in the scrollable listing of icons is updated to indicate the added item.

Classes IPC  ?

23.

USING TRAINED MODEL TO PREDICT A SUPPLY STATE OF AN ONLINE SYSTEM FOR MANAGING ORDER FULFILLMENTS

      
Numéro d'application 18212883
Statut En instance
Date de dépôt 2023-06-22
Date de la première publication 2024-12-26
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s) Makhijani, Rahul

Abrégé

Embodiments are related to using a trained computer model to predict a supply state of an online system for state-aware management of order fulfillments. The online system measures first values of a metric for a set of sample orders. The online system accesses the computer model trained to predict a value of the metric for an order placed with the online system. The online system applies the computer model to predict second values of the metric for the set of sample orders, based on one or more features of each sample order. The online system compares a distribution of the first values to a distribution of the second values and determines the supply state of the online system based on the comparison. Responsive to the determination of the supply state, the online system triggers a remedial action for the online system that adjusts the supply state of the online system.

Classes IPC  ?

  • G06Q 10/0631 - Planification, affectation, distribution ou ordonnancement de ressources d’entreprises ou d’organisations
  • G06N 20/00 - Apprentissage automatique
  • G06Q 10/083 - Expédition
  • G06Q 10/087 - Gestion d’inventaires ou de stocks, p. ex. exécution des commandes, approvisionnement ou régularisation par rapport aux commandes
  • G06Q 30/0601 - Commerce électronique [e-commerce]

24.

IDENTIFYING AN ANOMALOUS TRANSACTION BY COMPARING A METRIC FOR THE TRANSACTION AGAINST A MODEL-DERIVED EXPECTED DISTRIBUTION OF THE METRIC

      
Numéro d'application 18213756
Statut En instance
Date de dépôt 2023-06-23
Date de la première publication 2024-12-26
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Riso, Rebecca
  • Xu, Bo
  • Sanchez, Kenneth Jason
  • Sinha, Ashish
  • Wu, Chencheng

Abrégé

An online system receives a request to confirm a transaction that is associated with an order. The system accepts or declines the transaction based on whether an amount associated with the pending transaction is likely to exceed an expected amount of the order by more than a threshold value. To determine the threshold, the system trains a first model to predict an overspend for an order and then trains a second model to predict an amount of error associated with the predictions from the first model. The outputs of the first model and the second model provide a mean and a variance for an expected distribution of the overspend. If the actual overspend amount for the transaction exists in too high of a percentile of the distribution, the transaction may be flagged for review or declined.

Classes IPC  ?

  • G06Q 30/0601 - Commerce électronique [e-commerce]
  • G06Q 20/40 - Autorisation, p. ex. identification du payeur ou du bénéficiaire, vérification des références du client ou du magasinExamen et approbation des payeurs, p. ex. contrôle des lignes de crédit ou des listes négatives

25.

VALIDATING CODE OWNERSHIP OF SOFTWARE COMPONENTS IN A SOFTWARE DEVELOPMENT SYSTEM

      
Numéro d'application 18213773
Statut En instance
Date de dépôt 2023-06-23
Date de la première publication 2024-12-26
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Li, Aoshi
  • Green, Kevin
  • Liang, Zhongqiang
  • Campbell, Francois
  • Zhang, Mengyu

Abrégé

A system validates code ownership of software components identified in a build process. The system receives a pull request identifying a set of software components. The system analyzes code ownership of each software component using machine learning. The system provides features describing the software components as input to a machine learning model. The system determines based on the output of the machine learning model, whether the code ownership of the software component can be determined accurately. If the system determines that a software component identified by the pull request cannot be determined with high accuracy, the system may block the pull request or send a message indicating that the code ownership of a software component cannot be determined accurately.

Classes IPC  ?

26.

Using Language Model To Automatically Generate List Of Items At An Online System Based on a Constraint

      
Numéro d'application 18214275
Statut En instance
Date de dépôt 2023-06-26
Date de la première publication 2024-12-26
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Gudla, Vinesh Reddy
  • Kolavali, Sudha Rani
  • Na, Taesik
  • Xiao, Xiao
  • Okoye, Nkemakonam Paulet

Abrégé

Embodiments relate to using a large language model (LLM) to generate a list of items at an online system with a user defined constraint. The online system receives a query that includes at least one constraint. The online system generates a prompt for input into the LLM, based at least in part on the query. The online system requests the LLM to generate, based on the prompt, a set of constraints for a set of item types. The online system generates a list of candidate items by searching through a set of items stored in one or more non-transitory computer-readable media using the set of constraints for the set of item types. The online system causes a device of the user to display a user interface with the list of items for inclusion into a cart, the list of items obtained from the list of candidate items.

Classes IPC  ?

27.

COMPUTING ITEM FINDABILITY THROUGH A FINDABILITY MACHINE-LEARNING MODEL

      
Numéro d'application 18339203
Statut En instance
Date de dépôt 2023-06-21
Date de la première publication 2024-12-26
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Rothschild-Keita, Amalia
  • Scheibelhut, Brent
  • Oberemk, Mark
  • Xiao, Hua
  • Maharaj, Shaun Navin
  • Amjad, Taha

Abrégé

An online concierge system uses a findability machine-learning model to predict the findability of items within a physical area. The findability model is a machine-learning model that is trained to compute findability scores, which are scores that represent the ease or difficulty of finding items within a physical area. The findability model computes findability scores for items based on an item map describing the locations of items within a physical area. The findability model is trained based on data describing pickers that collect items to service orders for the online concierge system. The online concierge system aggregates this information across a set of pickers to generate training examples to train the findability model. These training examples include item data for an item, an item map data describing an item map for the physical area, and a label that indicates a findability score for that item/item map pair.

Classes IPC  ?

28.

AUTOMATIC CREATION OF LISTS OF ITEMS ORGANIZED AROUND CO-OCCURRENCES

      
Numéro d'application 18209178
Statut En instance
Date de dépôt 2023-06-13
Date de la première publication 2024-12-19
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s) Rothschild-Keita, Amalia

Abrégé

Automatic creation of lists of items at an online system organized around co-occurrences of items. The online system provides inputs into a computer model, the inputs including information about items purchased by a user of the online system over a defined time period, information about a catalog of items stored at one or more computer-readable media of the online system, and a plurality of recipes each including a set of co-occurring items. The online system applies the computer model to generate an indication of co-occurrence of each pair of items in each recipe. The online system generates one or more lists of items based on the indication of co-occurrence, each of the one or more lists of items associated with a respective recipe. The online system causes a device of the user to display a user interface with the one or more lists of items for presentation to the user.

Classes IPC  ?

29.

TRAINING DETECTION MODEL USING OUTPUT OF LANGUAGE MODEL APPLIED TO EVENT INFORMATION

      
Numéro d'application 18210553
Statut En instance
Date de dépôt 2023-06-15
Date de la première publication 2024-12-19
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • He, Ze
  • Ding, Dian
  • Sun, Hechao

Abrégé

Embodiments relate to an automatic detection of fraudulent behavior for a transaction at an online system. The online system requests a large language model (LLM) to determine, based on a prompt input into the LLM, information about a refund event for a first order placed by a user of the online system. The online system accesses a computer model trained to detect a fraudulent behavior associated with an order placed with the online system. The online system applies the computer model to determine a score associated with the refund event, based on the information about the refund event received from the LLM. The online system determines, based on the score, whether the refund event was due to a fraudulent behavior of the user. The online system performs at least one action associated with the online system, based on the determination whether the refund event was due to the fraudulent behavior.

Classes IPC  ?

  • G06N 3/045 - Combinaisons de réseaux
  • G06N 3/084 - Rétropropagation, p. ex. suivant l’algorithme du gradient
  • G06Q 10/087 - Gestion d’inventaires ou de stocks, p. ex. exécution des commandes, approvisionnement ou régularisation par rapport aux commandes
  • G06Q 20/40 - Autorisation, p. ex. identification du payeur ou du bénéficiaire, vérification des références du client ou du magasinExamen et approbation des payeurs, p. ex. contrôle des lignes de crédit ou des listes négatives
  • G06Q 30/0601 - Commerce électronique [e-commerce]

30.

USING COMPUTER MODEL TO DETERMINE AVAILABILITY OF SERVICE OPTION FOR DELIVERY OF ORDER PLACED WITH ONLINE SYSTEM

      
Numéro d'application 18210976
Statut En instance
Date de dépôt 2023-06-16
Date de la première publication 2024-12-19
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Wang, Zi
  • Deng, Houtao
  • Wang, Xiangyu
  • Krishnan, Ganesh
  • Jain, Aman

Abrégé

Embodiments relate to determining an availability of a service option for delivery of an order placed with an online system. The online system receives an order placed with the online system. The online system accesses a computer model trained to predict a value of metric for an order placed with the online system. The online system applies the computer model to predict the value of the metric for the order. The online system determines which service option of a plurality of service options of the online system is available for delivery of the order, based at least in part on the predicted value of the metric and a threshold. The online system causes the device of the user to display an availability of the determined service option for delivery of the order.

Classes IPC  ?

  • G06Q 10/04 - Prévision ou optimisation spécialement adaptées à des fins administratives ou de gestion, p. ex. programmation linéaire ou "problème d’optimisation des stocks"
  • G06Q 10/083 - Expédition
  • G06Q 30/0601 - Commerce électronique [e-commerce]

31.

IDENTIFYING ITEM SIMILARITY AND LIKELIHOOD OF SELECTION FOR LARGER-SIZE VARIANTS OF ITEMS ORDERED BY CUSTOMERS OF AN ONLINE CONCIERGE SYSTEM

      
Numéro d'application 18211107
Statut En instance
Date de dépôt 2023-06-16
Date de la première publication 2024-12-19
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Gulati, Bhavya
  • Ahuja, Chakshu
  • Ahuja, Karuna
  • Narlikar, Girija

Abrégé

An online concierge system receives information describing items in orders placed by a customer and a sequence of events associated with each order and identifies an impulse item included in the orders based on a set of rules, attributes of each item, and/or the sequence of events. The system applies a model to predict a measure of similarity between the impulse item and each of multiple candidate items and identifies larger-size variants of the impulse item based on this prediction and attributes of the impulse item and each candidate item. The system applies another model to predict a likelihood the customer will order each variant, computes a recommendation score for each variant based on this prediction, and determines whether to recommend each variant based on the score. Based on the determination, the system generates and sends a recommendation for a variant to a client device associated with the customer.

Classes IPC  ?

32.

ORDER-SPECIFIC EXPANSION OF AN AREA ENCOMPASSING PICKERS AVAILABLE FOR ACCEPTING ORDERS PLACED WITH AN ONLINE SYSTEM

      
Numéro d'application 18211124
Statut En instance
Date de dépôt 2023-06-16
Date de la première publication 2024-12-19
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Makhijani, Rahul
  • Lee, Pak Tao
  • Li, Shang

Abrégé

Embodiments relate to order specific expansion of an area that encompasses pickers available for accepting an order placed with an online system. The online system accesses a computer model trained to predict an attractiveness metric for the order and applies the computer model to predict a value of the attractiveness metric for a first order. The online system classifies the first order into a first set or a second set, based on the value of the attractiveness metric and a threshold. Based on the classification, the online system expands over time a size of an area that encompasses a set of pickers available for accepting the first order. The online system causes a device of each picker in the set of available pickers located within the area of the expanded size to display an availability of the first order for acceptance by each picker in the set of available pickers.

Classes IPC  ?

  • G06Q 10/0631 - Planification, affectation, distribution ou ordonnancement de ressources d’entreprises ou d’organisations

33.

ASK INSTACART

      
Numéro d'application 1827692
Statut Enregistrée
Date de dépôt 2023-10-05
Date d'enregistrement 2023-10-05
Propriétaire Maplebear, Inc. (USA)
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 35 - Publicité; Affaires commerciales
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Downloadable software for browsing and purchasing consumer goods of others; downloadable software for engaging and coordinating personal shopper and delivery services; downloadable software for providing information on available same-day transportation and delivery services; downloadable software for shopping in the field of consumer goods, grocery, food, pharmacy, home goods, pet supply, electronics, clothing, beauty, media, office supply, and general merchandise; downloadable software for delivery in the field of consumer goods, grocery, food, pharmacy, home goods, pet supply, electronics, clothing, beauty, media, office supply, and general merchandise; downloadable software for searching for and accessing, creating, publishing, and browsing recipes and information in the field of food, cooking, wine, and beverages; downloadable software for searching for and accessing, creating, publishing and browsing information in the field of general merchandise, consumer goods, groceries and food, pharmacy goods, home goods, pet supplies, electronics, clothing, beauty products, media, office supplies; computer software and programs for use in payment processing; downloadable mobile applications for commerce, namely, software that allows users to perform electronic business transactions via a global computer network; downloadable computer chatbot software for simulating conversations; downloadable chatbot software using artificial intelligence for replying to questions from online retail store customers; downloadable software using artificial intelligence for generating contextual recommendations; all of the foregoing excluding photo and video sharing and social networking software (term considered too vague by the International Bureau pursuant to Rule 13 (2) (b) of the Regulations). Online retail store services featuring a wide variety of consumer goods of others; advertising and promoting the goods and services of others via a global computer network, namely, advertising and promoting the availability of goods for selection, ordering, purchase, and delivery; comparison shopping services; promoting the goods and services of others, namely, providing special offers and online catalogs featuring a wide variety of consumer goods of others; online ordering services featuring consumer goods, groceries, foods, pharmacy products, home goods, pet supplies, electronics, clothing, beauty products, media, office supplies, other supermarket products, and general merchandise; promoting the goods and services of others, namely, distributing online information, recipes, advertisements, articles, and media featuring the consumer goods of others; order fulfillment services, namely, order processing services, clerical services for the taking of purchase orders, purchase order management services, purchase order management services for third parties, invoicing services, arranging of contracts for the purchase and sale of good [for others], ordering services for third parties and customer relationship management services; inventory management and control; inventorying merchandise; order fulfillment services incorporating robotics and automation, namely, order processing services, clerical services for the taking of purchase orders, purchase order management services, purchase order management services for third parties, invoicing services, arranging of contracts for the purchase and sale of good [for others], ordering services for third parties and customer relationship management services; all of the foregoing excluding photo and video sharing and social networking services (term considered too vague by the International Bureau pursuant to Rule 13 (2) (b) of the Regulations). Providing temporary use of online non-downloadable software that allows users to search, browse, and purchase a wide variety of consumer goods of others; providing temporary use of non-downloadable software for browsing, comparing, and purchasing a wide variety of consumer goods of others; providing temporary use of non-downloadable software for ordering delivery services; providing temporary use of non-downloadable software for engaging and coordinating personal shopper and delivery services; providing temporary use of non-downloadable software for providing information on available same-day transportation and delivery services; providing temporary use of online non-downloadable software that allows users to search, access, create, publish and browse information in the field of food, cooking, wine, beverages, recipes, general merchandise, consumer goods, pharmacy goods, home goods, pet supplies, electronics, clothing, beauty products, media, and office supplies; providing temporary use of non-downloadable software for shopping in the field of consumer goods, grocery, food, pharmacy, home goods, pet supply, electronics, clothing, beauty, media, office supply, and general merchandise; providing temporary use of non-downloadable software for delivery in the field of consumer goods, grocery, food, pharmacy, home goods, pet supply, electronics, clothing, beauty, media, office supply, and general merchandise; providing temporary use of non-downloadable software for searching for and accessing, creating, publishing, and browsing recipes and information in the field of food, cooking, wine, and beverages; providing temporary use of non-downloadable software for searching for and accessing, creating, publishing and browsing information in the field of general merchandise, consumer goods, groceries and food, pharmacy goods, home goods, pet supplies, electronics, clothing, beauty products, media, office supplies; providing temporary use of online non-downloadable computer chatbot software for simulating conversations; providing temporary use of online non-downloadable chatbot software using artificial intelligence for replying to questions from online retail store customers; providing temporary use of online non-downloadable software using artificial intelligence for generating contextual recommendations; all of the foregoing excluding photo and video sharing and social networking services (term considered too vague by the International Bureau pursuant to Rule 13 (2) (b) of the Regulations).

34.

USING GENERATIVE ARTIFICIAL INTELLIGENCE (AI) FOR AUTOMATED DIGITAL FLYER CONTENT GENERATION

      
Numéro d'application US2024031483
Numéro de publication 2024/253921
Statut Délivré - en vigueur
Date de dépôt 2024-05-29
Date de publication 2024-12-12
Propriétaire MAPLEBEAR INC. (USA)
Inventeur(s)
  • Pham, Bryan
  • Maharaj, Shaun
  • Scheibelhut, Brent
  • Oberemk, Mark
  • Mouvet, Fabien

Abrégé

An online system generates digital flyers using a generative model. The online system receives, from a client device, a request to generate a digital flyer. The request includes one or more design conditions for the digital flyer. For example, the design conditions may specify one or more cornerstone items, a theme, a template flyer, other target characteristics, etc. The online system further accesses an item catalog storing item data. The online system generates a query for a generative model including a prompt to generate the digital flyer, the one or more design conditions, and item data accessed from the item catalog. The online system provides the query to a model serving system, which executes the generative model with the query to return a batch of one or more digital flyers. The online system provides a first digital flyer in the batch of one or more digital flyers for presentation.

35.

ARROW ON HALF CIRCLE + LOGO

      
Numéro d'application 236755200
Statut En instance
Date de dépôt 2024-12-11
Propriétaire Maplebear Inc. (USA)
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 35 - Publicité; Affaires commerciales
  • 36 - Services financiers, assurances et affaires immobilières
  • 38 - Services de télécommunications
  • 39 - Services de transport, emballage et entreposage; organisation de voyages
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception
  • 45 - Services juridiques; services de sécurité; services personnels pour individus

Produits et services

(1) Downloadable software for browsing and purchasing consumer goods of others; downloadable software for engaging and coordinating personal shopper and delivery services; downloadable software for providing information on available same-day transportation and delivery services; downloadable software for shopping in the field of consumer goods, grocery, food, pharmacy, home goods, pet supply, electronics, clothing, beauty, media, office supply, and general merchandise; downloadable software for delivery in the field of consumer goods, grocery, food, pharmacy, home goods, pet supply, electronics, clothing, beauty, media, office supply, and general merchandise; downloadable software for searching for and accessing, creating, publishing, and browsing recipes and information in the field of food, cooking, wine, and beverages; downloadable software for searching for and accessing, creating, publishing and browsing information in the field of general merchandise, consumer goods, groceries and food, pharmacy goods, home goods, pet supplies, electronics, clothing, beauty products, media, office supplies; computer hardware and software systems for the wholesale and retail store industries, namely, point-of-sale recorded software and computer hardware for inventory management, operating computer systems, processing of sale transactions, data and accounting management, customer relationship management, transmission of payment information, inventory management, management of consumer loyalty programs and gift card processing; artificial intelligence powered checkout system comprised of customer self-service electronic checkout stations for point of sale; artificial intelligence powered checkout systems comprised of cameras to track and process purchases of goods from stores; charging stations for electric shopping carts; electronic equipment for point-of-sale (POS) systems, namely, point-of-sale terminals, bar code readers, optical readers, advertisement display monitors, computer display monitors, keyboards, document printers, scanners, radio transmitters, radio receivers, and computer hardware with embedded computer operating software; point-of-sale terminals; computing hardware that consists of a screen, a central processing unit and cameras; secure electronic payment terminals for electronic transactions; downloadable mobile applications that allows users to execute shopping-related demands in the nature of building a shopping list, placing an order for groceries and retail products online, and selecting recipes according to groceries purchased; high performance one dimensional and two dimensional barcode readers using image technology; downloadable computer application software for mobile phones, handheld computers, and tablets, featuring image recognition, optical decoding, audio recognition, audio decoding, and code technology, for use in reading scanned advertisements in print, mobile, online, and radio format, displaying consumer product information about goods or services, providing consumers with purchase options that include customer loyalty and rewards programs offerings, personalized sales offers, coupons, and recommendations, and providing consumers with the ability to order, purchase, and obtain delivery of general consumer merchandise and services; Computing hardware, namely, mobile computing devices consisting of barcode scanners, interactive touchscreen monitors, and radio frequency devices featuring deep learning, camera-based item identification, and computer vision, that function as portable retail store checkouts and which may be mounted on shopping carts, shopping baskets, and any form of container used in a retail store setting; Computing hardware, namely, mobile computing devices consisting of barcode scanners, interactive touchscreen monitors, radio frequency receivers, and electronic weighing scales consisting of weight sensors and featuring deep learning, computer vision, and camera based item identification, that enable consumers to weigh goods placed in shopping carts, shopping baskets, and other containers used in retail store settings; Computer hardware in the nature of mobile computing devices, bar code scanners, touchscreen monitors and radio frequency receivers that cooperate with each other to collect and aggregate consumer behavior data, namely, tracking customer purchases and automating customer checkout within a retail store, for use with shopping carts; downloadable and recorded software development kits (SDKs) consisting of computer software development tools to allow third parties to integrate retailer applications, e-commerce sites and retail fulfillment backend systems to cloud-based consumer marketplace or a locally deployed server; recorded computer software and computer hardware that allow users to perform electronic business transactions via a global computer network; customer self-service electronic checkout stations for point of sale; downloadable and recorded computer software and programs for use in payment processing; downloadable mobile applications for commerce, namely, software that allows users to perform electronic business transactions via a global computer network (1) Membership club services in the nature of providing discounts, expedited delivery service, and free delivery service to members in the field of e-commerce and retail; online retail store services featuring a wide variety of consumer goods of others; online retail and wholesale store services for a wide variety of consumer goods of others, grocery, food, pharmacy products, home goods, pet supply, electronics, clothing, beauty products, media, office supply, and general consumer merchandise featuring delivery to home, office, and other designated locations; advertising and promoting the goods and services of others via a global computer network, namely, advertising and promoting the availability of goods for selection, ordering, purchase, and delivery; comparison shopping services; promoting the goods and services of others, namely, providing special offers and online catalogs featuring a wide variety of consumer goods of others; online ordering services featuring consumer goods, groceries, foods, pharmacy products, home goods, pet supplies, electronics, clothing, beauty products, media, office supplies, other supermarket products, and general merchandise; promoting the goods and services of others, namely, distributing online information, recipes, advertisements, articles, and media featuring the consumer goods of others; order fulfillment services; inventory management and control; inventorying merchandise; order fulfillment services incorporating robotics and automation; online consumer goods, grocery, food, pharmacy, home goods, pet supply, electronics, clothing, beauty, media, office supply, and general merchandise retail and wholesale store services featuring home, office, and other designated location delivery services; providing others with advertising services, namely, dissemination for others of marketing and advertising tailored to individual customers of retail stores (2) Payment processing services, namely, charge card and credit card payment processing services, processing of electronic wallet payments, processing of contactless credit and debit card payments, and processing of credit card payments via near field communication technology-enabled devices (3) Providing electronic transmission of credit card transaction data and electronic payment data via a global computer network (4) Transport and delivery of consumer goods; consumer goods, grocery, food, pharmacy, home goods, pet supply, electronics, clothing, beauty, media, office supply, and general merchandise delivery services; warehousing services, namely, storage, distribution, pick-up, packing, and shipping of a wide variety of consumer goods (5) Providing a website featuring technology that enables users to search, browse, and purchase a wide variety of consumer goods of others; providing temporary use of non-downloadable software for browsing, comparing, and purchasing a wide variety of consumer goods of others; providing temporary use of non-downloadable software for ordering delivery services; providing temporary use of non-downloadable software for engaging and coordinating personal shopper and delivery services; providing temporary use of non-downloadable software for providing information on available same-day transportation and delivery services; providing a website featuring technology that enables users to search, access, create, publish and browse information in the field of food, cooking, wine, beverages, recipes, general merchandise, consumer goods, pharmacy goods, home goods, pet supplies, electronics, clothing, beauty products, media, and office supplies; providing temporary use of non-downloadable software for shopping in the field of consumer goods, grocery, food, pharmacy, home goods, pet supply, electronics, clothing, beauty, media, office supply, and general merchandise; providing temporary use of non-downloadable software for delivery in the field of consumer goods, grocery, food, pharmacy, home goods, pet supply, electronics, clothing, beauty, media, office supply, and general merchandise; providing temporary use of non-downloadable software for searching for and accessing, creating, publishing and browsing information in the field of general merchandise, consumer goods, groceries and food, pharmacy goods, home goods, pet supplies, electronics, clothing, beauty products, media, office supplies; providing temporary use of non-downloadable computer software for enabling autonomous checkout utilizing artificial intelligence; providing temporary use of non-downloadable computer software for payment processing, payment processing software usage data reporting, controlling user access to payment processing software, and reservation of charging times for electronic shopping carts; development and implementation of new technology for others in the field of retail store services, namely, robotics for retail stores; providing temporary use of non-downloadable computer software for use in database management, sales, customer tracking and management, and inventory management for the e-commerce, wholesale and retail industries; providing temporary use of non-downloadable computer software that utilizes artificial intelligence to empower cameras to identify and understand human activities; development of new technology for others in the field of retail store services, namely, automated smart robotic systems using methods of artificial intelligence to enable a self-service electronic checkout station for point of sale; computer systems analysis of automated smart robotic systems using methods of artificial intelligence to enable a self-service electronic checkout station for point of sale; web-based application featuring temporary use of non-downloadable software for data management for the food service field; web-based application featuring temporary use of non-downloadable software programs for data management for the food service field; web-based application featuring temporary use of non-downloadable software designed to estimate costs for food-related products and services; web-based application featuring temporary use of non-downloadable software designed to estimate resource requirements for food-related products and services; web-based application featuring temporary use of non-downloadable software for accounting systems; web-based application featuring temporary use of non-downloadable software for analyzing address files; web-based application featuring temporary use of non-downloadable software for business purposes, namely, for accounting and data management for the food service industry; web-based application featuring temporary use of non-downloadable software for communicating purposes between microcomputers; web-based application featuring temporary use of non-downloadable software for communication between computer processes; web-based application featuring temporary use of non-downloadable software for processing address files; web-based application featuring temporary use of non-downloadable software packages for data management for the food service field; web-based application featuring temporary use of non-downloadable software products, namely, non-downloadable software for data management for the food service field; web-based application featuring temporary use of non-downloadable software programs for database management; web-based application featuring temporary use of non-downloadable industrial software programs for food production, namely, for operating food production machinery; web-based application featuring temporary use of non-downloadable interactive software for data management for the food service field; providing temporary use of non-downloadable computer e-commerce software to allow users to perform electronic business transactions via global computer network; providing temporary use of non-downloadable computer software for use in processing credit and debit card payments; providing temporary use of non-downloadable software development kits (SDKs) consisting of non-downloadable computer software development tools to allow third parties to integrate retailer applications, e-commerce sites and retail fulfillment backend systems to cloud-based consumer marketplace or a locally deployed server; providing temporary use of non-downloadable computer software for image recognition and matching images so analyzed with other image data; providing temporary use of non-downloadable computer image processing software for use in extracting visual attributes from images, including images that may be downloaded from a global computer network; providing temporary use of non-downloadable computer software that provides weight, dimension, shape, and location data for digitally scanned products; providing temporary use of non-downloadable computer software that allows users to identify and locate online stores where goods that have been digitally photographed and interpreted by image recognition software can be purchased; providing temporary use of non-downloadable computer software that tracks a shopper's location inside a store and displays it to users via a screen interface while shopping; providing temporary use of non-downloadable computer software for use in inventory tracking and data analytics in the field of retail stores; providing temporary use of non-downloadable computer software for analyzing retail store customer data; providing temporary use of non-downloadable computer software for analyzing consumer behavioral data; providing temporary use of non-downloadable computer software to collect and aggregate consumer behavior data within a retail store; providing temporary use of non-downloadable computer software to provide dynamic pricing of items throughout a retail store; providing temporary use of non-downloadable computer software that provides recommendation of items for purchase based on shopper preferences; providing temporary use of non-downloadable computer software for use in advertising products and brands via electronic displays throughout retail stores; providing software as a service (SAAS) services featuring computer software for designing, developing, hosting, implementing and maintain web sites for others that enable, collect data with respect to, and process the selection, ordering, billing, delivering, and advertising of consumer goods and services, and for use in advising retailers regarding the use of such websites by others in the field of retail, ordering, and delivery services featuring consumer goods; providing software as a service (SAAS) services featuring computer software for use by others to market and advertise to individual customers of retail stores; providing software as a service (SAAS) services featuring computer software for email messaging, marketing automation, retail analytics, customer analysis, website visitor analysis and website analysis; development and implementation of new technology for others in the field of retail store services, namely, robotics and automation for order fulfillment and inventorying merchandise; providing temporary use of non-downloadable software for facilitating, coordinating, arranging, and tracking delivery of consumer goods, grocery, food, pharmacy, home goods, pet supply, electronics, clothing, beauty goods, digital and print media, office supply, and general merchandise; providing temporary use of non-downloadable software for searching, accessing, creating, publishing and browsing information in the field of general merchandise, consumer goods, groceries and food, pharmacy goods, home goods, pet supplies, electronics, clothing, beauty products, media, office supplies (6) Personal shopping services for others; personal shopping services featuring consumer goods, groceries, food, pharmacy goods, home goods, pet supplies, electronics, clothing, beauty products, media, office supplies, and general merchandise

36.

TRAINED MODEL FOR AUTOMATICALLY DETERMINING DIRECTED SPEND PROGRAM ELIGIBILITY

      
Numéro d'application 18204074
Statut En instance
Date de dépôt 2023-05-31
Date de la première publication 2024-12-05
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Czekaj, Lukasz
  • Olivier, Joseph
  • Ding, Mark
  • Hartvick, Mathieu
  • Hwu, Kenny
  • Wang, Yiheng
  • Matteo, Domenico

Abrégé

Embodiments relate to automatic determination of a directed spend program eligibility for items offered by retailers associated with an online system. The online system provides inputs into a computer model, where the inputs include information about at least one property for each candidate item in a set of candidate items and at least one requirement for a directed spend program. The online system applies the computer model to generate, based on the inputs, an output that comprises an indication of an eligibility for each candidate item in the set for the at least one directed spend program. The online system sends a message causing a device of a user of the online system to display a user interface including an option for the user to add into a cart at least one of the candidate items determined to be eligible for the directed spend program.

Classes IPC  ?

37.

DYNAMIC SERVICE QUALITY ADJUSTMENTS BASED ON CAUSAL ESTIMATES OF SERVICE QUALITY SENSITIVITY

      
Numéro d'application 18204207
Statut En instance
Date de dépôt 2023-05-31
Date de la première publication 2024-12-05
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Drerup, Tilman
  • Gui, Zhida
  • Kurish, Michael

Abrégé

An online system, such as a concierge service, provides services to users using a set of limited resources. To allocate the limited resources of the system among the users, the system uses a model to predict each user's sensitivity to different levels of service. An allocation module then allocates the limited resources among a set of users based in part on the estimated sensitivities and the supply of available resources.

Classes IPC  ?

  • G06Q 30/0601 - Commerce électronique [e-commerce]
  • G06Q 10/0631 - Planification, affectation, distribution ou ordonnancement de ressources d’entreprises ou d’organisations
  • G06Q 10/0639 - Analyse des performances des employésAnalyse des performances des opérations d’une entreprise ou d’une organisation

38.

PREDICTING REPLACEMENT ITEMS USING A MACHINE-LEARNING REPLACEMENT MODEL

      
Numéro d'application US2024018954
Numéro de publication 2024/248915
Statut Délivré - en vigueur
Date de dépôt 2024-03-07
Date de publication 2024-12-05
Propriétaire MAPLEBEAR INC. (USA)
Inventeur(s)
  • Drerup, Tilman
  • Prasad, Shishir, Kumar
  • Hajiyani, Zoheb
  • Manrique, Luis

Abrégé

An online system predicts replacement items for presentation to a user using a machine learning model. The online system receives interaction data describing a user's interaction with the online system. In particular, the interaction data describes an initial item that the user added to their item list. The online system identifies a set of candidate items that could be presented to the user as potential replacements for the initially-added item. The online system applies a replacement prediction model to each of these candidate items to generate a replacement score for the candidate items. The online system selects a proposed replacement item and transmits that item to the user's client device for display to the user. If the user selects the proposed replacement item, the online concierge system replaces the initial item with the proposed replacement item in the user's item list.

Classes IPC  ?

39.

ESTIMATED TIME OF ARRIVAL DETERMINATIONS IN AN ONLINE CONCIERGE SYSTEM

      
Numéro d'application 18203578
Statut En instance
Date de dépôt 2023-05-30
Date de la première publication 2024-12-05
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Chen, Liang
  • Wang, Xiangyu
  • Deng, Houtao
  • Krishnan, Ganesh
  • Ryan, Kevin Charles
  • Jain, Aman
  • Wang, Jian

Abrégé

An online concierge system generates a set of candidate estimated times of arrival (ETAs) for delivery of a set of items being purchased by a user. Each candidate ETA is scored by using a machine-learned model to estimate values for different criteria of interest, such as likelihood of acceptance of the ETA, cost of delivery of the items to the user, and the like. The values for the different criteria may be combined to generate the overall score for a candidate ETA. One or more of the highest-scoring ETAs are selected and provided to the user, who may then approve one of the ETAs for use with delivery of the user's set of items.

Classes IPC  ?

40.

DETECTION AND REMEDIATION OF IMPROPER VALUE MODIFICATION USING MACHINE LEARNING

      
Numéro d'application 18204200
Statut En instance
Date de dépôt 2023-05-31
Date de la première publication 2024-12-05
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Xu, Youdan
  • Li, Aoshi
  • Tandler, Jaclyn
  • Hayran, Roman
  • Ashby, Brendan Evans
  • Silberstein, Emily
  • Sampat, Ajay Pankaj

Abrégé

An online concierge system allows customers to place orders to be fulfilled by pickers. An order includes an amount of compensation a customer provides to a picker when the order is fulfilled. A customer may modify the amount of compensation provided to a picker, so some customers may initially specify a large amount of compensation to entice a picker to fulfill an order and then reduce the amount of compensation when the order is fulfilled. To prevent penalizing pickers who fulfilled an order without a problem, the online concierge system trains a model to determine a probability that a reduction in compensation to a picker was unrelated to a problem with order fulfillment. The online concierge system may perform one or more remedial actions for a picker based on the probability determined by the model.

Classes IPC  ?

  • G06Q 10/0875 - Énumération ou classification des pièces, des fournitures ou des services, p. ex. nomenclatures
  • G06N 3/084 - Rétropropagation, p. ex. suivant l’algorithme du gradient
  • G06Q 20/12 - Architectures de paiement spécialement adaptées aux systèmes de commerce électronique

41.

EXTRACTING ITEM ATTRIBUTES FROM ITEM DESCRIPTIONS USING LARGE LANGUAGE MACHINE-LEARNED MODELS

      
Numéro d'application 18677588
Statut En instance
Date de dépôt 2024-05-29
Date de la première publication 2024-12-05
Propriétaire Maplebear Inc. (USA)
Inventeur(s) Lin, Shih-Ting

Abrégé

A system may obtain an item description associated with an item in an item catalog. The system may generate a prompt for input to a machine-learned language model, the prompt specifying at least the item description and a request to identify one or more attributes of the item. The system may provide the prompt to a model serving system for execution by the machine-learned language model. The system may receive from the machine-learned language model, an output including a list of attributes and respective values associated with the item based on the item description. The system may standardize the formatting of the list of attributes and may store the list of attributes and the respective values for the list of attributes in association with the item in the item catalog.

Classes IPC  ?

42.

USING GENERATIVE ARTIFICIAL INTELLIGENCE (AI) FOR AUTOMATED DIGITAL FLYER CONTENT GENERATION

      
Numéro d'application 18677640
Statut En instance
Date de dépôt 2024-05-29
Date de la première publication 2024-12-05
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Pham, Bryan
  • Maharaj, Shaun Navin
  • Scheibelhut, Brent
  • Oberemk, Mark
  • Mouvet, Fabien

Abrégé

An online system generates digital flyers using a generative model. The online system receives, from a client device, a request to generate a digital flyer. The request includes one or more design conditions for the digital flyer. For example, the design conditions may specify one or more cornerstone items, a theme, a template flyer, other target characteristics, etc. The online system further accesses an item catalog storing item data. The online system generates a query for a generative model including a prompt to generate the digital flyer, the one or more design conditions, and item data accessed from the item catalog. The online system provides the query to a model serving system, which executes the generative model with the query to return a batch of one or more digital flyers. The online system provides a first digital flyer in the batch of one or more digital flyers for presentation.

Classes IPC  ?

43.

Predicting Replacement Items using a Machine-Learning Replacement Model

      
Numéro d'application 18326900
Statut En instance
Date de dépôt 2023-05-31
Date de la première publication 2024-12-05
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Drerup, Tilman
  • Prasad, Shishir Kumar
  • Hajiyani, Zoheb
  • Manrique, Luis

Abrégé

An online system predicts replacement items for presentation to a user using a machine-learning model. The online system receives interaction data describing a user's interaction with the online system. In particular, the interaction data describes an initial item that the user added to their item list. The online system identifies a set of candidate items that could be presented to the user as potential replacements for the initially-added item. The online system applies a replacement prediction model to each of these candidate items to generate a replacement score for the candidate items. The online system selects a proposed replacement item and transmits that item to the user's client device for display to the user. If the user selects the proposed replacement item, the online concierge system replaces the initial item with the proposed replacement item in the user's item list.

Classes IPC  ?

44.

AUTOMATICALLY GENERATING BASKETS OF ITEMS TO BE RECOMMENDED TO USERS OF AN ONLINE SYSTEM

      
Numéro d'application US2024017630
Numéro de publication 2024/248909
Statut Délivré - en vigueur
Date de dépôt 2024-02-28
Date de publication 2024-12-05
Propriétaire MAPLEBEAR INC. (USA)
Inventeur(s)
  • Archak, Shrikar
  • Prasad, Shishir, Kumar

Abrégé

Embodiments relate to automatically generating a basket of items to be recommended to a user of an online system. The online system communicates a basket opportunity to a group of retailers, wherein the basket opportunity defines a plurality of item categories each associated with a respective item to be included in a basket. The online system receives, from each retailer in response to the basket opportunity, a respective bid of a plurality of bids for the basket opportunity. The online system applies a computer model to each bid to determine a score for each bid and selects a winning bid for the user based on determined scores for the bids. For each item category, the online system populates the basket with a respective item from a catalog of a retailer that is associated with the winning bid. The online system then presents the basket with items to the user.

Classes IPC  ?

  • G06Q 30/0601 - Commerce électronique [e-commerce]
  • G06Q 20/00 - Architectures, schémas ou protocoles de paiement

45.

AUTOMATICALLY GENERATING BASKETS OF ITEMS TO BE RECOMMENDED TO USERS OF AN ONLINE SYSTEM

      
Numéro d'application 18202768
Statut En instance
Date de dépôt 2023-05-26
Date de la première publication 2024-11-28
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Archak, Shrikar
  • Prasad, Shishir Kumar

Abrégé

Embodiments relate to automatically generating a basket of items to be recommended to a user of an online system. The online system communicates a basket opportunity to a group of retailers, wherein the basket opportunity defines a plurality of item categories each associated with a respective item to be included in a basket. The online system receives, from each retailer in response to the basket opportunity, a respective bid of a plurality of bids for the basket opportunity. The online system applies a computer model to each bid to determine a score for each bid and selects a winning bid for the user based on determined scores for the bids. For each item category, the online system populates the basket with a respective item from a catalog of a retailer that is associated with the winning bid. The online system then presents the basket with items to the user.

Classes IPC  ?

46.

MACHINE-LEARNED MODEL FOR REDUCTION OF PARKING CONGESTION IN AN ONLINE CONCIERGE SYSTEM

      
Numéro d'application 18202876
Statut En instance
Date de dépôt 2023-05-26
Date de la première publication 2024-11-28
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Xu, Youdan
  • Chen, Michael
  • Tanasyuk, Marina
  • Kim, Matthew Donghyun
  • Sampat, Ajay Pankaj
  • Grisell, Caleb
  • Gao, Yuan

Abrégé

An online concierge system uses a machine-learned parking quality model to quantify the suitability of a particular parking location (e.g., a parking lot, or a street) for use when performing purchases at a retail location on behalf of customers. The parking quality model's output is determined according to input features related to parking at a candidate parking location, such as a current time, a current degree of demand for shoppers at the retail location, or a current average shopper wait time at the retail location before receiving an order. The online concierge system provides suggested alternate parking locations to a client device of the shopper, where they may be displayed, e.g., as part of an electronic map. Use of the suggested alternate parking locations helps to preserve parking availability in restricted areas such as retailer parking lots and to reduce traffic congestion in the area of the retailer.

Classes IPC  ?

  • G06Q 10/08 - Logistique, p. ex. entreposage, chargement ou distributionGestion d’inventaires ou de stocks
  • G08G 1/14 - Systèmes de commande du trafic pour véhicules routiers indiquant des places libres individuelles dans des parcs de stationnement
  • H04W 4/02 - Services utilisant des informations de localisation

47.

DETECTING INTERRUPTION EVENTS WITHIN AN APPLICATION WORKFLOW

      
Numéro d'application 18324783
Statut En instance
Date de dépôt 2023-05-26
Date de la première publication 2024-11-28
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Kalra, Siddarth
  • Pennington, Gareth
  • Pradhan, Sumiran
  • Dolbakian, Levon
  • Guffey, Eric

Abrégé

An online system predicts a number of interruption events within a time period and identifies anomalous numbers of interruption events using an interruption prediction model. The online concierge system maintains application state data that describes a state of an application workflow for a client application. The online concierge system identifies interruption events that represent interruptions to the application workflow and logs interruption events in an interruption log, wherein each entry of the interruption log describes an interruption event and its corresponding state. The online concierge system predicts a number of interruption events that will occur within a time period based on an interruption prediction model. The online concierge system computes an actual number of interruption events that occurred during the time period and computes a difference between the actual number and the predicted number. If the difference exceeds a threshold value, the online concierge system performs a remedial action.

Classes IPC  ?

  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption
  • G06F 9/448 - Paradigmes d’exécution, p. ex. implémentation de paradigmes de programmation

48.

User Interface for Obtaining Picker Intent Signals for Training Machine Learning Models

      
Numéro d'application 18199938
Statut En instance
Date de dépôt 2023-05-20
Date de la première publication 2024-11-21
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Vu, Peter
  • Shi, Ziwei
  • Cohen, Joseph
  • Silberstein, Emily
  • Selvam, Krishna Kumar
  • Tandler, Jaclyn
  • Mclean, Adrian
  • Rose, Nicholas

Abrégé

A concierge system sends batches of orders to pickers that they can review and accept in a batch list on a client device. Each batch in the batch list is presented with a hide option that enables the picker to hide a batch that they do not intend to accept. In response to receiving a hide signal, the system extracts features associated with the batch and stores those features with a negative indication of the picker towards the batch. The hide signal provides the system with a higher quality signal indicating the picker's negative intent regarding an order, as compared to simply ignoring the order in favor of fulfilling another order. This higher quality signal is then used to train models to better predict events related to the pickers' acceptance of orders, such as for ranking orders for pickers or for predicting fulfillment times.

Classes IPC  ?

49.

CLICK-THROUGH RATE MODEL AND GENERATING CUSTOMIZED COPIES USING MACHINE-LEARNED LARGE LANGUAGE MODELS

      
Numéro d'application 18666493
Statut En instance
Date de dépôt 2024-05-16
Date de la première publication 2024-11-21
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Qi, Peng
  • Gupta, Vikaram

Abrégé

An online system receives an indication that a user is starting an order. The online system retrieves candidate contents for the user and provides prompts to a model serving system. The model serving system is configured to provide scores for the contents based on relevancy, a likelihood of user interaction, and a likelihood of the user purchasing an item associated with the content. The online system provides scores from the model serving system to a predicted click-through rate (pCTR) model. Based on the pCTR model scores, the online system ranks the candidate contents. The online system provides content for display to the user based on the ranked candidate contents.

Classes IPC  ?

50.

ASYNCHRONOUS AUTOMATED CORRECTION HANDLING IN CONCIERGE SYSTEM OF INCORRECTLY SORTED ITEMS USING POINT-OF-SALE DATA

      
Numéro d'application 18786134
Statut En instance
Date de dépôt 2024-07-26
Date de la première publication 2024-11-21
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Knight, Benjamin
  • Johnson, Darren
  • Ayaz, Salmaan
  • Maheshwari, Saumitra
  • Debicki, Tomasz
  • Dang, Do Quang Phuoc
  • Vaskabovich, Valery

Abrégé

An online concierge system performs asynchronous automated correction handling of incorrectly sorted items using point-of-sale data. The online concierge system receives orders from customer client devices and determines a batched order based on the received orders. The online concierge system sends the batched order to a shopper client device for fulfillment. The online concierge system receives transaction data associated with the batched order from a third party system. The online concierge system determines whether a sorting error occurred based on the transaction data and the batched order. In response to determining that a sorting error occurred, the online concierge system sends an instruction to correct the sorting error to the shopper client device.

Classes IPC  ?

  • G06Q 10/0833 - Repérage
  • G06Q 10/087 - Gestion d’inventaires ou de stocks, p. ex. exécution des commandes, approvisionnement ou régularisation par rapport aux commandes
  • G06Q 20/40 - Autorisation, p. ex. identification du payeur ou du bénéficiaire, vérification des références du client ou du magasinExamen et approbation des payeurs, p. ex. contrôle des lignes de crédit ou des listes négatives

51.

MACHINE-LEARNED LARGE LANGUAGE MODEL FOR SENTIMENT ANALYSIS FOR CURATING REPLACEMENTS FOR AN ONLINE SYSTEM

      
Numéro d'application 18660901
Statut En instance
Date de dépôt 2024-05-10
Date de la première publication 2024-11-14
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Olivier, Joseph
  • Czekaj, Lukasz
  • Matteo, Domenico
  • Luna, Brent
  • Ding, Mark
  • Hartvick, Mathieu

Abrégé

An online system determines whether to recommend a replacement item to a user based on a predicted sentiment score. The online system receives one or more comments from user feedback on the replacement items. The online system generates a prompt for each user comment for input to a machine-learned model. The online system generates a sentiment score for the ordered item and a replacement item based on the inferred sentiments by the model serving system. Using the sentiment score, the online system determines whether to recommend the replacement item.

Classes IPC  ?

  • G06Q 30/0601 - Commerce électronique [e-commerce]
  • G06Q 30/0282 - Notation ou évaluation d’opérateurs commerciaux ou de produits

52.

Inferring Target Objects for an Attirbution Model Based on Links in Content Items

      
Numéro d'application 18196395
Statut En instance
Date de dépôt 2023-05-11
Date de la première publication 2024-11-14
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Sivasubramaniam, Vijay
  • Li, Hang
  • Zhang, Yingshi
  • Sivakumar, Senduren

Abrégé

An online system receives, from an entity, a content item to be presented to online system users, in which the content item includes a landing page to a third-party website. The system accesses the landing page, identifies a set of items included in it, and determines whether the landing page is configured for performing one or more types of conversions associated with each item. The system matches one or more of the items with one or more target objects based on the determination and associates the matched target object(s) with the content item. The system receives information describing one or more impression events associated with presenting the content item to a user and information describing a conversion associated with a target object associated with the content item performed by the user, applies an attribution model to determine a contribution of the impression event(s) to the conversion, and reports the contribution.

Classes IPC  ?

53.

STREAMLINED IMAGE TO MESSAGE AND ACTION REPLACEMENT WORKFLOW WITH MULTI-MODALITY MACHINE-LEARNED LARGE LANGUAGE MODEL

      
Numéro d'application 18661317
Statut En instance
Date de dépôt 2024-05-10
Date de la première publication 2024-11-14
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • He, Ze
  • Ding, Dian
  • Sun, Hechao

Abrégé

A computer system receives an image from a picker, which indicates an out-of-stock target item and potential replacements items. The system provides, to a machine learning model, a prompt requesting identification of the target item and the potential replacement items in the image. The system receives identification of the target item and a list of potential replacement items in the image. The system generates a first list of potential replacements items based on the list of potential replacement items identified in the image and a second list of replacement items from the target item by applying one or more replacement models to the identified target item. The system may merge the two lists and assign replacement scores to each item in the merged list to create a list of recommended replacement items. The system generates a message based on the image and the list of recommended replacement items.

Classes IPC  ?

  • G06Q 30/0601 - Commerce électronique [e-commerce]
  • G06V 10/774 - Génération d'ensembles de motifs de formationTraitement des caractéristiques d’images ou de vidéos dans les espaces de caractéristiquesDispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p. ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]Séparation aveugle de source méthodes de Bootstrap, p. ex. "bagging” ou “boosting”

54.

INFERRING TARGET OBJECTS FOR AN ATTRIBUTION MODEL BASED ON LINKS IN CONTENT ITEMS

      
Numéro d'application US2024018389
Numéro de publication 2024/232980
Statut Délivré - en vigueur
Date de dépôt 2024-03-04
Date de publication 2024-11-14
Propriétaire MAPLEBEAR INC. (USA)
Inventeur(s)
  • Sivasubramaniam, Vijay
  • Li, Hang
  • Zhang, Yingshi
  • Sivakumar, Senduren

Abrégé

An online system receives, from an entity, a content item to be presented to online system users, in which the content item includes a landing page to a third-party website. The system accesses the landing page, identifies a set of items included in it, and determines whether the landing page is configured for performing one or more types of conversions associated with each item. The system matches one or more of the items with one or more target objects based on the determination and associates the matched target object(s) with the content item. The system receives information describing one or more impression events associated with presenting the content item to a user and information describing a conversion associated with a target object associated with the content item performed by the user, applies an attribution model to determine a contribution of the impression event(s) to the conversion, and reports the contribution.

Classes IPC  ?

55.

Display panel of a programmed computer system with a graphical user interface

      
Numéro d'application 29851808
Numéro de brevet D1050175
Statut Délivré - en vigueur
Date de dépôt 2022-08-31
Date de la première publication 2024-11-05
Date d'octroi 2024-11-05
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Mclean, Adrian
  • Cohen, Joseph
  • Tandler, Jaclyn
  • Bowman, Sawyer
  • Moreno Cesar, Rafael
  • Sampat, Ajay Pankaj

56.

GENERATING ITEM REPLACEMENTS USING MACHINE LEARNING BASED LANGUAGE MODELS

      
Numéro d'application 18643890
Statut En instance
Date de dépôt 2024-04-23
Date de la première publication 2024-10-31
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Prasad, Shishir Kumar
  • Bajaj, Ahsaas

Abrégé

An online system uses a machine learning based language model, for example, a large language model (LLM) to identify replacement items for an item that may not be available at a store. The online system receives a request for an item and determines that the requested item is not available. The online system identifies a replacement item. If the online system determines that the replacement item has a replacement score below a threshold value indicating a low quality of replacement for the requested item, it uses a machine learning based language model, for example, a large language model to generate an explanation for why the replacement item has a replacement score below the threshold value. The online system sends the explanation to a client device.

Classes IPC  ?

57.

INCREMENTALLY UPDATING EMBEDDINGS FOR USE IN A MACHINE LEARNING MODEL BY ACCOUNTING FOR EFFECTS OF THE UPDATED EMBEDDINGS ON THE MACHINE LEARNING MODEL

      
Numéro d'application 18767909
Statut En instance
Date de dépôt 2024-07-09
Date de la première publication 2024-10-31
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Ruan, Chuanwei
  • Balasubramanian, Ramasubramanian
  • Qi, Peng

Abrégé

An online concierge system uses a model to predict a user's interaction with an item, based on a user embedding for the user and an item embedding for the item. For the model to account for more recent interactions by users with items without retraining the model, the online concierge system generates updated item embeddings and updated user embeddings that account for the recent interactions by users with items. The online concierge system compares performance of the model using the updated item embeddings and the updated user embeddings relative to performance of the model using the existing item embeddings and user embeddings. If the performance of the model decreases, the online concierge system adjusts the updated user embeddings and the updated item embeddings based on the change in performance of the model. The adjusted updated user embeddings and adjusted updated item embeddings are stored for use by the model.

Classes IPC  ?

  • G06Q 30/0202 - Prédictions ou prévisions du marché pour les activités commerciales
  • G06Q 10/087 - Gestion d’inventaires ou de stocks, p. ex. exécution des commandes, approvisionnement ou régularisation par rapport aux commandes

58.

Feature Recommendations for Machine Learning Models Based on Feature-Model Co-Occurrences

      
Numéro d'application 18140203
Statut En instance
Date de dépôt 2023-04-27
Date de la première publication 2024-10-31
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Shu, Guanghua
  • Sadri, Reza
  • Jensen, Jacob
  • Khanna, Sahil

Abrégé

A system maintains a data store for managing machine-learning (ML) models and features that are used by the models. The system generates a graph including nodes for each model and a node for each feature, and edges linking models and features that are used by the models. For a new model to be trained, the system receives a proposed feature corresponding to a node in the graph, and identifies one or more candidate features corresponding to nodes in the graph based in part on relevancy scores between the proposed feature with other features corresponding to nodes in the graph. The system presents in a user interface a suggestion to use one or more candidate features with the new model. Responsive to receiving a user selection of at least one candidate feature, the system causes the new model to be trained using the selected candidate feature and the proposed feature.

Classes IPC  ?

59.

Feature Recommendations for Machine Learning Models Using Trained Feature Prediction Model

      
Numéro d'application 18140210
Statut En instance
Date de dépôt 2023-04-27
Date de la première publication 2024-10-31
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Shu, Guanghua
  • Sadri, Reza
  • Jensen, Jacob
  • Khanna, Sahil

Abrégé

A feature management system (the “system”) receives information about a new machine learning (ML) model to be trained. The information includes metadata about the new model. The system applies a trained feature prediction model to the information about the new model and metadata about a plurality of features. The feature prediction model is trained to predict a probability that each of the plurality of features should be selected as an input feature for the new model. The feature management system identifies one or more candidate features based on an output probability score of the feature prediction model. The system presents in a user interface a suggestion to use the one or more candidate features with the new model. The system selects at least one candidate feature and causes the new model to be trained using a set of input features, including the selected candidate feature.

Classes IPC  ?

60.

INTERACTION PREDICTION FOR INVENTORY ASSORTMENT WITH NEARBY LOCATION FEATURES

      
Numéro d'application 18141393
Statut En instance
Date de dépôt 2023-04-29
Date de la première publication 2024-10-31
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Luo, Haochen
  • Sanchez, Kenneth Jason
  • Hermann, Eric

Abrégé

An inventory interaction model predicts user interactions with items of a location for a physical warehouse included with other warehouses in a region. The location is described with features that include the nearby locations and the respective user interactions with the respective item assortments, so that the item interactions for the evaluated location incorporate location-location effects in model predictions. To effectively train the model in the absence of prior interaction data for a location, training examples are generated from existing locations and user interaction data of item assortments by selecting a portion of the locations for the training examples and including nearby location interaction data, labeling the training example output with item interactions for the location. The trained model is then applied for an item assortment at a location by describing nearby locations in evaluating candidate locations and item assortments.

Classes IPC  ?

  • G06Q 10/087 - Gestion d’inventaires ou de stocks, p. ex. exécution des commandes, approvisionnement ou régularisation par rapport aux commandes

61.

WAREHOUSE ITEM ASSORTMENT COMPARISON AND DISPLAY CUSTOMIZATION

      
Numéro d'application 18141394
Statut En instance
Date de dépôt 2023-04-29
Date de la première publication 2024-10-31
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Sanchez, Kenneth Jason
  • Luo, Haochen
  • Saraf, Rishab
  • Hermann, Eric
  • Fidanza, Dario

Abrégé

An online system evaluates different item assortments for a physical warehouse having limited capacity to stock items. Each item assortment is stocked at the physical warehouse in proportion to an assortment split weight. The items at the warehouse are available for users to order, for example to be gathered by a picker and physically delivered to users near the warehouse. Rather than display all items actually stocked at the physical warehouse to all users, the different item assortments are displayed to different users. Users may order items from the assigned item assortment and, because both item assortments are actually stocked at the physical warehouse, orders from either item assortment may be successfully fulfilled for delivery. The different user interfaces thus permit evaluation of the preferred item assortment by users while maintaining expected delivery capability and while using the same storage capacity of the physical warehouse.

Classes IPC  ?

  • G06Q 10/087 - Gestion d’inventaires ou de stocks, p. ex. exécution des commandes, approvisionnement ou régularisation par rapport aux commandes
  • G06Q 30/0202 - Prédictions ou prévisions du marché pour les activités commerciales

62.

GENERATING SIGNALS FOR MACHINE LEARNING, DISPLAYING CONTENT, OR DETERMINING USER PREFERENCES BASED ON VIDEO DATA CAPTURED WITHIN A RETAILER LOCATION

      
Numéro d'application 18141396
Statut En instance
Date de dépôt 2023-04-29
Date de la première publication 2024-10-31
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Ahuja, Chakshu
  • Narlikar, Girija
  • Ahuja, Karuna

Abrégé

For each retailer location associated with multiple retailers, an online system associated with the retailers receives video data captured within the retailer location by a camera of a client device associated with an online system user. The online system detects, based at least in part on the video data, a location associated with the user within the retailer location and/or an interaction by the user with an item included among an inventory of the retailer location. The online system generates a set of signals associated with the user based at least in part on the detection of the location and/or the interaction. Based at least in part on the set of signals, the online system determines a set of preferences associated with the user, trains a machine learning model to predict a metric associated with the user, and/or sends content for display to a client device associated with the user.

Classes IPC  ?

63.

DETERMINING LIMITS FOR ATTRIBUTES OF AN ORDER FOR FULFILLMENT BY A PICKER USING A MACHINE-LEARNING MODEL

      
Numéro d'application 18141397
Statut En instance
Date de dépôt 2023-04-29
Date de la première publication 2024-10-31
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Katz, Vladimir
  • Sampat, Ajay Pankaj
  • Wang, Fangzhou
  • Ge, Wenqi
  • Durham, Charles
  • Shepherd, Kevin

Abrégé

An online concierge system allows users to place orders for fulfillment by pickers. Orders have various attributes (e.g., dimensions, weight, contents, etc.), and the pickers may have corresponding characteristics affecting capability of fulfilling orders. To optimize allocation of orders to pickers for fulfillment, the online concierge system trains an order validation model that predicts a probability of a picker encountering a problem fulfilling an order based on characteristics of the picker and attributes of the order. The order validation model is trained from training examples based on previous orders and labels indicating whether a picker encountered a problem with fulfilling the order. The order validation model can then be used to predict deliverability of future orders or to specify limits on one or more attributes of orders for fulfillment.

Classes IPC  ?

  • G06Q 10/087 - Gestion d’inventaires ou de stocks, p. ex. exécution des commandes, approvisionnement ou régularisation par rapport aux commandes
  • G06N 7/01 - Modèles graphiques probabilistes, p. ex. réseaux probabilistes
  • G06N 20/00 - Apprentissage automatique

64.

Machine Learning Model Trained to Predict User Interactions with Items for Inventory Assortment

      
Numéro d'application 18141398
Statut En instance
Date de dépôt 2023-04-29
Date de la première publication 2024-10-31
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Luo, Haochen
  • Sanchez, Kenneth Jason
  • Hermann, Eric

Abrégé

An inventory interaction model predicts user interactions with items to be included in an item assortment in a warehouse. The item is described with features that include the co-located items and the respective user interactions, so that the item interactions for the evaluated item incorporate item-item effects in its predictions. To train the model effectively in the absence of prior interaction data for an item, training examples are generated from existing item and user interaction data of co-located items by selecting a portion of the items for the examples and including co-located item data, labeling the training example output with item interactions for the item. The trained model is then applied for an item assortment by describing co-located item features of the item assortment in evaluating candidate items.

Classes IPC  ?

  • G06Q 10/087 - Gestion d’inventaires ou de stocks, p. ex. exécution des commandes, approvisionnement ou régularisation par rapport aux commandes

65.

Selecting a location for order fulfillment based on machine learning model prediction of incomplete fulfillment of the order for different locations

      
Numéro d'application 16816226
Numéro de brevet 12131358
Statut Délivré - en vigueur
Date de dépôt 2020-03-11
Date de la première publication 2024-10-29
Date d'octroi 2024-10-29
Propriétaire Maplebear, Inc. (USA)
Inventeur(s)
  • Rao Karikurve, Sharath
  • Pawar, Abhay
  • Prasad, Shishir Kumar

Abrégé

In an online concierge system, a shopper retrieves items specified in an order by a customer from a retail location. The online concierge system optimizes order fulfillment by selecting a retail location for an order that is most time-efficient and that is most likely to have each of the item in the order available. Hence, the online concierge system may select a less convenient retail location that is more likely to have each item being ordered available. To predict whether a retail location incompletely fulfill the order if selected to fulfill the order, the online concierge system trains a machine learning model based on prior orders fulfilled by the retail location, a shopper retrieving items in the order, items in the order, and other features.

Classes IPC  ?

  • G06Q 30/0601 - Commerce électronique [e-commerce]
  • G06N 20/00 - Apprentissage automatique
  • G06Q 10/0875 - Énumération ou classification des pièces, des fournitures ou des services, p. ex. nomenclatures
  • G06Q 20/40 - Autorisation, p. ex. identification du payeur ou du bénéficiaire, vérification des références du client ou du magasinExamen et approbation des payeurs, p. ex. contrôle des lignes de crédit ou des listes négatives
  • G06Q 30/0204 - Segmentation du marché
  • G06N 7/01 - Modèles graphiques probabilistes, p. ex. réseaux probabilistes

66.

SELECTING A WAREHOUSE LOCATION FOR DISPLAYING AN INVENTORY OF ITEMS TO A USER OF AN ONLINE CONCIERGE SYSTEM BASED ON PREDICTED AVAILABILITIES OF ITEMS AT THE WAREHOUSE OVER TIME

      
Numéro d'application 18761756
Statut En instance
Date de dépôt 2024-07-02
Date de la première publication 2024-10-24
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • He, Ze
  • Haque, Asif
  • Stewart, Allan
  • Wang, Haixun
  • Li, Xinyu

Abrégé

An online concierge system allows users to order items from a warehouse, which may have multiple warehouse locations. The online concierge system provides a user interface to users for ordering the items, with the user interface providing an indication of whether an item is predicted to be available at the warehouse at different times. To predict availability of an item model at different times, the online concierge system selects data from historical information about availability of items at one or more warehouses based on temporal, geospatial, and socioeconomic information about observations of historical availability of items at warehouses. The online concierge system accounts for distances between observations and a time and geographic location in a feature space to select observations for predicting item availability at the time and the geographic location.

Classes IPC  ?

  • G06Q 30/0204 - Segmentation du marché
  • G06N 3/049 - Réseaux neuronaux temporels, p. ex. éléments à retard, neurones oscillants ou entrées impulsionnelles
  • G06N 3/084 - Rétropropagation, p. ex. suivant l’algorithme du gradient
  • G06Q 30/0282 - Notation ou évaluation d’opérateurs commerciaux ou de produits
  • G06Q 30/0601 - Commerce électronique [e-commerce]

67.

AUTOMATICALLY GENERATING A RETAILER-SPECIFIC BRAND PAGE BASED ON A MACHINE LEARNING PREDICTION OF ITEM AVAILABILITY

      
Numéro d'application 18137389
Statut En instance
Date de dépôt 2023-04-20
Date de la première publication 2024-10-24
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Li, Ming
  • Binns, Natalie
  • Solomadin, Dmytro
  • Fan, Zhiyi

Abrégé

An online system receives information identifying items associated with a brand, a hierarchical taxonomy of the items, and information identifying a retailer associated with the brand. The system applies a machine learning model to predict availabilities of the items at (a) retailer location(s) associated with the retailer, identifies items that are likely available at the retailer location(s), and groups the identified items into categories based on the taxonomy. The system computes an item score for each item based on its popularity, attributes, and/or attributes of a user. The system assigns items in each category to positions within a display unit associated with the category and computes a category score for each category based on the item scores. The system assigns display units associated with the categories to positions within a template based on the category score and generates a page associated with the brand and retailer based on the assignments.

Classes IPC  ?

68.

Selecting an Attribute of an Item for DIsplay in an Interface Based on Information Gain Determined for the Attribute by a Trained Machine-Learned Model

      
Numéro d'application 18138002
Statut En instance
Date de dépôt 2023-04-21
Date de la première publication 2024-10-24
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Peddinti, Viswa Mani Kiran
  • Rossi-De Vries, Claire
  • Izant, Matthew Timothy

Abrégé

An online concierge system presents items to a user in one or more interfaces and maintains various attributes for each item. To optimize information about items in an interface, when the online concierge system receives a request for an interface, the online concierge system determines a context for the interface and a set of items to display in the interface from the request. For an item displayed by the interface, the online concierge system applies a trained attribute selection to each combination of the item, an attribute of the item, and the context for the interface to determine an information gain to the user from displaying the attribute of the item along with the item in the interface with the context. Based on the information gains, the online concierge system selects an attribute to display in the interface in conjunction with the item.

Classes IPC  ?

  • G06Q 30/0601 - Commerce électronique [e-commerce]
  • G06N 3/084 - Rétropropagation, p. ex. suivant l’algorithme du gradient

69.

ADAPTIVELY CONTROLLING SEARCH RECALL SET SIZES BASED ON QUERY ENTROPY

      
Numéro d'application 18138657
Statut En instance
Date de dépôt 2023-04-24
Date de la première publication 2024-10-24
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Gudla, Vinesh Reddy
  • Putta, Prakash
  • Tenneti, Tejaswi
  • Karnam, Prathyusha Bhaskar

Abrégé

A search module for an online concierge system executes searches in response to a search query with respect to item databases of retailers. The search module dynamically configures a recall set size that controls a number of search results returned for a search query based in part on a query entropy representing an estimated breadth of the search term. The query entropy may be determined relative to a diversity of items in a retailer's database. The recall set size may be configured relative to the query entropy in a manner that manages a tradeoff between latency of search execution and search result quality.

Classes IPC  ?

  • G06Q 30/0601 - Commerce électronique [e-commerce]
  • G06Q 10/083 - Expédition
  • G06Q 10/087 - Gestion d’inventaires ou de stocks, p. ex. exécution des commandes, approvisionnement ou régularisation par rapport aux commandes

70.

User Interface Arranging Groups of Items by Similarity for User Selection

      
Numéro d'application 18137404
Statut En instance
Date de dépôt 2023-04-20
Date de la première publication 2024-10-24
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Manrique, Luis
  • Gupta, Sanchit
  • Nejad, Aref Kashani
  • Goyret, Diego
  • Mirick, Kurtis
  • Roberts, Joshua

Abrégé

An online system receives a request from a user to access an ordering interface for a retailer and identifies a retailer location based on the user's location. The system uses a machine learning model to predict availabilities of items at the retailer location and identifies anchor items the user previously ordered from the retailer that are likely available. The system computes a first score for each anchor item based on an expected value associated with it and/or a likelihood the user will re-order it, determines categories associated with the anchor items, and ranks the categories based on the first score. For each category, the system identifies associated candidate items likely to be available and ranks them based on a second score for each candidate item computed based on a probability of user satisfaction with it as an anchor item replacement. The ordering interface is then generated based on the rankings.

Classes IPC  ?

71.

GENERATING SESSION-BASED RECOMMENDATIONS USING LARGE LANGUAGE MACHINE-LEARNED MODELS

      
Numéro d'application 18640231
Statut En instance
Date de dépôt 2024-04-19
Date de la première publication 2024-10-24
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Rao, Yueyang
  • Lin, Brian
  • Singh, Angadh
  • Rao Karikurve, Sharath
  • Shu, Guanghua

Abrégé

An online system generates session-based recommendations for a user accessing an application of the online system. The online system receives, from one or more client devices, a sequence of actions performed by a user during a session of an application of an online system. The online system generates a sequence of tokens from the sequence of actions by tokenizing an action to a token representing a respective item identifier. The online system applies a transformer-based machine-learned model to the sequence of tokens to generate predictions for a set of items. The online system selects a subset of items based on the generated predictions for the set of items. The online system generates one or more recommendations to the user from the selected subset of items and displays the recommendations to the user.

Classes IPC  ?

  • G06N 3/0455 - Réseaux auto-encodeursRéseaux encodeurs-décodeurs
  • G06Q 30/0601 - Commerce électronique [e-commerce]

72.

GENERATING SESSION-BASED RECOMMENDATIONS USING LARGE LANGUAGE MACHINE-LEARNED MODELS

      
Numéro d'application US2024025333
Numéro de publication 2024/220753
Statut Délivré - en vigueur
Date de dépôt 2024-04-19
Date de publication 2024-10-24
Propriétaire MAPLEBEAR INC. (USA)
Inventeur(s)
  • Rao, Young
  • Lin, Brian
  • Singh, Angadh
  • Rao, Sharath
  • Shu, Guanghua

Abrégé

An online system generates session-based recommendations for a user accessing an application of the online system. The online system receives, from one or more client devices, a sequence of actions performed by a user during a session of an application of an online system. The online system generates a sequence of tokens from the sequence of actions by tokenizing an action to a token representing a respective item identifier. The online system applies a transformer-based machine-learned model to the sequence of tokens to generate predictions for a set of items. The online system selects a subset of items based on the generated predictions for the set of items. The online system generates one or more recommendations to the user from the selected subset of items and displays the recommendations to the user.

Classes IPC  ?

  • G06Q 30/0601 - Commerce électronique [e-commerce]
  • G06F 40/284 - Analyse lexicale, p. ex. segmentation en unités ou cooccurrence
  • G06Q 30/0251 - Publicités ciblées
  • G06Q 30/06 - Transactions d’achat, de vente ou de crédit-bail

73.

EARLY INTERCEPTION AND CORRECTION IN ONLINE CONVERSATIONS USING LARGE LANGUAGE MACHINE-LEARNED MODELS

      
Numéro d'application 18632540
Statut En instance
Date de dépôt 2024-04-11
Date de la première publication 2024-10-17
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Mccoleman, Ryan
  • Martin, Ryan
  • Scheibelhut, Brent
  • Maharaj, Shaun Navin
  • Oberemk, Mark

Abrégé

An online system performs an inference task in conjunction with the model serving system or the interface system to continuously monitor conversations between users and shoppers to determine whether a message sent by a sending party can be automatically responded to rather than prompting the receiving party for a manual response. The online system automatically provides a response to the message without the receiving party's manual involvement. In one or more embodiments, the online system can infer whether a question can be intercepted and/or suggests one or more available answers the sender can consider as feedback without a manual response from the receiver.

Classes IPC  ?

  • G06Q 10/087 - Gestion d’inventaires ou de stocks, p. ex. exécution des commandes, approvisionnement ou régularisation par rapport aux commandes
  • G06N 5/04 - Modèles d’inférence ou de raisonnement

74.

EARLY INTERCEPTION AND CORRECTION IN ONLINE CONVERSATIONS USING LARGE LANGUAGE MACHINE-LEARNED MODELS

      
Numéro d'application US2024023996
Numéro de publication 2024/215841
Statut Délivré - en vigueur
Date de dépôt 2024-04-11
Date de publication 2024-10-17
Propriétaire MAPLEBEAR INC. (USA)
Inventeur(s)
  • Mccoleman, Ryan
  • Martin, Ryan
  • Scheibelhut, Brent
  • Maharaj, Shaun, Navin
  • Oberemk, Mark

Abrégé

An online system performs an inference task in conjunction with the model serving system or the interface system to continuously monitor conversations between users and shoppers to determine whether a message sent by a sending party can be automatically responded to rather than prompting the receiving party for a manual response. The online system automatically provides a response to the message without the receiving party's manual involvement. In one or more embodiments, the online system can infer whether a question can be intercepted and/or suggests one or more available answers the sender can consider as feedback without a manual response from the receiver.

Classes IPC  ?

75.

Display panel of a programmed computer system with a graphical user interface

      
Numéro d'application 29856064
Numéro de brevet D1046912
Statut Délivré - en vigueur
Date de dépôt 2022-10-10
Date de la première publication 2024-10-15
Date d'octroi 2024-10-15
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Chaparro, Natalia Botía
  • D'Auria, Sean
  • Salantry, Rohan

76.

GENERATIVE CONTENT BASED ON USER SESSION SIGNALS

      
Numéro d'application 18627280
Statut En instance
Date de dépôt 2024-04-04
Date de la première publication 2024-10-10
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Ahuja, Karuna
  • Narlikar, Girija
  • Ahuja, Chakshu
  • Subramaniam, Apurvaa

Abrégé

An online system employs real-time and pre-generated images for recommendation. The system leverages generative machine-learning models, such as diffusion models, to generate images dynamically. The selection and creation of these images rely upon user data and session data, which are collected during a user's application session. These data are employed to generate a text prompt string, which directs the image generation process. For instances where real-time computation may be a resource constraint, the system utilizes pre-generated images linked to user-context clusters—data set groupings related to user characteristics and session context. This method enables the system to present tailored recommendations to the user, making use of both dynamic generation and pre-existing image resources, thereby optimizing the balance between customization, computational resources, and latency.

Classes IPC  ?

77.

GENERATING KNOWLEDGE GRAPH DATABASES FOR ONLINE SYSTEM USING LARGE LANGUAGE MACHINE-LEARNED MODELS

      
Numéro d'application US2024022671
Numéro de publication 2024/211308
Statut Délivré - en vigueur
Date de dépôt 2024-04-02
Date de publication 2024-10-10
Propriétaire MAPLEBEAR INC. (USA)
Inventeur(s)
  • Tan, Li
  • Tenneti, Tejaswi
  • Prasad, Shishir, Kumar
  • Pan, Huapu
  • Na, Taesik
  • Tate, Tyler
  • Roberts, Josh
  • Wang, Haixun

Abrégé

An online system generates a knowledge graph database representing relationships between entities in the online system. The online system generates the knowledge graph database by at least obtaining descriptions for an item. The online system generates one or more prompts to a machine-learned language model, where a prompt includes a request to extract a set of attributes for the item from the description of the item. The online system receives a response generated from executing the machine-learned language model on the prompts. The online system parses the response to extract the set of attributes for the item. For each extracted attribute, the online system generates connections between an item node representing the item and a set of attribute nodes for the extracted set of attributes in the database.

Classes IPC  ?

  • G06F 16/901 - IndexationStructures de données à cet effetStructures de stockage
  • G06N 20/00 - Apprentissage automatique
  • G06N 5/02 - Représentation de la connaissanceReprésentation symbolique
  • G06F 40/20 - Analyse du langage naturel
  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet

78.

GENERATIVE CONTENT BASED ON USER SESSION SIGNALS

      
Numéro d'application US2024023125
Numéro de publication 2024/211605
Statut Délivré - en vigueur
Date de dépôt 2024-04-04
Date de publication 2024-10-10
Propriétaire MAPLEBEAR INC. (USA)
Inventeur(s)
  • Ahuja, Karuna
  • Narlikar, Girija
  • Ahuja, Chakshu
  • Subramaniam, Apurvaa

Abrégé

An online system employs real-time and pre-generated images for recommendation. The system leverages generative machine-learning models, such as diffusion models, to generate images dynamically. The selection and creation of these images rely upon user data and session data, which are collected during a user's application session. These data are employed to generate a text prompt string, which directs the image generation process. For instances where real-time computation may be a resource constraint, the system utilizes pre-generated images linked to user-context clusters — data set groupings related to user characteristics and session context. This method enables the system to present tailored recommendations to the user, making use of both dynamic generation and pre-existing image resources, thereby optimizing the balance between customization, computational resources, and latency.

Classes IPC  ?

79.

USER INTERFACE ENABLING ORDER FULFILLMENT OPTIONS BASED ON PREDICTED FULFILLMENT TIMES FROM A TRAINED MODEL

      
Numéro d'application 18616724
Statut En instance
Date de dépôt 2024-03-26
Date de la première publication 2024-10-03
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Sun, Yueyi
  • Wang, Zi
  • Deng, Houtao
  • Jain, Aman
  • Wang, Jian

Abrégé

An online concierge system receives an order from a user including items to obtain from a retailer for delivery to a location. A picker selects the order and obtains items from the retailer. The user selects a time interval during which items from the order are delivered to the location. To prevent the user from selecting a time interval for fulfillment the online concierge system prevents the user from selecting a time interval when a picker may be unable to obtain the items from the retailer before a closing time of the retailer. The online concierge system evaluates time intervals by subtracting a travel time for the picker travelling from the retailer to the location from a predicted fulfillment time for the order. This prevents the time for delivering items after being obtained from affecting whether a time interval may be selected.

Classes IPC  ?

  • G06Q 10/087 - Gestion d’inventaires ou de stocks, p. ex. exécution des commandes, approvisionnement ou régularisation par rapport aux commandes
  • G06Q 10/04 - Prévision ou optimisation spécialement adaptées à des fins administratives ou de gestion, p. ex. programmation linéaire ou "problème d’optimisation des stocks"
  • G06Q 10/083 - Expédition

80.

Delivery Time Estimation Using an Attribute-Based Prediction of a Difference Between an Arrival Time and a Delivery Time for a Delivery Location

      
Numéro d'application 18129021
Statut En instance
Date de dépôt 2023-03-30
Date de la première publication 2024-10-03
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Rao Karikurve, Sharath
  • Balasubramanian, Ramasubramanian
  • Sinha, Ashish

Abrégé

An online concierge system receives, from a client device associated with a user of the online concierge system, order data associated with an order placed with the online concierge system, in which the order data describes a delivery location for the order. The online concierge system receives information describing a set of attributes associated with the delivery location and accesses a machine learning model trained to predict a difference between an arrival time and a delivery time for the delivery location. The online concierge system applies the model to the set of attributes associated with the delivery location to predict the difference between the arrival time and the delivery time for the delivery location and determines an estimated delivery time for the order based at least in part on the predicted difference. The online concierge system sends the estimated delivery time for the order for display to the client device.

Classes IPC  ?

  • G06Q 10/0835 - Relations entre l’expéditeur ou le fournisseur et les transporteurs
  • G06Q 10/087 - Gestion d’inventaires ou de stocks, p. ex. exécution des commandes, approvisionnement ou régularisation par rapport aux commandes
  • G06Q 30/0203 - Études de marchéSondages de marché

81.

AUTOMATIC KEYWORD GROUPING FOR CAMPAIGN BID CUSTOMIZATION

      
Numéro d'application 18129447
Statut En instance
Date de dépôt 2023-03-31
Date de la première publication 2024-10-03
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Jia, Cheng
  • Miller, Justin
  • Zhuang, Yan
  • Gazizov, Anvar
  • Djirdeh, Hassan
  • Madhavan, Aakarsh
  • Nag, Brijendra
  • Zhang, Ji Chao

Abrégé

A keyword campaign automatically groups keywords for customized override bids for the keyword group. The keywords of a campaign may be analyzed by a computer model to predict membership in a category in addition to the likelihood that the bid of the keyword will be modified. The keyword groups may be automatically generated based on the predictions, and performance metrics are evaluated for the keyword groups at one or more modified bids. The performance metrics of the keyword groups at the modified bids may then be used to set override bids. The automatically generated keyword groups and performance metrics permit a sponsor to intelligently group and customize keyword bids with reduced interface interactions and without requiring individual keyword bid adjustments.

Classes IPC  ?

  • G06Q 30/0242 - Détermination de l’efficacité des publicités
  • G06Q 30/0273 - Détermination des frais de publicité

82.

CONTENT SELECTION WITH INTER-SESSION REWARDS IN REINFORCEMENT LEARNING

      
Numéro d'application 18129023
Statut En instance
Date de dépôt 2023-03-30
Date de la première publication 2024-10-03
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Manchanda, Saurav
  • Balasubramanian, Ramasubramanian

Abrégé

A reinforcement learning model selects a content composition based, in part, on inter-session rewards. In addition to near-in-time rewards of user interactions with a content composition for evaluating possible actions, the reinforcement learning model also generates a reward and/or penalty based on between-session information, such as the time between sessions. This permits the reinforcement learning model to learn to evaluate content compositions not only on the immediate user response, but also on the effect of future user engagement. To determine a composition for a search query, the reinforcement learning model generates a state representation of the user and search query and evaluates candidate content compositions based on learned parameters of the reinforcement learning model that evaluates inter-session rewards of the content compositions.

Classes IPC  ?

  • G06N 3/092 - Apprentissage par renforcement
  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion

83.

NOTIFYING USERS ASSOCIATED WITH A SHARED SHOPPING LIST OF A TIME A USER IS PREDICTED TO PLACE AN ORDER WITH AN ONLINE CONCIERGE SYSTEM

      
Numéro d'application 18129454
Statut En instance
Date de dépôt 2023-03-31
Date de la première publication 2024-10-03
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Chaparro, Natalia Botía
  • D'Auria, Sean
  • Salantry, Rohan

Abrégé

An online concierge system receives information describing one or more interactions with a shared shopping list by at least one of multiple users associated with the shared shopping list and identifies a set of attributes associated with the shared shopping list, in which the set of attributes is based at least in part on the interaction(s). The system accesses a machine learning model trained to predict a time that a user associated with the shared shopping list will place an order including one or more items in the shared shopping list and applies the model to the set of attributes to predict the time. The system generates a notification based at least in part on the time that the user is predicted to place the order and sends the notification to one or more client devices associated with one or more users associated with the shared shopping list.

Classes IPC  ?

  • G06Q 30/0601 - Commerce électronique [e-commerce]
  • G06Q 30/0201 - Modélisation du marchéAnalyse du marchéCollecte de données du marché

84.

PREDICTIVE PICKING OF ITEMS FOR PREPOPULATING A SHOPPING CART FOR A SHOPPER

      
Numéro d'application 18129464
Statut En instance
Date de dépôt 2023-03-31
Date de la première publication 2024-10-03
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Sanchez, Kenneth Jason
  • Hermann, Eric

Abrégé

An online concierge system facilitates creation of shopping lists of items for ordering from a physical retail store and at least partial self-service fulfillment of orders by the customer. To support fulfillment by the customer, the online concierge system may intelligently select one or more items of the order to be picked by a third-party picker and prepopulated to a shopping cart reserved for the customer in advance of the customer arriving at the retail location. The items for prepopulating may be selected based on various factors that optimize prepopulation decisions on an item-by-item basis in accordance with various machine learning models. The online concierge system may furthermore facilitate procurement of the remaining items by the customer through a customer client device that may track item procurement and/or provide guidance for locating items.

Classes IPC  ?

  • G06Q 30/0601 - Commerce électronique [e-commerce]
  • G06Q 30/02 - MarketingEstimation ou détermination des prixCollecte de fonds

85.

GENERATING KNOWLEDGE GRAPH DATABASES FOR ONLINE SYSTEM USING LARGE LANGUAGE MACHINE-LEARNED MODELS

      
Numéro d'application 18625042
Statut En instance
Date de dépôt 2024-04-02
Date de la première publication 2024-10-03
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Tan, Li
  • Tenneti, Tejaswi
  • Prasad, Shishir Kumar
  • Pan, Huapu
  • Na, Taesik
  • Tate, Tyler Russell
  • Roberts, Joshua
  • Wang, Haixun

Abrégé

An online system generates a knowledge graph database representing relationships between entities in the online system. The online system generates the knowledge graph database by at least obtaining descriptions for an item. The online system generates one or more prompts to a machine-learned language model, where a prompt includes a request to extract a set of attributes for the item from the description of the item. The online system receives a response generated from executing the machine-learned language model on the prompts. The online system parses the response to extract the set of attributes for the item. For each extracted attribute, the online system generates connections between an item node representing the item and a set of attribute nodes for the extracted set of attributes in the database.

Classes IPC  ?

  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance
  • G06F 16/901 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 40/205 - Analyse syntaxique
  • G06F 40/40 - Traitement ou traduction du langage naturel

86.

DELIVERY TIME ESTIMATION USING ATTRIBUTE-BASED PREDICTION OF DIFFERENCE BETWEEN ARRIVAL TIME AND DELIVERY TIME

      
Numéro d'application US2024020589
Numéro de publication 2024/206001
Statut Délivré - en vigueur
Date de dépôt 2024-03-19
Date de publication 2024-10-03
Propriétaire MAPLEBEAR INC. (USA)
Inventeur(s)
  • Rao Karikurve, Sharath
  • Balasubramanian, Ramasubramanian
  • Sinha, Ashish

Abrégé

An online concierge system receives, from a client device associated with a user of the online concierge system, order data associated with an order placed with the online concierge system, in which the order data describes a delivery location for the order. The online concierge system receives information describing a set of attributes associated with the delivery location and accesses a machine learning model trained to predict a difference between an arrival time and a delivery time for the delivery location. The online concierge system applies the model to the set of attributes associated with the delivery location to predict the difference between the arrival time and the delivery time for the delivery location and determines an estimated delivery time for the order based at least in part on the predicted difference. The online concierge system sends the estimated delivery time for the order for display to the client device.

Classes IPC  ?

87.

WE'RE HERE

      
Numéro de série 98782866
Statut En instance
Date de dépôt 2024-10-02
Propriétaire Maplebear Inc. ()
Classes de Nice  ? 39 - Services de transport, emballage et entreposage; organisation de voyages

Produits et services

Transport and delivery of consumer goods; consumer goods, grocery, food, pharmacy, home goods, pet supply, electronics, clothing, beauty, media, office supply, and general merchandise delivery services; warehousing services, namely, storage, distribution, pick-up, packing, and shipping of a wide variety of consumer goods

88.

WE'RE HERE

      
Numéro de série 98778468
Statut En instance
Date de dépôt 2024-09-30
Propriétaire Maplebear Inc. ()
Classes de Nice  ? 35 - Publicité; Affaires commerciales

Produits et services

Online retail store services featuring a wide variety of consumer goods of others; online consumer goods, grocery, food, pharmacy, home goods, pet supply, electronics, clothing, beauty, media, office supply, and general merchandise retail and wholesale store services featuring home, office, and other designated location delivery services; advertising and promoting the goods and services of others via a global computer network, namely, advertising and promoting the availability of goods for selection, ordering, purchase, and delivery; comparison shopping services; promoting the goods and services of others, namely, providing special offers and online catalogs featuring a wide variety of consumer goods of others; online ordering services featuring consumer goods, groceries, foods, pharmacy products, home goods, pet supplies, electronics, clothing, beauty products, media, office supplies, other supermarket products, and general merchandise; promoting the goods and services of others, namely, distributing online information, recipes, advertisements, articles, and media featuring the consumer goods of others; providing others with advertising services, namely, dissemination for others of marketing and advertising tailored to individual customers of retail stores; order fulfillment services; inventory management and control; inventorying merchandise; order fulfillment services incorporating robotics and automation; all of the foregoing excluding photo and video sharing and social networking services

89.

Replacing Online Conversations Using Large Language Machine-Learned Models

      
Numéro d'application 18605580
Statut En instance
Date de dépôt 2024-03-14
Date de la première publication 2024-09-26
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Mccoleman, Ryan
  • Martin, Ryan
  • Scheibelhut, Brent
  • Maharaj, Shaun Navin
  • Oberemk, Mark

Abrégé

An online system performs an inference task in conjunction with the model serving system or the interface system to continuously monitor conversations between requesting users and fulfillment users to determine whether the online system can intervene to automatically respond to a message sent by a sending party, rather than prompting the receiving party for a manual reply. Upon inferring that a message can be automatically responded to, the online system automatically provides a response to the message without the receiving party's manual involvement. The online system can further be augmented to classify and reroute certain requesting user or fulfillment user queries that impact an order's end state by intercepting the conversation on behalf of either party and performing one or more automated actions. If the message is action-oriented, the online system may perform one or more automated actions in response to the message.

Classes IPC  ?

  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance
  • G06N 5/04 - Modèles d’inférence ou de raisonnement

90.

INTEGRATION FROM LARGE LANGUAGE MACHINE-LEARNED MODEL POWERED APPLICATIONS TO ONLINE SYSTEM

      
Numéro d'application 18608368
Statut En instance
Date de dépôt 2024-03-18
Date de la première publication 2024-09-26
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Wang, Haixun
  • Sejpal, Riddhima

Abrégé

An online system receives, from a model serving system, an application programming interface (API) request from a plug-in provided by an online system. The API request includes a list of items obtained from a conversation session of a user with a machine-learned language model application of the model serving system. The online system generates a URL to a landing page for the user for creating a purchase list with the online system based on the list of items. Responsive to receiving a request to access the URL, the online system causes display of the landing page on a client device of the user that displays the purchase list including retailer items for one or more retailers corresponding to the list of items in the API request.

Classes IPC  ?

91.

CLUSTERING DATA DESCRIBING INTERACTIONS PERFORMED AFTER RECEIPT OF A QUERY BASED ON SIMILARITY BETWEEN EMBEDDINGS FOR DIFFERENT QUERIES

      
Numéro d'application 18671761
Statut En instance
Date de dépôt 2024-05-22
Date de la première publication 2024-09-19
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Na, Taesik
  • Tenneti, Tejaswi
  • Wang, Haixun
  • Xiao, Xiao

Abrégé

An online system leverages stored interactions with items made by users after the online system received queries to determine display of items satisfying the query. For example, the online system trains a model to predict a likelihood of a user performing an interaction with an item displayed after a query was received. As different items receive different amounts of interaction from users, limited historical interaction with certain items may limit accuracy of the model. The online system generates embeddings for previously received queries and uses measures of similarity between embeddings for queries to generate clusters of queries. Previous interactions with queries in a cluster are combined, with the combined data being used for determining display of items in response to a query.

Classes IPC  ?

  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet
  • G06F 16/2457 - Traitement des requêtes avec adaptation aux besoins de l’utilisateur
  • G06F 16/248 - Présentation des résultats de requêtes
  • G06F 18/2413 - Techniques de classification relatives au modèle de classification, p. ex. approches paramétriques ou non paramétriques basées sur les distances des motifs d'entraînement ou de référence

92.

MANAGING APPEASEMENT REQUESTS USING USER SEGMENTATION

      
Numéro d'application 18184565
Statut En instance
Date de dépôt 2023-03-15
Date de la première publication 2024-09-19
Propriétaire Maplebear Inc. (dba Instacart) (USA)
Inventeur(s)
  • Maio, Qing
  • Border, Robert

Abrégé

An online concierge system determines whether a user's appeasement request is fraudulent. The online concierge system compares the user's appeasement request rate to the appeasement request rates of similar users in a user segment identified with a user segmentation model. The online concierge system computes an appeasement model that represents the appeasement request rates of the users in the user segment. The online concierge system computes an outlier score for the user based on the appeasement model. The online concierge system compares the outlier score to a threshold. If the outlier score exceeds the threshold, the online concierge system may determine that the appeasement request is not likely fraudulent and thus applies an appeasement action to the user. If the outlier score does not exceed the threshold, the online concierge system may determine that the appeasement request is likely fraudulent and thus applies a security action to the user.

Classes IPC  ?

  • G06Q 30/016 - Fourniture d’une assistance aux clients, p. ex. pour assister un client dans un lieu commercial ou par un service d’assistance après-vente
  • G06F 18/23213 - Techniques non hiérarchiques en utilisant les statistiques ou l'optimisation des fonctions, p. ex. modélisation des fonctions de densité de probabilité avec un nombre fixe de partitions, p. ex. K-moyennes

93.

DISPLAYING AN AUGMENTED REALITY ELEMENT THAT PROVIDES A PERSONALIZED ENHANCED EXPERIENCE AT A WAREHOUSE

      
Numéro d'application 18674458
Statut En instance
Date de dépôt 2024-05-24
Date de la première publication 2024-09-19
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Cocchiarella, Dominic
  • Godbole, Aditya
  • Peters, Andrew
  • Schack, Spencer
  • Leonardo, Brandon

Abrégé

An augmented reality application executing on a client device receives video data captured by a camera of the device, in which the video data includes a display area of the device. The application detects a set of items within the display area based on the video data, wherein the set of items is included among an inventory of a warehouse associated with a retailer, and accesses a set of attributes of each item. The application retrieves profile information including a set of preferences associated with a customer of the retailer, matches one or more of the set of preferences with one or more attributes of each item, and generates an augmented reality element based on the matches. The augmented reality element is then displayed, such that it is overlaid onto a portion of the display area based on a location within the display area at which the items are detected.

Classes IPC  ?

  • G06T 19/00 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie
  • G06Q 30/0601 - Commerce électronique [e-commerce]

94.

CONVERSATIONAL AND INTERACTIVE SEARCH USING MACHINE LEARNING BASED LANGUAGE MODELS

      
Numéro d'application 18596592
Statut En instance
Date de dépôt 2024-03-05
Date de la première publication 2024-09-12
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Tan, Li
  • Tenneti, Tejaswi
  • Prasad, Shishir Kumar
  • Pan, Huapu
  • Stewart, Allan
  • Na, Taesik
  • Tate, Tyler Russell
  • Roberts, Joshua
  • Wang, Haixun

Abrégé

A system, for example, an online system uses a machine learning based language model, for example, a large language model (LLM) to process high-level natural language queries received from users. The system receives a natural language query from a user of a client device. The system determines contextual information associated with the query. Based on this information, the system generates a prompt for the machine learning based language model. The system receives a response from the machine learning based language model. The system uses the response to generate a search query for a database. The system obtains results returned by the database in response to the search query and provides them to the user. The system allows users to specify high level natural language queries to obtain relevant search results, thereby improving the overall user experience.

Classes IPC  ?

95.

PROCESSING CROWD-SOURCED INFORMATION USING MACHINE LEARNING BASED LANGUAGE MODELS

      
Numéro d'application 18596590
Statut En instance
Date de dépôt 2024-03-05
Date de la première publication 2024-09-12
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Tan, Li
  • Wang, Haixun
  • Prasad, Shishir Kumar
  • Tenneti, Tejaswi
  • Wu, Aomin
  • Putrevu, Jagannath

Abrégé

A system, for example, an online system uses a machine learning based language model, for example, a large language model (LLM) to process crowd-sourced information provided by users. The crowd-sourced information may include comments from users represented as unstructured text. The system further receives queries from users and answers the queries based on the crowd-sourced information collected by the system. The system generates a prompt for input to a machine-learned language model based on the query. The system provides the prompt to the machine-learned language model for execution and receives a response from the machine-learned language model. The response comprises the insight on the topic and evidence for the insight. The evidence identifies one or more comments used to obtain the insight.

Classes IPC  ?

  • G06Q 30/0601 - Commerce électronique [e-commerce]
  • G06Q 30/0201 - Modélisation du marchéAnalyse du marchéCollecte de données du marché
  • G06Q 30/0282 - Notation ou évaluation d’opérateurs commerciaux ou de produits

96.

IDENTIFYING PURPOSE OF AN ORDER OR APPLICATION SESSION USING LARGE LANGUAGE MACHINE-LEARNED MODELS

      
Numéro d'application US2024017321
Numéro de publication 2024/182305
Statut Délivré - en vigueur
Date de dépôt 2024-02-26
Date de publication 2024-09-06
Propriétaire MAPLEBEAR INC. (USA)
Inventeur(s)
  • Wang, Haixun
  • Prasad, Shishir, Kumar
  • Tenneti, Tejaswi
  • Tan, Li

Abrégé

An online system performs an inference task in conjunction with the model serving system to infer one or more purposes of the order of a user that includes a list of ordered items. The model serving system may host a machine-learned language model, and in one instance, the machine-learned language model is a large language model. The online system generates recommendations to the user based on the inferred purpose of the order. The online system may generate one or more recommendations that are equivalent orders having the same or similar purpose as the existing order.

Classes IPC  ?

97.

GENERATING QUERIES FOR USERS OF AN ONLINE SYSTEM USING LARGE LANGUAGE MACHINE-LEARNED MODELS

      
Numéro d'application US2024017317
Numéro de publication 2024/182303
Statut Délivré - en vigueur
Date de dépôt 2024-02-26
Date de publication 2024-09-06
Propriétaire MAPLEBEAR INC. (USA)
Inventeur(s)
  • Wang, Haixun
  • Tenneti, Tejaswi
  • Na, Taesik
  • Zhu, Yuanzheng
  • Gudla, Vinesh
  • Cohn, Lee

Abrégé

Responsive to an input query from a user, an online system presents a list of recommended items that are related to the input query. The input query may be formulated as a natural language query. The online system performs an inference task in conjunction with the model serving system to generate one or more additional queries that are related to the input query and/or are otherwise related to the recommended items presented in response to the input query. The additional queries may be presented to the user in conjunction with the list of recommended items.

Classes IPC  ?

98.

DETECTING KEY ITEMS USING LARGE LANGUAGE MACHINE-LEARNED MODELS

      
Numéro d'application 18592961
Statut En instance
Date de dépôt 2024-03-01
Date de la première publication 2024-09-05
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Prasad, Shishir Kumar
  • Archak, Shrikar

Abrégé

An online system performs inference in conjunction with a machine-learned language model to determine one or more key items in an order. The system generates a prompt for input to a machine-learned language model. The prompt may specify at least the list of ordered items in the order and a request to infer one or more key items in the order. The system provides the prompt to a model serving system for execution by the machine-learned language model for execution. The system parses the response from the model serving system to extract a subset of items as the one or more key items of the order. The system generates an interface presenting the order of the list of items and one or more indications on the interface that indicate the subset of items are key items of the order.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G06N 5/04 - Modèles d’inférence ou de raisonnement

99.

SELECTING AN ITEM FOR INCLUSION IN AN ORDER FROM A USER OF AN ONLINE CONCIERGE SYSTEM FROM A GENERIC ITEM DESCRIPTION RECEIVED FROM THE USER

      
Numéro d'application 18657781
Statut En instance
Date de dépôt 2024-05-08
Date de la première publication 2024-08-29
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Sheng, Weian
  • Qi, Peng
  • Chen, Changyao

Abrégé

An online concierge system maintains a taxonomy associating one or more specific items offered by a warehouse with a generic item description. When the online concierge system receives a generic item description from a user for inclusion in an order, the online concierge system uses the taxonomy to select a set of items associated with the generic item description. Based on probabilities of the user purchasing various items of the set, the online concierge system selects an item of the set for inclusion in the order For example, the online concierge system selects an item of the set for which the user has a maximum probability of being purchased. Subsequently, the online concierge system displays an interface for the user that is prepopulated with information identifying the selected item of the set.

Classes IPC  ?

100.

ALIGNING LARGE LANGUAGE MODELS WITH SPECIFIC OBJECTIVES USING REINFORCEMENT LEARNING AND HUMAN PREFERENCE

      
Numéro d'application 18588622
Statut En instance
Date de dépôt 2024-02-27
Date de la première publication 2024-08-29
Propriétaire Maplebear Inc. (USA)
Inventeur(s)
  • Tan, Li
  • Wang, Haixun
  • Li, Jian

Abrégé

An online system trains a specific-purpose LLM. The online system obtains training examples and divides training examples across batches. The online system generates a specific response by applying parameters of the specific-purpose LLM to a batch of training examples. The online system generates a general response by applying parameters of a general-purpose LLM to the batch of training examples. The online system computes a human readability score representing the difference between the specific response and the general response. The online system computes an objective compliance score by applying an evaluation model to the specific response, the evaluation model trained to score the first response based on a specific objective. The online system updates the parameters of the specific-purpose LLM based on the human readability score and the objective compliance score.

Classes IPC  ?

  • G06N 3/092 - Apprentissage par renforcement
  • H04L 51/02 - Messagerie d'utilisateur à utilisateur dans des réseaux à commutation de paquets, transmise selon des protocoles de stockage et de retransmission ou en temps réel, p. ex. courriel en utilisant des réactions automatiques ou la délégation par l’utilisateur, p. ex. des réponses automatiques ou des messages générés par un agent conversationnel
  1     2     3     ...     13        Prochaine page