09 - Appareils et instruments scientifiques et électriques
41 - Éducation, divertissements, activités sportives et culturelles
Produits et services
(1) Electronic publications, namely, news articles, and newsletters in the field of geothermal heating and cooling systems (1) Educational services, namely, providing electronic publications and audiovisual materials in the field of geothermal heating and cooling systems; Educational services, namely, providing downloadable news articles, newsletters, and audio and video podcasts in the field of geothermal heating and cooling systems; Educational services, namely, providing non-downloadable webinars, online blogs, and social media posts in the field of geothermal heating and cooling systems; Providing a website featuring information concerning geothermal heating and cooling systems.
09 - Appareils et instruments scientifiques et électriques
16 - Papier, carton et produits en ces matières
41 - Éducation, divertissements, activités sportives et culturelles
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Downloadable electronic publications, namely, newsletters, case studies, white papers and magazine articles in the field of geothermal heating and cooling systems; Downloadable educational written news articles, downloadable electronic newsletters, and downloadable audio and video podcasts in the field of geothermal heating and cooling systems Printed publications, namely, trade publications in the field of heating, ventilation, and air conditioning (HVAC), architecture, building design, and construction Educational services, namely, providing online non-downloadable electronic publications and audiovisual materials in the nature of audiovisual recordings in the field of geothermal heating and cooling systems; Educational services, namely, providing online content in the nature of responses to frequently asked questions (FAQs), technology tips, infographics, updates on trends and technology, and audio and video podcasts in the field of geothermal heating and cooling systems; Educational services, namely, providing non-downloadable webinars, online journals in the nature of blogs, and social media posts in the field of geothermal heating and cooling systems Providing a website featuring information about designing, purchasing, installing, owning, operating, and maintaining geothermal heating and cooling systems
3.
Air conditioning system with capacity control and controlled hot water generation
An HVAC system is disclosed, comprising: (a) a compressor, (b) a source heat exchanger for exchanging heat with a source fluid, (c) a first load heat exchanger operable for heating/cooling air in a space, (d) a second load heat exchanger for heating water, (e) first and second reversing valves, (f) first and second 3-way valves, (f) a bi-directional electronic expansion valve, (g) a first bi-directional valve, and (h) a second bi-directional valve to modulate exchange of heat in the first load heat exchanger when operating as an evaporator and to control flashing of the refrigerant entering the source heat exchanger when operating as an evaporator, (h) a source pump for circulating the source fluid through the first load heat exchanger, (i) a water pump for circulating water through the second load heat exchanger, and (j) a controller to control operation of the foregoing.
An example heat pump system includes a low-height cabinet configured to be mounted to a ceiling. The low-height cabinet includes a frame and a plurality of panels that define a compressor compartment, a blower compartment, and a plenum compartment. The frame includes one or more dividers that separate the blower compartment, the plenum compartment, and the compressor compartment from each other. The example heat pump system also includes a compressor installed horizontally in the compressor compartment, a heat exchanger installed vertically in the compressor compartment, a blower assembly installed in the blower compartment, and an air coil installed in the blower compartment.
F24F 1/02 - Climatiseurs individuels monoblocs pour le conditionnement de l'air, c.-à-d. avec tout l'appareillage nécessaire au traitement placé dans une enveloppe
F24F 1/0047 - Éléments intérieurs, p. ex. ventilo-convecteurs caractérisés par des dispositions de montage fixés dans le ou au plafond
F24F 1/0063 - Éléments intérieurs, p. ex. ventilo-convecteurs caractérisés par des échangeurs de chaleur par le montage ou la disposition des échangeurs de chaleur
F24F 1/029 - Climatiseurs individuels monoblocs pour le conditionnement de l'air, c.-à-d. avec tout l'appareillage nécessaire au traitement placé dans une enveloppe caractérisé par l'agencement ou l’aménagement relatif des composants, p. ex. des compresseurs ou des ventilateurs
F24F 1/03 - Climatiseurs individuels monoblocs pour le conditionnement de l'air, c.-à-d. avec tout l'appareillage nécessaire au traitement placé dans une enveloppe caractérisés par des aménagements de montage
F24F 1/0317 - Climatiseurs individuels monoblocs pour le conditionnement de l'air, c.-à-d. avec tout l'appareillage nécessaire au traitement placé dans une enveloppe caractérisés par des aménagements de montage suspendus au plafond
Various embodiments of a low-height heat pump cabinet are disclosed. An example heat pump system includes a low-height cabinet configured to be mounted to a ceiling. The low-height cabinet includes a frame and a plurality of panels that define a compressor compartment, a blower compartment, and a plenum compartment. The frame includes one or more dividers that separate the blower compartment, the plenum compartment, and the compressor compartment from each other. The example heat pump system also includes a compressor installed horizontally in the compressor compartment, a heat exchanger installed vertically in the compressor compartment, a blower assembly installed in the blower compartment, and an air coil installed in the blower compartment.
F24D 15/04 - Autres systèmes de chauffage de locaux domestiques ou d'autres locaux utilisant des pompes à chaleur
F24F 1/029 - Climatiseurs individuels monoblocs pour le conditionnement de l'air, c.-à-d. avec tout l'appareillage nécessaire au traitement placé dans une enveloppe caractérisé par l'agencement ou l’aménagement relatif des composants, p. ex. des compresseurs ou des ventilateurs
F24F 1/0317 - Climatiseurs individuels monoblocs pour le conditionnement de l'air, c.-à-d. avec tout l'appareillage nécessaire au traitement placé dans une enveloppe caractérisés par des aménagements de montage suspendus au plafond
An HVAC system is disclosed, comprising: (a) a compressor, (b) a source heat exchanger for exchanging heat with a source fluid, (c) a first load heat exchanger operable for heating/cooling air in a space, (d) a second load heat exchanger for heating water, (e) first and second reversing valves, (f) first and second 3-way valves, (f) a bi-directional electronic expansion valve, (g) a first bi-directional valve, and (h) a second bi-directional valve to modulate exchange of heat in the first load heat exchanger when operating as an evaporator and to control flashing of the refrigerant entering the source heat exchanger when operating as an evaporator, (h) a source pump for circulating the source fluid through the first load heat exchanger, (i) a water pump for circulating water through the second load heat exchanger, and (j) a controller to control operation of the foregoing.
A hybrid heat pump system comprising a heat pump loop integrated with a hydronic loop. The hybrid heat pump system offers multiple modes of operation to provide increased versatility and improved performance. Each of the loops can operate independently. In addition, the loops can operate in conjunction with each other in both heating and cooling modes. Still further, the hydronic loop can provide a reheat function when the heat pump loop is operating in the cooling mode to provide improved dehumidification of the air delivered to the conditioned space. The heat pump loop may include a hot gas bypass functionality for capacity control and/or freeze protection. The hydronic heat exchanger and the space heat exchanger of the heat pump loop may be combined in a compact single slab construction with a slit fin preventing cross-conduction between the heat exchanger sections.
An embodiment of the instant disclosure comprises a reversible heat pump and water heating system for conditioning a space and heating water. The system comprises a refrigerant circuit that includes a compressor, a source heat exchanger, a space heat exchanger, and an expansion device. A 4-way reversing valve alternates between heating and cooling modes of operation. The system includes a heat exchanger for heating water in the water heating loop, and a 3-way valve that either actuates the refrigerant flow through the water heater heat exchanger or bypasses at least a portion of the refrigerant flow around the water heater heat exchanger. The heat pump system is operable in at least five modes—space heating only, space cooling only, water heating only, and either space heating or space cooling combined with water heating. Use of a modulating 3-way valve allows the amount of the refrigerant flow through the water heating heat exchanger to be adjusted to precisely match space conditioning and water heating demands and stable operation of the heat pump system. Either of the space and source heat exchangers may be bypassed and deactivated to reduce the heat pump system power consumption.
An embodiment of the instant disclosure comprises a reversible heat pump and water heating system for conditioning a space and heating water. The system comprises a refrigerant circuit that includes a compressor, a source heat exchanger, a space heat exchanger, and an expansion device. A 4-way reversing valve alternates between heating and cooling modes of operation. The system includes a heat exchanger for heating water in the water heating loop, and a 3-way valve that either actuates the refrigerant flow through the water heater heat exchanger or bypasses at least a portion of the refrigerant flow around the water heater heat exchanger. The heat pump system is operable in at least five modes—space heating only, space cooling only, water heating only, and either space heating or space cooling combined with water heating. Use of a modulating 3-way valve allows the amount of the refrigerant flow through the water heating heat exchanger to be adjusted to precisely match space conditioning and water heating demands and stable operation of the heat pump system. Either of the space and source heat exchangers may be bypassed and deactivated to reduce the heat pump system power consumption.
A hybrid heat pump system comprising a heat pump loop integrated with a hydronic loop. The hybrid heat pump system offers multiple modes of operation to provide increased versatility and improved performance. Each of the loops can operate independently. In addition, the loops can operate in conjunction with each other in both heating and cooling modes. Still further, the hydronic loop can provide a reheat function when the heat pump loop is operating in the cooling mode to provide improved dehumidification of the air delivered to the conditioned space. The heat pump loop may include a hot gas bypass functionality for capacity control and/or freeze protection. The hydronic heat exchanger and the space heat exchanger of the heat pump loop may be combined in a compact single slab construction with a slit fin preventing cross-conduction between the heat exchanger sections.
An HVAC system is disclosed, comprising: (a) a compressor, (b) a source heat exchanger for exchanging heat with a source fluid, (c) a first load heat exchanger operable for heating/cooling air in a space, (d) a second load heat exchanger for heating water, (e) first and second reversing valves, (f) first and second 3-way valves, (f) a bi-directional electronic expansion valve, (g) a first bi-directional valve, and (h) a second bi-directional valve to modulate exchange of heat in the first load heat exchanger when operating as an evaporator and to control flashing of the refrigerant entering the source heat exchanger when operating as an evaporator, (h) a source pump for circulating the source fluid through the first load heat exchanger, (i) a water pump for circulating water through the second load heat exchanger, and (j) a controller to control operation of the foregoing.
An HVAC system is disclosed, comprising: (a) a compressor, (b) a source heat exchanger for exchanging heat with a source fluid, (c) a first load heat exchanger operable for heating/cooling air in a space, (d) a second load heat exchanger for heating water, (e) first and second reversing valves, (f) first and second 3-way valves, (f) a bi-directional electronic expansion valve, (g) a first bi-directional valve, and (h) a second bi-directional valve to modulate exchange of heat in the first load heat exchanger when operating as an evaporator and to control flashing of the refrigerant entering the source heat exchanger when operating as an evaporator, (h) a source pump for circulating the source fluid through the first load heat exchanger, (i) a water pump for circulating water through the second load heat exchanger, and (j) a controller to control operation of the foregoing.
F25B 29/00 - Systèmes de chauffage et de refroidissement combinés, p. ex. fonctionnant alternativement ou simultanément
F24F 13/00 - Détails communs ou relatifs au conditionnement de l'air, à l'humidification de l'air, à la ventilation ou à l'utilisation de courants d'air comme écrans
An integrated heat pump and water heating circuit for space heating and cooling and heating domestic water. The circuit includes a first heat exchanger for the domestic water, a second heat exchanger for the source, a third exchanger for the space, and a variable capacity compressor. The circuit has four modes of operation. In the first mode, the space is cooled. In the second mode, the space is heated. In the third mode, the circuit heats the water supply. In a fourth mode, the water supply is heated and the space is cooled simultaneously. The speed of the compressor is adjusted to maintain a pressure differential at or above a predetermined set point.
Various embodiments of a heat pump system are disclosed to provide improved and flexible heat pump operation when dehumidification of the conditioned space is required. In one embodiment, a heat pump system includes a heat pump loop comprising a refrigerant circuit that fluidly interconnects (1) a compressor; (2) a source heat exchanger; (3) a source heat exchanger bypass circuit comprising a bypass valve; (4) a space heat exchanger; (5) a reversing valve positioned on the discharge side of the compressor; (6) a reheat circuit comprising a reheat heat exchanger; (7) first and second expansion devices; and (8) first and second expansion device bypass circuits configured to allow refrigerant to bypass the first and second expansion devices, respectively, where the first and second bypass circuits include first and second check valves, respectively; and (9) a 3-way valve configured to selectively direct refrigerant flow to the first expansion device, the reheat circuit, and the second expansion device.
F24F 3/14 - Systèmes de conditionnement d'air dans lesquels l'air conditionné primaire est fourni par une ou plusieurs stations centrales aux blocs de distribution situés dans les pièces ou enceintes, blocs dans lesquels il peut subir un traitement secondaireAppareillage spécialement conçu pour de tels systèmes caractérisés par le traitement de l'air autrement que par chauffage et refroidissement par humidificationSystèmes de conditionnement d'air dans lesquels l'air conditionné primaire est fourni par une ou plusieurs stations centrales aux blocs de distribution situés dans les pièces ou enceintes, blocs dans lesquels il peut subir un traitement secondaireAppareillage spécialement conçu pour de tels systèmes caractérisés par le traitement de l'air autrement que par chauffage et refroidissement par déshumidification
F25B 30/02 - Pompes à chaleur du type à compression
F24F 3/153 - Systèmes de conditionnement d'air dans lesquels l'air conditionné primaire est fourni par une ou plusieurs stations centrales aux blocs de distribution situés dans les pièces ou enceintes, blocs dans lesquels il peut subir un traitement secondaireAppareillage spécialement conçu pour de tels systèmes caractérisés par le traitement de l'air autrement que par chauffage et refroidissement par humidificationSystèmes de conditionnement d'air dans lesquels l'air conditionné primaire est fourni par une ou plusieurs stations centrales aux blocs de distribution situés dans les pièces ou enceintes, blocs dans lesquels il peut subir un traitement secondaireAppareillage spécialement conçu pour de tels systèmes caractérisés par le traitement de l'air autrement que par chauffage et refroidissement par déshumidification avec chauffage subséquent, c.-à-d. dans lesquels l'air, porté au degré d'humidité voulu dans la centrale, traverse un élément de chauffage pour atteindre la température désirée
F25B 6/04 - Machines, installations ou systèmes à compression, avec plusieurs circuits de condenseurs disposés en série
F25B 13/00 - Machines, installations ou systèmes à compression, à cycle réversible
A hybrid heat pump system comprising a heat pump loop integrated with a hydronic loop. The hybrid heat pump system offers multiple modes of operation to provide increased versatility and improved performance. Each of the loops can operate independently. In addition, the loops can operate in conjunction with each other in both heating and cooling modes. Still further, the hydronic loop can provide a reheat function when the heat pump loop is operating in the cooling mode to provide improved dehumidification of the air delivered to the conditioned space. The heat pump loop may include a hot gas bypass functionality for capacity control and/or freeze protection. The hydronic heat exchanger and the space heat exchanger of the heat pump loop may be combined in a compact single slab construction with a slit fin preventing cross-conduction between the heat exchanger sections.
An embodiment of the instant disclosure comprises a reversible heat pump and water heating system for conditioning a space and heating water. The system comprises a refrigerant circuit that includes a compressor, a source heat exchanger, a space heat exchanger, and an expansion device. A 4-way reversing valve alternates between heating and cooling modes of operation. The system includes a heat exchanger for heating water in the water heating loop, and a 3-way valve that either actuates the refrigerant flow through the water heater heat exchanger or bypasses at least a portion of the refrigerant flow around the water heater heat exchanger. The heat pump system is operable in at least five modes—space heating only, space cooling only, water heating only, and either space heating or space cooling combined with water heating. Use of a modulating 3-way valve allows the amount of the refrigerant flow through the water heating heat exchanger to be adjusted to precisely match space conditioning and water heating demands and stable operation of the heat pump system. Either of the space and source heat exchangers may be bypassed and deactivated to reduce the heat pump system power consumption.
An integrated heat pump and water heating circuit for space heating and cooling and heating domestic water. The circuit includes a first heat exchanger (20) for the domestic water, a second heat exchanger (22) for the source (heat source/sink) with a first dedicated expansion valve (24), and a third exchanger (30) for the space with a second dedicated expansion valve (34). The circuit has four modes of operation. In the first mode, the space is cooled and heat is rejected to the source. In the second mode, the space is heated while heat is absorbed from the source. In the third mode, the circuit absorbs heat from the source and heats the water supply. In a fourth mode, the water supply is heated and the space is cooled simultaneously. In each mode, one heat exchanger is inactive, and the charge from the inactive heat exchanger is reclaimed to the suction side of the compressor.
A water-cooled air conditioning system using a regenerative condenser water circuit to reheat the supply air during a dehumidification mode. The air conditioning system may be any type of water-cooled system, including a water source heat pump or water-cooled air conditioner. The reheat circuit circulates water leaving the condenser through the reheat heat exchanger and then returns the water to the condenser inlet. Thus, the reheat circuit ensures that water leaving the condenser is warm enough to provide sufficient reheating for the supply air, regardless of the water source temperature. In addition, a modulation assembly controls the amount of water flowing through the reheat circuit, and thereby its temperature, so that the temperature of the reheated supply air can be maintained within a narrow range.
F25B 29/00 - Systèmes de chauffage et de refroidissement combinés, p. ex. fonctionnant alternativement ou simultanément
F25D 17/06 - Dispositions pour la circulation des fluides de refroidissementDispositions pour la circulation de gaz, p. ex. d'air, dans les enceintes refroidies pour la circulation de gaz, p. ex. convection naturelle par circulation d'air forcée
F25D 17/02 - Dispositions pour la circulation des fluides de refroidissementDispositions pour la circulation de gaz, p. ex. d'air, dans les enceintes refroidies pour la circulation des liquides, p. ex. de la saumure
Air conditioners, heating and cooling installations, heat pumps, ventilation equipment, electric heaters, hydronic heaters, and parts and accessories therefor.
heating and air conditioning equipment for domestic, commercial, and industrial use, namely, heat pumps, air conditioners, dehumidifiers, and parts therefor