A method for generating heat reactions between hydrogen isotopes and a metal catalyst includes placing at least one fuel source within a reactor. The reactor includes an anode and a cathode, wherein the cathode is a metallic vessel, wherein the at least one fuel source comprises a metal substrate thermally sprayed with a metal catalyst, and wherein the at least one fuel source is in thermal and electrical contact with the reactor. The method includes sealing the reactor to produce a vacuum within the reactor. The method includes adding hydrogen to the reactor and adding deuterium to the reactor. The method includes supplying a current to the reactor from a DC power supply.
A method of calibrating an exothermic reaction chamber calorimeter is provided. The calorimeter includes at least a core, a heating element, a thermal sensor, and a thermoelectric generator. The method includes: with no power applied to the at least one heating element, recording a voltage output by the thermoelectric generator; iteratively applying successive increased power amounts to the heating element until the power amount applied to the heating element reaches a predetermined maximum applied power, wherein applying successive increased power amounts comprises maintaining each increased power amount until the thermal sensor outputs a stable temperature for a first stabilization duration; and at least while iteratively applying successive increased power amounts to the heating element, recording, at each expiration of a predetermined measurement duration, parameters including, at the time of each recording, the power amount applied to the heating element and the voltage output by the thermoelectric generator.
G01K 17/10 - Mesure d'une quantité de chaleur transportée par des milieux en écoulement, p.ex. dans les systèmes de chauffage basée sur la mesure d'une différence de température entre un point d'entrée et un point de sortie, combinée avec la mesure du débit de l'écoulement d'un milieu
A method of sensitivity calibrating a calorimeter is provided. The calorimeter includes a core, a heating element, a thermal sensor, and thermoelectric generators. The method includes: determining an intrinsic tolerance of voltage output by the thermoelectric generators; maintaining an initial power applied to the thermal element amount until a temperature output by the thermal sensor is stable; and recording an initial voltage output by the plurality of thermoelectric generators. Then an increased power amount is applied until the temperature is stable. Successive decreased power amounts are iteratively applied until a difference between the voltage output by the thermoelectric generators and initial voltage output is not greater than the intrinsic tolerance of the voltage output. The smallest power difference that can be detected by the calorimeter is determined as the difference between the initial power amount and the last of the successive decreased power amounts.
G01K 17/10 - Mesure d'une quantité de chaleur transportée par des milieux en écoulement, p.ex. dans les systèmes de chauffage basée sur la mesure d'une différence de température entre un point d'entrée et un point de sortie, combinée avec la mesure du débit de l'écoulement d'un milieu
Methods and apparatus are disclosed for fabricating a hydrogen loaded metallic structure in the presence of a hydrogen/deuterium partial pressure. The present disclosure teaches that physical vapor deposition and chemical vapor deposition can be used for gas phase co-deposition to fabricate a hydrogen loaded metallic structure.
A calorimeter provides a temperature-controlled environment for an exothermic reaction chamber, and precisely measures any excess heat generated by an exothermic reaction. The calorimeter features a thermally-conductive metal core, with a bore formed to hold an exothermic reaction chamber. The core also holds, in a plurality of bores, heater elements to heat the core and thermocouples to monitor the core temperature. The TEGs can be biased against the core with spring washers. The TEGs may be connected in series, and their collective output voltage is determined by the temperature difference between their hot side, pressed against the core, and their cold side, cooled by the heat sinks and convective airflow. The exothermic reaction may be triggered in a variety of ways, and excess heating of the core as a result of an exothermic reaction will be reflected in the TEG output voltage.
G01K 17/06 - Mesure d'une quantité de chaleur transportée par des milieux en écoulement, p.ex. dans les systèmes de chauffage
G01N 25/20 - Recherche ou analyse des matériaux par l'utilisation de moyens thermiques en recherchant la production de quantités de chaleur, c. à d. la calorimétrie, p.ex. en mesurant la chaleur spécifique, en mesurant la conductivité thermique
6.
CALIBRATING A REACTOR HOSTING AN EXOTHERMIC REACTION BASED ON ACTIVE SITE FORMATION ENERGY
Methods are disclosed for calibrating the power output by a reactor hosting an exothermic reaction that involves a fuel material and a catalyst. The calibration is based on an activation energy and the volume of the catalyst. The activation energy is an energy required to excite a catalyst into a catalytic state. In some embodiments, the exothermic reaction involves deuterons and the calibration uses the deuteron precession rate to predict the power output from the exothermic reaction.
G16Z 99/00 - Matière non prévue dans les autres groupes principaux de la présente sous-classe
G01F 11/00 - Appareils qu'il faut actionner de l'extérieur, adaptés à chaque opération répétée et identique, pour mesurer et séparer le volume prédéterminé d'un fluide ou d'un matériau solide fluent à partir d'une alimentation ou d'un récipient sans tenir compte
A method includes inducing interstitial stress within a lattice structure of a crystalline metallic material in a closed environment to generate a plurality of defects and dislocations in the lattice structure. The method further includes cycling one or more isotopes of hydrogen within the closed environment between a gaseous phase and a hydride phase by varying temperature while maintaining constant pressure to form clusters within the plurality of defects and dislocations generated in the lattice structure, each cluster including multiple atoms of the one or more isotopes of hydrogen.
B01J 19/00 - Procédés chimiques, physiques ou physico-chimiques en général; Appareils appropriés
C01B 3/00 - Hydrogène; Mélanges gazeux contenant de l'hydrogène; Séparation de l'hydrogène à partir de mélanges en contenant; Purification de l'hydrogène
C01B 6/00 - Hydrures de métaux; Monoborane ou diborane; Leurs complexes d'addition
8.
SYSTEMS AND METHODS FOR TRIGGERING AND CONTROLLING HEAT GENERATION REACTIONS
A system for controlling heat generating reactions between hydrogen and nanoparticle alloys includes a first reactor comprising a first reaction chamber having prepared nanoparticle alloys, and a second reactor comprising a second reaction chamber having prepared nanoparticle alloys. The system includes a compressor. The system further includes a first valve configured to: during a first cycle, receive hydrogen from the second reaction chamber and send said hydrogen to the compressor, and during a second cycle, receive hydrogen from the first reaction chamber and send said hydrogen to the compressor; and a second valve configured to: during the first cycle, receive compressed hydrogen from the compressor and send said compressed hydrogen to the first reaction chamber, and during a second cycle, receive compressed hydrogen from the compressor and send said compressed hydrogen to the second reaction chamber.
B01J 3/00 - Procédés utilisant une pression supérieure ou inférieure à la pression atmosphérique pour obtenir des modifications chimiques ou physiques de la matière; Appareils à cet effet
F24V 30/00 - Appareils ou dispositifs utilisant la chaleur produite par des réactions chimiques exothermiques autres que la combustion
A modular reactor system comprises of a base plate and two or more interchangeable top plates configured to meet the requirements of different energy production processes, or different phases of an energy production processes. In some embodiments, a standard base plate and different top plates may be provided for different types of reactors, all of which are configured for use with the same standard base plate. In other embodiments, a standard base plate and two or more different top plates may be provided for different phases for a preparation phase and operation phase of an energy production process.
A calorimeter is disclosed that accurately measures the quantity of excess heat generated during an exothermic nuclear reaction and that can be used to ascertain the type of exothermic nuclear reactions based on the measured quantity of heat.
G01K 17/10 - Mesure d'une quantité de chaleur transportée par des milieux en écoulement, p.ex. dans les systèmes de chauffage basée sur la mesure d'une différence de température entre un point d'entrée et un point de sortie, combinée avec la mesure du débit de l'écoulement d'un milieu
G21C 17/12 - Combinaison structurelle de l'élément combustible, de la barre de commande, du cœur du réacteur, ou de la structure du modérateur avec des instruments sensibles, p.ex. pour la mesure de la radioactivité, des contraintes l'élément sensible faisant partie de l'élément de commande
11.
EXOTHERMICALLY RESPONSIVE CATHODES AND METHODS OF PRODUCTION THEREOF
A method of producing exothermically responsive cathodes includes polishing a surface of a metal billet, rinsing the metal billet with water, heating the metal billet at approximately 750° C, rapidly cooling the metal billet, and roughening the surface of the metal billet with an acid, polishing the surface of the metal billet, cleaning the metal billet using an ultrasonic cleaner, annealing the metal billet by heating it at approximately 850° C, rapidly cooling the metal billet, polishing the surface of the metal billet, cleaning the metal billet using an ultrasonic cleaner, thinning the metal billet using a cold-roller, polishing the surface of the metal billet, cleaning the metal billet using an ultrasonic cleaner, annealing the metal billet by heating it at approximately 850° C, roughening the surface of the metal billet with an acid, and cleaning the metal billet using an ultrasonic cleaner.
C25B 11/04 - PROCÉDÉS ÉLECTROLYTIQUES OU ÉLECTROPHORÉTIQUES POUR LA PRODUCTION DE COMPOSÉS ORGANIQUES OU MINÉRAUX, OU DE NON-MÉTAUX; APPAREILLAGES À CET EFFET Électrodes; Leur fabrication non prévue ailleurs caractérisées par le matériau
H01J 9/04 - Fabrication des électrodes ou des systèmes d'électrodes des cathodes thermo-ioniques
12.
SYSTEM AND METHOD OF MANUFACTURING METAL ALLOY COMPOSITE ELECTRODES
The presently disclosed subject matter is directed to electrodes for use in an electrolytic cell. Particularly, the disclosed electrodes comprise two or more alloys and/or intermetallic compounds constructed as microparticles or nanoparticles that provide a lattice substructure. The disclosed electrode further includes various types of defects that increase the electrode surface area. Specifically, the defects can comprise interstitial vacancies and/or dislocations that allow a multiplicity of atoms to form as a dense cluster. The dense clusters can increase the capacity for hydrogen and hydrogen isotope absorption and desorption.
H01M 4/1395 - Procédés de fabrication d’électrodes à base de métaux, de Si ou d'alliages
H01M 4/24 - PROCÉDÉS OU MOYENS POUR LA CONVERSION DIRECTE DE L'ÉNERGIE CHIMIQUE EN ÉNERGIE ÉLECTRIQUE, p.ex. BATTERIES Électrodes Électrodes composées d'un ou comprenant un matériau actif Électrodes pour accumulateurs alcalins
C22F 1/16 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid des autres métaux ou de leurs alliages
A system includes an exothermic energy production device, and a printed circuit board (PCB) engaging an exothermic reaction chamber of the exothermic energy production device. The PCB defines a reaction section having traces configured to trigger or control an exothermic reaction in the exothermic reaction chamber, and a control section having at least one integrated control (IC) chip configured to monitor the exothermic reaction.
A method of determining whether a conduction mode is present in a sample by complex impedance spectroscopy includes: setting a sample at a first temperature; establishing a first steady state of the sample at the first temperature; obtaining a first complex impedance spectrum; calculating one or more first resistance value from the first complex impedance spectrum; setting the sample at a second temperature; establishing a second steady state of the sample at the second temperature; obtaining a second complex impedance spectrum; calculating one or more second resistance value from the second complex impedance spectrum; determining a function that relates the first and second resistance values to the first and second temperatures respectively; calculating at least one slope of the determined function; calculating at least one activation energy using the at least one calculated slope; determining whether a conduction mode is present in the sample based on the calculated activation energy.
G01R 27/02 - Mesure de résistances, de réactances, d'impédances réelles ou complexes, ou autres caractéristiques bipolaires qui en dérivent, p.ex. constante de temps
The presently disclosed subject matter is directed to a method of producing devices for use in energy generation (e.g., metallic electrodes for use in a reaction cell). Particularly, the disclosed method employs one or more masking techniques used during vapor deposition to create a specific desired substrate material geometry. The careful regulation of process parameters such as temperature, overall pressure, introduction of specific partial pressures, substrate, and the like allows the growth of specific films of pure metals and alloys. The produced devices (e.g., metallic coated electrodes) can be utilized in a reaction cell to generate an exothermic reaction. The specific geometry of the deposited material is key to the efficiency of the exothermic reaction.
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
C23C 14/00 - Revêtement par évaporation sous vide, pulvérisation cathodique ou implantation d'ions du matériau composant le revêtement
16.
INTRUSION DETECTION FOR DESTRUCTION AND CONTAMINATION ACTIVATION
A safeguarded device includes: a primary device; at least one preventative measure; a triggering system operatively coupled to implement the preventative measure; and an intrusion detection system operatively coupled to the triggering system, the intrusion detection system configured to, upon detecting at least one criterion, trigger the triggering system to implement the preventative measure. The at least one preventative measure may include a destructive preventative measure configured to at least damage the primary device when implemented by the triggering system. The destructive preventative measure may include an incendiary device, which may include thermite. The at least one preventative measure may include a contaminating apparatus configured to release at least one contaminant to contaminate the primary device.
A method of preparing a reactor device for triggering exothermic reactions is provided. The reactor device includes an electrically conducting interior element and an electrode that are electrically isolated from each other. The method includes: reducing a pressure in the reactor device to below a predetermined first pressure; providing at least one isotope of hydrogen into the reactor device to above a predetermined second pressure; and applying a voltage difference across at least the electrically conducting interior element and electrode, the voltage difference initiating a plasma in the reactor device thereby loading the interior element with the at least one isotope of hydrogen. The at least one isotope of hydrogen may be deuterium.
An NMR system for measuring hydrogen loading status in a hydrogen reactor includes a reaction chamber having an interior reaction area. The system further includes a helical coil disposed around the interior reaction area. The helical coil is capable of generating an RF pulse and detecting free induction decay (FID) signals. The system further includes a magnet disposed around the helical coil. The magnet creates a uniform magnetic field substantially perpendicular to the RF pulse generated by the helical coil.
G01N 24/08 - Recherche ou analyse des matériaux par l'utilisation de la résonance magnétique nucléaire, de la résonance paramagnétique électronique ou d'autres effets de spin en utilisant la résonance magnétique nucléaire
A catalyst insert for a tubular reactor device includes an insert body having a rigid heat conducting exterior shell and a hydrogen loaded metal interior surface. The insert body may have a cylindrical shape. The heat-conducting exterior may include, for example, copper or nickel. The metal interior includes a hydrogen-absorbing metal. The insert body may be formed by directing a stream of heated atomized particles from a thermal spray head onto a first side of a plate, and forming the plate into the insert body with the first side of the plate defining the hydrogen loaded metal interior. Magnetic sections may together form the shell, the interior surface, or may form a layer. Sputtering may optionally also be used to prepare the interior surface.
B01J 19/08 - Procédés utilisant l'application directe de l'énergie ondulatoire ou électrique, ou un rayonnement particulaire; Appareils à cet usage
B01J 19/24 - Réacteurs fixes sans élément interne mobile
B01J 23/10 - Catalyseurs contenant des métaux, oxydes ou hydroxydes métalliques non prévus dans le groupe des terres rares
B01J 31/02 - Catalyseurs contenant des hydrures, des complexes de coordination ou des composés organiques contenant des composés organiques ou des hydrures métalliques
The presently disclosed is directed to reactor configured as a closed and pressurized electrolytic cell that provides for increased hydrogen or deuterium loading into a reactant electrode. Particularly, oxygen is released at the electrolytic cell anode while deuterium or hydrogen ions migrate towards the cathode. The surge of ions bombards the cathode, resulting in dense hydrogen or deuterium loading. As a result, heat in excess of the energy input to the cell is generated. Further, pressurization within the cell allows for high temperatures to be reached without the need for an external heating source. The disclosed electrolytic cell can therefore be used as an effective and improved power generator compared to prior art devices.
C25B 1/12 - Production électrolytique de composés inorganiques ou de non-métaux d'hydrogène ou d'oxygène par électrolyse de l'eau dans des cellules sous pression
C25B 9/06 - Cellules comportant des électrodes fixes de dimensions stables; Assemblages de leurs éléments de structure
A plurality of exothermic -reaction devices are connected to a central monitoring system (CMS) over a network. The devices send periodic check-in reports that include an Integrated Power Ratio, which indicates whether the device is operating sub-optimally, optimally, or unsafely. If the periodic reports are not delivered to the CMS, the devices may use an adjacent device as a relay device or may enter a self-protection mode until communication is re-established.
Methods and apparatus are disclosed for generating an electromagnetic field inside a reactor to trigger an exothermic reaction. The design and implementation of the electromagnetics are based on the requirements of a particular exothermic reaction or reactor. For example, the triggering mechanism of a particular exothermic reaction or reactor may require a magnetic field with a specific magnitude, polarity, and/or orientation.
B01J 8/02 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solides; Appareillage pour de tels procédés avec des particules immobiles, p.ex. dans des lits fixes
B01J 8/42 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solides; Appareillage pour de tels procédés les particules étant fluidisées selon la technique du "lit fluidisé" le lit fluidisé étant soumis à l'action d'un courant électrique ou à des radiations
The present application discloses an exemplary exothermic reaction system that is configured to generate excess heat. Also disclosed is a set of procedures for preparing and operating the exothermic reaction system. A Residual Gas Analyzer (RGA) or a similar device such as a quadruple mass spectrometer is employed to ensure that each step in the set of procedures is complete before moving to the next step. The detailed steps in how to assemble and clean the exothermic reaction system are described along with the RGA test results that are used as calibration baseline.
A method of plating a metallic substrate to achieve a desired surface coarseness includes: plating a metallic substrate with a source metal using a plating solution containing the source metal to produce a plated layer; and during said plating, varying at least one of multiple plating parameters to achieve a value of a coarseness metric of a surface of the plated layer above a minimum predetermined target value of the coarseness metric. Determining a value of a coarseness metric of a plated layer on a metallic substrate includes obtaining a magnified image of a surface of a plated layer recorded by a magnification device; identifying a path across the magnified image that crosses a plurality of pixels; and determining a contrast among the plurality of pixels.
Reaction processes occurring within an exothermic reaction reactor are investigated by comparing changes to at least one material in the reaction to a non-reacted sample of the material. Prior to the reaction, a sample or "coupon" of the material is removed and retained. The coupon of material is withheld from the reactor. The material is placed in the reactor and at least one exothermic reaction is triggered and sustained. Following the exothermic reaction, the material is removed from the reactor. Both the material and the coupon are then analyzed to ascertain changes to the material that did not occur to the sample. These changes are indicative of processes that occurred in the reactor.
C01B 3/16 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés inorganiques comportant un hydrogène lié électropositivement, p.ex. de l'eau, des acides, des bases, de l'ammoniac, avec des agents réducteurs inorganiques par réaction de la vapeur d'eau avec l'oxyde de carbone avec des catalyseurs
F28D 7/00 - Appareils échangeurs de chaleur comportant des ensembles de canalisations tubulaires fixes pour les deux sources de potentiel calorifique, ces sources étant en contact chacune avec un côté de la paroi d'une canalisation
B01J 8/02 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solides; Appareillage pour de tels procédés avec des particules immobiles, p.ex. dans des lits fixes
26.
METHODS AND APPARATUS FOR TRIGGERING EXOTHERMIC REACTIONS
Methods and apparatus are disclosed for triggering and maintaining an exothermic reaction in a reaction material comprising a metal occluded with hydrogen. The reaction material is prepared by loading a hydrogen absorbing material, e.g., a transition metal, with a hydrogen gas that comprises one or more of hydrogen isotopes. Different conditions and system configurations for triggering the exothermic reaction are also disclosed.
Methods and apparatus for improving the loading ratio of a hydrogen gas in a transition metal are disclosed. Blocking desorption sites on the surface of a metallic structure increases the partial hydrogen/deuterium pressure when the absorption and desorption processes reach an equilibrium. The higher the number of desorption sites that are blocked, the higher the equilibrium pressure can be reached for attaining a higher hydrogen loading ratio. Moreover, since hydrogen desorption occurs at grain boundaries, reducing grain boundaries is conducive to reducing the hydrogen desorption rate. Methods and apparatus for increasing grain sizes to reduce grain boundaries are also disclosed.
C01B 3/00 - Hydrogène; Mélanges gazeux contenant de l'hydrogène; Séparation de l'hydrogène à partir de mélanges en contenant; Purification de l'hydrogène
B32B 15/00 - Produits stratifiés composés essentiellement de métal
B32B 33/00 - Produits stratifiés caractérisés par des propriétés particulières ou des caractéristiques de surface particulières, p.ex. par des revêtements de surface particuliers; Produits stratifiés conçus pour des buts particuliers non couverts par une seule autre classe
C01B 3/06 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés inorganiques comportant un hydrogène lié électropositivement, p.ex. de l'eau, des acides, des bases, de l'ammoniac, avec des agents réducteurs inorganiques
C01B 3/08 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés inorganiques comportant un hydrogène lié électropositivement, p.ex. de l'eau, des acides, des bases, de l'ammoniac, avec des agents réducteurs inorganiques avec des métaux